Ron. Roberts, Mark Brydon Ames Laboratory, U.S. DOE Ames, Iowa

How Might Ames Laboratory Contribute to Thermal Therapy?

- Mathematical analysis of Ultrasonic Measurement
 - Explain observed phenomena (data interpretation)
 - Measurement design optimization
 - Physical foundation for signal processing
- Analysis issues in thermal therapy
 - Engineering of ultrasound field
 - Transducer design
 - Array phasing
 - Study of ultrasound/tissue interaction
 - Random spatial fluctuation in ultrasound intensity due to spatial inhomogeneity in ultrasonic velocity
 - Impact on tissue heat distribution

Ideal ultrasound field distribution

Heat is proportional to field intensity in some fashion

Medium with inhomogeneous microstructure

+ 4% velocity variation

Ultrasonic field

Ultrasonic Field Intensity Distribution in Random Inhomogeneous Media Ultrasonic fields in random microstructure (4 different realizations)

- Energy is localized in "hot spots"
 - For flaw detection, this introduces a signal variance
 - What is implication for thermal therapy?
 - Localized excessive tissue damage?

Potential Research Topics

Study significance of problem

 Quantify connection between spatial distribution of tissue velocity and heat

Engineer solution

- Design ultrasound source for uniform heat distribution
 - Dynamically swept angle of incidence
 - Modulated center frequency

Available Resources for Research

Computational model for ultrasound propagation in random media

Available Resources for Research

Real-time adaptive modeling of heat transfer

Complex geometry & inhomogeneous material with speckled energy deposition AMoEBA Adaptive Modeling by Evolving Blocks Algorithm

Transient temperature distribution analysis completed in real-time

Available Resources for Research

Experimental facilities for laboratory corroboration of model predictions

