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Summary. Polygonal meshes are used to model smooth surfaces in many applica-
tions. Often these meshes need to be remeshed for improving the quality, density
or gradedness. We apply the Delaunay refinement paradigm to design a provable
algorithm for isotropic remeshing of a polygonal mesh that approximates a smooth
surface. The proofs provide new insights and our experimental results corroborate
the theory.
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1 Introduction

Polygonal meshes including the triangular ones are often used in many applica-
tions of science and engineering to model a smooth surface. Such a mesh is usually
designed by some modeling software (CAD software), or is generated by some re-
construction algorithm from a set of sample points provided by a scanning device.
These meshes often lack properties that are useful for subsequent processing. For
example, the triangle shapes may be poor for subsequent numerical methods [PB01],
or the application may need a graded mesh with different levels of density without
sacrificing the shape quality. To address these requirements, the input mesh needs
to be remeshed, that is, they need to be sampled and triangulated appropriately.

Because of its application needs, the problem of remeshing has been a topic
of research in many areas. We refer the readers to [Alliez03, Sifri] and the refer-
ences therein. In this work, we apply the Delaunay refinement technique to design
a provable algorithm for remeshing polygonal surfaces. The Delaunay refinement,
originally pioneered by Chew [Chew89] is a powerful paradigm for meshing. First,
it produces a Delaunay mesh as output which is often favored over other meshes
due to its isotropic nature. Second, the paradigm offers a very simple mechanism to
guarantee the quality of the mesh. It works on the following “furthest-point” prin-
ciple. Whenever some desired criterion of the mesh is not satisfied, the algorithm
inserts a point within the domain which is locally furthest from all other existing
points. Then, the desired condition is automatically satisfied when the algorithm
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terminates. The main challenge entails to guarantee the termination. The Delaunay
refinement paradigm has been successfully used for meshing two and three dimen-
sional domains [CDRR204, PW04, Rup95, Shew98].

Researchers have also explored the Delaunay refinement technique for surface
meshing. Chew [Chew93] proposed the first surface meshing algorithm with this
technique though without any guarantee. Cheng et al. [CDES01] combined the sam-
pling theory of Amenta and Bern [AB98] for surface reconstruction with the Delau-
nay refinement for producing a mesh for skin surfaces. Boissonnat and Oudat [BO03]
gave an elegant algorithm for general surfaces assuming that the feature sizes of the
surface can be computed. Cheng, Dey, Ramos and Ray [CDRR04] gave a different
algorithm for surface meshing which replaced the feature size computations with
critical point computations. All these algorithms are meant for smooth surfaces and
not for polygonal surfaces. Although the authors of [BO03] and [CDRR04] indicate
that their algorithms work well for polygonal surfaces in practice, no guarantee is
proved.

Of course, treating a polygonal mesh as an input polyhedron one can use any
of the polyhedra meshing algorithms [CDRR204, PW04] to obtain a meshing of the
polygonal surfaces. Unfortunately, the output mesh produced with this approach
may have some undesirable properties. These algorithms respect the edges and ver-
tices of the input polygonal mesh so that the underlying space of the output is exactly
the same as that of the input. As a result small input angles are not eliminated.
In particular, if applied to a triangular mesh, the algorithm tries to compensate
for acute angles invariably present in each triangle and produces too many sample
points. What we are looking for is a remeshing of the input polygonal mesh where
the new points are constrained to be on the input mesh though the underlying space
of the output is allowed to differ from the input.

Results. Given an input polygonal mesh G, our algorithm samples G with a De-
launay refinement approach and produces an output mesh that has the same topol-
ogy and approximate geometry of G. Moreover, the output triangles have bounded
aspect ratios. These guarantees are proved assuming that G satisfies certain condi-
tions. Specifically, we show that if G approximates a smooth surface both point-wise
and normal-wise closely, then the Delaunay refinement running with the desired con-
ditions terminates. It is only the proofs that use a hypothetical smooth surface Σ
approximated by G, but Σ plays no role in the algorithm. In practice, there are
many situations where such assumption is valid. For example, G might be a polyg-
onal surface reconstructed from a dense sample of a smooth surface [Dey03], or a
designed surface approximating a smooth surface closely.

Overview. Our algorithm has two distinct phases. In the first phase it recovers
the topology of G. In the second phase, it refines further to recover geometry and
ensures quality of the triangles. For topology recovery we follow the approach of
Cheng et al. [CDRR04] to build the mesh as the restricted Delaunay triangulation
of a set of points sampled from the input polygonal surface. This restricted Delau-
nay triangulation has the same topology of the input surface if a property called
topological ball holds [ES97]. We prove that one can find a point on the input sur-
face that is far-away from all existing sampled points if this property does not hold.
Such a point is sampled to drive the Delaunay refinement. For geometry recovery
we present similar results that lead to a new refinement algorithm. Section 2 and 3
describe the algorithms for topology and geometry recovery respectively. Section 4
and 5 build all necessary lemmas for the termination proof in section 6. Finally, in
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section 7 we show that meshes computed from dense point cloud data satisfy the
conditions required for our proofs.

2 Delaunay refinement for topology

The Delaunay refinement algorithm first concentrates on getting the topology right.
Before we describe the algorithm we briefly set up our notations for Delaunay and
Voronoi diagrams. The Delaunay triangulation of a point set P ⊂ R3 is denoted
as Del P and its dual Voronoi diagram as Vor P . A Voronoi cell for a point p ∈ P
is denoted as Vp. Skipping the details we just mention that Del P is a simplicial
complex where a k-simplex is dual to a Voronoi face of dimension 3− k which is the
intersection of 3 − k Voronoi cells. Zero-,one- and two- dimensional Voronoi faces
are called Voronoi vertices, Voronoi edges and Voronoi facets respectively.

The topology is recovered in two phases. First, in the manifold recovery phase, a
Delaunay mesh is computed which is guaranteed to be a 2-manifold. Then, further
refinement is carried out so that the 2-manifold has the same topology as that of the
input. In both phases we grow a sample Q, generated from G iteratively. The notion
of restricted Delaunay triangulation plays an important role in the algorithms and
the proofs.

Definition 1. Let v(σ) denote the set of vertices of a simplex σ and Vq|G = Vq ∩G.
The Delaunay complex

Del Q|G = {σ ∈ Del Q |
�

q∈v(σ)

Vq|G -= ∅}

is called the restricted Delaunay triangulation of Q with respect to G.

Basically, Del Q|G contains a dual Delaunay simplex for every Voronoi face inter-
sected by G. The triangulation Del Q|G plays a key role in the topology recovery
phase. However, we need only a subcomplex of Del Q|G to guarantee the manifold
property. Let T be the set of triangles in Del Q dual to the Voronoi edges that
intersect G. The edge restricted Delaunay triangulation EDel Q|G is the simplicial
complex made by T and its edges and vertices. The manifold recovery phase MflRe-
cov computes EDel Q|G while the topology recovery phase TopoRecov computes
Del Q|G.

The refinement routines check if the Voronoi diagram Vor Q satisfies certain
conditions. If not, they insert a point from G into Q which is far away from its
nearest neighbor and hence from all points in Q. Specifically, MfldRecov enforces
a manifold property explicitly and TopoRecov enforces a topological ball property.
The routines are similar in spirit with those used for smooth surface meshing by
Cheng et al. [CDRR04]. However, they differ in crucial details. We take the liberty
of computing the furthest point in G ∩ Vq from q since G is polygonal and these
computations do not require any optimization steps as opposed to the smooth surface
meshing case. Also, the critical point computations in various phases of the algorithm
of Cheng et al. are completely eliminated which results into new subroutines like
Vcell with its new justification.
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2.1 Manifold Recovery

The manifold recovery phase explicitly enforces the manifold condition. Two sub-
routines, Vedge and Disk are called by the manifold recovery algorithm. Vedge
checks if any Voronoi edge, say in a Voronoi cell Vq, intersects G in more than one
point. If so, it outputs the intersection point, say p, furthest from q. Clearly, p cannot
be closer to any point in Q than q. Let T be the set of triangles in EDel Q|G, i.e.,
the triangles dual to the Voronoi edges in Vor Q intersected by G. Denote the set of
triangles incident to q in T as Δtq. Disk checks if Δtq is a topological disk. If not, it
returns the point in G∩Vq furthest from q. MfldRecov inserts the points returned
by Vedge and Disk into Q and updates Vor Q. It starts with a vertex from each
component in G and finally returns T when no more points need to be inserted.

Observation 2.1 When MfldRecov terminates, T is a 2-manifold as Δtq for
each vertex q is a 2-disk.

Vedge(e ∈ Vq)

If e intersects G tangentially or at least in two points, return the point
furthest from q among them, otherwise return null.

Disk(q)

If Δtq is not a topological disk, return the furthest point in G ∩ Vq.

MfldRecov(G)

1. Initialize Q with a vertex from each component of G.
2. Compute Vor Q.
3. If there is a Voronoi edge e ∈ Vor Q so that Vedge(e) returns a point p,
insert p into Q and go back to step 2.
4. If there is a point q ∈ Q so that Disk(q) returns a point p, insert p into
Q and go back to step 2.
5. Output the set T of triangles dual to the Voronoi edges intersecting G.

2.2 Topology recovery

In the topology recovery phase we insert points into Q till Vor Q satisfies the follow-
ing property. We say Vor Q satisfies the topological ball property if each Voronoi face
of dimension k, 0 < k ≤ 3, intersects Σ in a topological (k − 1)-ball if it intersects
G at all. For k = 0, this intersection should be empty. The motivation for ensuring
the topological ball property comes from the following result of Edelsbrunner and
Shah [ES97].
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Theorem 1. The underlying space of the complex Del Q|G is homeomorphic to G if
Vor Q has the topological ball property.

We use this theorem to guarantee the topology of the output. The Vedge sub-
routine can be used to enforce the topological ball property for the Voronoi edges.
A Voronoi facet F ∈ Vq can violate this property by intersecting G in

(i) more than one topological interval, and/or
(ii) in one or more cycle.

If (i) happens, either a Voronoi edge of F intersects G more than once, or the
dual Delaunay edge dual(F ) has more than two triangles incident to it in EDel Q|G.
The topological disk condition for Δtq will be violated where q is any of the end
vertices of dual(F ). So, this violation can be handled by the subroutine Disk. For
(ii) we introduce a subroutine Fcycle to check the condition and to identify the
point in F ∩ G furthest from q. This furthest point will be a point of intersection
between F and an edge of G.

Fcycle(F ∈ Vq)

If F ∩G has a cycle, return the point in F ∩G furthest from q.

So far we have subroutines for checking the topological ball property for Voronoi
edges and facets. The Voronoi cell also needs a separate check. For a Voronoi cell
Vq, the subroutine Vcell checks if W = Vq ∩ G is a topological disk. By the time
Vcell is called in the algorithm, W is ensured to be a 2-manifold with a single
boundary. Also, W has a single component as Q is initialized with a vertex from
each component of G. It is easy to check if such a surface is a disk by computing the
Euler characteristic that is given by the alternating sums of the number of vertices,
edges and polygons in W . Of course, this requires one to compute the boundary
edges and vertices of W . However, we can simply ignore those vertices and edges as
they cancel out in the alternating sum.

Vcell(q)

Determine the number #v of vertices, #e of edges and #g of polygons in
G intersecting Vq. If #v−#e + #g -= 1, return the point in G∩Vq furthest
from q.

Now we have all ingredients to recover the topology of G into the new mesh T .

TopoRecov(G, Q)

1. If Q = ∅ initialize Q with a vertex from each component of G.
2. Compute Vor Q.
3. If any of Vedge, Disk, Fcycle and Vcell, necessarily in this order,
succeeds and returns a point p, insert p into Q and go back to step 2.
5. Output the set T of triangles dual to the Voronoi edges intersecting G.

3 Delaunay refinement for geometry

It is often not enough to recover only the topology of G. The remeshed surface T
should also follow the geometry of G. For this, we need to sample G more densely
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Fig. 1. The input mesh is uniformly dense everywhere. The output is a graded mesh
at two different levels of density.

than the topology recovery requires. The level of density is controlled by an user
parameter λ. Figure 1 shows an example of remeshing at two different levels of
density.

The algorithm for geometry recovery uses the structure of the Voronoi cells to
determine if the mesh should be refined locally. For a point q ∈ Q, the set W = Vq∩G
is a 2-disk after the topology recovery phase. This disk separates Vq into two subsets
one on each side of W . Let V +

q and V −
q denote these subsets and let q+ and q− be the

Voronoi vertices in V +
q and V −

q respectively furthest from q. If any of V +
q and V −

q is
unbounded, the corresponding furthest vertex is taken at infinity. The points q+ and
q− are like poles of the Voronoi cell Vq as defined by Amenta, Bern [AB98] for smooth
surfaces. When points are sampled from a smooth surface densely, it is known that
the poles of a point remain far away from it. Although we deal with a non-smooth
surface G, we can claim (Lemma 15) a similar property if G approximates a smooth
surface closely enough.

Geometry recovery checks if all triangles Δtq incident to a vertex q are small
enough compared to the pole distance hq = min{�q−q+�, �q−q−�}. Let r(t) denote
the circumradius of a triangle in Δtq. For an user parameter λ, if r(t)/hq is larger
than 12λ, we insert the point c where the dual Voronoi edge of t, dual(t), intersects
G. Clearly, the value of λ denotes the level of refinement.

A similar procedure can be used to guarantee the quality of the triangles. Let
ρ(t) denote the ratio r(t)/<(t) where <(t) is the length of the shortest edge of t. It
is known that triangles with bounded ρ value have bounded aspect ratios. In the
algorithm, we check if a triangle t has ρ(t) more than (1 + 8λ), and, if so, we insert
the point dual(t) ∩G into Q.

The particular choice of 12λ and (1 + 8λ) comes from our proofs.

GeomRecov(G, λ)
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1. Q:=∅
2. T := TopoRecov(G, Q), Q := vertices of T
3. For each q ∈ Q, if there is a t ∈ Δtq with c = dual(t) ∩G so that either
(i) ρ(t) > (1 + 8λ), or
(ii) r(t)/hq > 12λ
then insert c into Q and go back to step 2.
4. Output T .

Notice that, although GeomRecov requires an user supplied λ, MfldRecov
and TopoRecov require no such λ. We choose λ = 0.02 in GeomRecov for our
experiments. Figure 5 shows some results of this experiment.

4 Prelude to proofs

The refinement routines may not terminate for arbitrary polygonal meshes but we
prove that when the input mesh G approximates a smooth surface closely enough,
they necessarily terminate. We need several definitions to state this approximation
precisely.

Let Σ be a smooth, compact surface without boundary which is approximated
by G. In general, G and hence Σ may have more than one connected component.
The output is a triangulation T whose vertex set lies in G. Abusing the notations
slightly we will use G and T to mean their underlying complexes and spaces as well.

4.1 Definitions

Distances: For a point x ∈ R3 and a set X ⊆ R3, let d(x, X) denote the Euclidean
distance of x from X, i.e.,

d(x, X) = inf
y∈X

�x− y�.

A ball Bc,r is the set of points whose distance to c is no more than r.

Medial axis and feature size: The medial axis M of Σ is the closure of the set X ⊂ R3

so that, for each point x ∈ X, d(x, Σ) is realized by two or more points. Alterna-
tively, M is the loci of the centers of the maximal balls whose interiors are empty
of points from Σ. These balls, called medial balls, are tangent to Σ at one or more
points. At each point x ∈ Σ, there are two such tangent medial balls. Define a func-
tion f : Σ → R where f(x) = d(x, M). The value f(x) is called the local feature size
of Σ at x [ABE98].

Projection map: Often we will use a projection map ν : R3 \M → Σ where x̃ = ν(x)
is the closest point in Σ, i.e., d(x, Σ) = �x− x̃�.

Oriented normals: The normals of the three spaces, Σ, G and T play an important
role in the proofs. These normals need to be oriented. We denote the normal of Σ
at a point x as ñx. These normals are oriented, i.e., the normal ñx points to the
bounded component of R3 \ Σ� where x is in the connected component Σ� ⊆ Σ.
Similarly, we define an oriented normal ng for each polygon g in G. Let g be in the
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connected component G� ⊆ G. The normal ng points to the bounded component of
R3 \G�. We will also orient the normals of the Delaunay triangles computed by our
algorithms. For a Delaunay triangle t, we orient its normal nt so that ∠nt, ñp̃ < π/2
where p is a vertex subtending the largest angle in t.

Angle notation: The angle between two oriented normals a and b is denoted as ∠a,b.

Thickening and approximation: We require that G approximate Σ pointwise, i.e., it
resides within a small thickening of Σ. In particular, for 0 ≤ δ < 1, we introduce a
thickened space

δΣ = {x ∈ R3|d(x, Σ) ≤ δf(x̃)}.
We will also require that G approximates Σ normal-wise. To specify this point-

wise and normal-wise approximation we define:

Definition 2. G is (δ, μ)-flat with respect to Σ if the two conditions hold:

(i) For δ < 1, the closest point x̃ ∈ Σ of each point x ∈ G is within δf(x̃) distance,
and conversely, each point x ∈ Σ has a point of G within δf(x) distance.

(ii) For any point x in a polygon g ∈ G, the angle ∠ng,nx̃ is at most μ for some
μ < 1.

4.2 Consequences

We assume G to be (δ, μ)-flat with respect to Σ. The following lemmas are direct
consequences of this assumption.

Lemma 1. (i) G ⊂ δΣ. (ii) Let ng and n�
g be the normals of two adjacent polygons

g, g� ∈ G. We have ∠ng,n�
g ≤ 2μ.

Lemma 2. Let p and q be two points in δΣ with �p− q� ≤ λf(p̃). Then, �p̃− q̃� ≤
2(λ + δ)f(p̃).

Proof. We have

�p̃− q̃� ≤ �p̃− p�+ �p− q�+ �q − q̃�
≤ 2(�p̃− p�+ �p− q�) ≤ 2(λ + δ)f(p̃).

The medial balls of Σ are empty of points from Σ but not from G. This is a reason
why the proofs for Σ as detailed in [CDRR04] do not extend to G. First, we clear
this obstacle by showing that the medial balls after appropriate shrinking can be
made empty of points from δΣ and hence G. This claim is formalized in the following
lemma. Let L+

x and L−
x denote the rays originating at x ∈ Σ in the directions of ñx

and −ñx respectively, see Figure 2 (proof in the extended version [Dey05]).

Lemma 3. Let 0 < δ < 1/4. For each point x ∈ Σ there are two balls B = Bc,r and
B� = Bc�,r� with

(i) c ∈ L+
x and c� ∈ L−

x ,
(ii) r = r� = (1− 4δ)f(x),
(iii) d(x, B) = d(x, B�) = 4δf(x),
(iv) δΣ ∩B = ∅ and δΣ ∩B� = ∅.
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c

c’

B

B’

}δΣΣ

Σ

xx

x

L

L−

+

Fig. 2. A medial ball tangent to Σ at x (shown with dotted boundary) is shrunk
radially first to the ball with dashed boundary. Then it is shrunk further to be empty
of δΣ to the ball with solid boundary.

5 Normals and conditions

The normals to the triangles and edges that the Delaunay refinement produces
play an important role in the analysis. For convenience we define the following two
functions for any λ > 0.

α(λ) =
λ

1− 4λ
and

β(λ) = arcsin λ + arcsin

�
2√
3

sin(2 arcsin λ)

�
.

For smooth surfaces it is known that the triangles with small circumradius lie almost
parallel to the surface. This follows from the following lemma proved by Amenta,
Choi, Dey and Leekha [ACDL00] and the fact that medial balls incident to a point
on the surface are relatively large.

Lemma 4. Let B = Bc,r and B� = Bc�,r� be two balls meeting at a single point p of
a smooth surface Σ. Let t = pqr be a triangle where

(i) p subtends the largest angle of t,
(ii) the vertices of t lie outside of B ∪B�, and
(iii) the circumradius of t is no more than λ min{r, r�} where λ < 1√

2
.1

Then the acute angle between the line of the normal nt of t and the line joining c, c�

is no more than β(λ).

1In [ACDL00], the constant is stated smaller, but 1√
2

is also a valid choice.
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This lemma implies that the small Delaunay triangles lie almost parallel to the sur-
face, a key fact used in the Delaunay refinement algorithm of Cheng et al. [CDRR04].
Lemma 7 is a version of this fact for the non-smooth surface G which we prove with
our assumption that G follows Σ point-wise.

Another key ingredient used in smooth case is that the normals of a smooth
surface cannot vary too abruptly. Precisely, Amenta and Bern [AB98] proved the
following lemma.

Lemma 5. Let x and y be any two points in Σ with �x− y� ≤ λf(x) and λ < 1/4.
Then, ∠ñx, ñy ≤ α(λ).

Lemma 1 is the non-smooth version of the above lemma which holds because G
follows Σ normal-wise.

5.1 Triangle and edge normals

Now we focus on deriving the flatness property of the triangles and edges that
are produced by the Delaunay refinement of G. The Delaunay refinement of G
generates a point set Q on G. Thus, necessarily Q ⊂ δΣ as G ⊂ δΣ. It is easy to see
that the triangles and edges with such points as vertices may have normals in any
direction no matter how small they are. A key observation we make and formalize
is that when vertices have a suitable sparsity condition, i.e., a lower bound on their
mutual distances, the triangles lie almost parallel to the surface Σ. This is proved
in Lemma 7 with the help of large empty balls guaranteed by Lemma 3 and the
technical Lemma 6 (proof in [Dey05]).

Lemma 6. Let < >
√

δ > 0 and δ ≤ 1/4. Let B = Ba,R and B� = Bb,r be two balls
whose boundaries ∂B and ∂B� intersect in a circle C with the following conditions.

(i) Let p be the point where the line joining a and b intersects ∂B� outside B. The
distance of p from any point on C is at least <R.

(ii) The distance of p from ∂B is no more than δR.

Then,

r ≥ R

9
.

Lemma 7. For 0 ≤ δ < λ < 1/48 and < >
√

6δ, let t be a triangle and q be any of
its vertices where

(i) vertices of t lie in δΣ,
(ii) q is at least <f(q̃) distance away from all other vertices of t,
(iii) the circumradius of t is at most λf(q̃).

Then, ∠nt, ñq̃ ≤ β(12λ) + α(6λ).

Proof. Let p be the vertex of t subtending the largest angle. First, we prove that
there are two balls of radius at least f(p̃)

12
being tangent at p and with centers on L+

p̃

and L−
p̃ respectively.

If δ = 0, the vertices of t lie on Σ and the two medial balls at p satisfy the
condition. So, assume δ -= 0. Consider a ball B = Bc,(1−4δ)f(p̃) as stated in Lemma 3
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for the point p̃. This ball is empty of any point from δΣ and therefore does not
contain any vertex of t. Consider a ball D with the center p and radius <f(p̃) where
< >

√
6δ. This ball also does not contain any vertex of t by the condition (ii). Let

C be the circle of intersection of the boundaries of B and D. Let B� = Bw,r be the
ball whose boundary passes through C and p (Figure 3). No vertex of t lies inside
B� as B� ⊂ B ∪D and both B and D are empty of the vertices of t. We claim that
r ≥ f(p̃)/12.

c

B’

B

D

C

w

r
x

p

z

Fig. 3. Illustration for Lemma 7.

Let x be any point on the circle C whose center is z. The radius R of B is equal
to (1 − 4δ)f(p̃). So, �x − p� = 0

1−4δ
R. The distance d(p, B) ≤ �p − p̃� + d(p̃, B).

Since p lies in δΣ, �p− p̃� ≤ δf(p̃), and d(p̃, B) ≤ 4δf(p̃) by Lemma 3(iii). So,

d(p, B) ≤ 5δf(p̃) ≤ 5δ

1− 4δ
R ≤ 6δR for δ < 1

24
.

Since < >
√

6δ we can apply Lemma 6 to B and B� to get

r ≥ R

9
=

f(p̃)(1− 4δ)

9
≥ f(p̃)

12

using (1− 4δ) > 3
4

for δ ≤ 1
16

.
Applying the above argument to the other ball Bc�,(1−4δ)f(p̃) as guaranteed by

Lemma 3, we get another empty ball B�� with radius at least f(p̃)
12

touching p. The
centers of both B� and B�� lie on the line of the normal ñp̃. Notice that both B�

and B�� meet at a single point p. Shrink both B� and B�� keeping them tangent
at p till their radius is equal to f(p̃)/12. Now the balls B�, B�� and the triangle t
satisfy the conditions of Lemma 4. First, the vertices of t lie outside B� and B��.
Secondly, the circumradius of t is at most λf(p̃), i.e., 12λ times the radii of B� and
B��. Therefore, the acute angle between the lines of nt and ñp̃ is at most β(12λ). For
λ < 1/48, β(12λ) < π/2. This implies that the upper bound of β(12λ) also holds
for the oriented normals, i.e.,

∠nt, ñp̃ ≤ β(12λ).
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Now, consider any vertex q of t. Since the circumradius of t is no more than λf(q̃),
�p− q� ≤ 2λf(q̃). By Lemma 2, �p̃− q̃� ≤ 2(2λ + δ)f(q̃) ≤ 6λf(q̃) for δ < λ. Then,
by Lemma 5 ∠ñp̃, ñq̃ ≤ α(6λ) provided 6λ < 1/4, or λ < 1/24. Therefore,

∠nt, ñp̃ ≤ β(12λ) + α(6λ).

Similar to triangles, small edges with vertices on G also lie almost parallel to Σ
(proof in [Dey05]).

Lemma 8. For 0 ≤ δ < λ < 1/48 and < >
√

6δ, let pq be an edge where

(i) p and q lie in δΣ,
(ii) <f(q̃) < �p− q� < λf(q̃).

Then, ∠qp, ñq̃ ≥ π
2
− arcsin 6λ.

5.2 Conditions

We use Lemma 7 and Lemma 8 to prove the correctness of the remeshing algorithms.
These results depend on certain conditions, i.e., the values of λ and δ have to satisfy
some constraints. They would in turn suggest some condition on the sparsity of the
sampling by the Delaunay refinement.

Condition on sparsity

Lemma 7 and Lemma 8 will be applied to the Delaunay triangles and edges for
a sample Q that the Delaunay refinement generates. It will be required that Q
maintain a lower bound on the distances between its points.

Definition 3. A point set Q is λ-sparse if each point q ∈ Q is at least λ
(1+8λ)

f(q̃)
distance away from every other point in Q.

The particular choice of the factor λ
1+8λ

will be clear when we argue about termi-
nation. One condition of lemmas 7 and 8 says that the length of an edge pq has to
be more than

√
6δf(q̃). When Q is λ-sparse, this condition is satisfied if

√
6δ <

λ

1 + 8λ
. (1)

This means that the Delaunay refinement has to maintain a λ-sparse sample Q
where λ satisfies the inequality (1).

Bounding conditions

Inequality (1) says that λ needs to satisfy a lower bound in terms of δ. We will see
later that it also needs to satisfy some upper bounds for guaranteeing termination of
the algorithms. For reference to these conditions on λ, we state them with Condition
1 and 2 and refer them together as Bounding condition on λ.

Condition 1 :
√

6δ <
λ

1 + 8λ
and λ <

1

48
.

Condition 2 : β(12λ) + α(6λ) + α(4λ) + 3μ <
π

2
.
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Observation 5.1 If Condition 1 holds, δ < λ.

Recall that the map ν takes a point to its closest point on Σ. It turns out that the
map ν restricted to G induces a homeomorphism between G and Σ if δ and μ are
sufficiently small(proof in [Dey05]).

Observation 5.2 If G is (δ, μ)-flat with respect to Σ where δ and μ satisfy the
Bounding conditions for some λ > 0, then G is homeomorphic to Σ and the map ν
restricted to G is a homeomorphism.

6 Termination proofs

The main theorems we prove are:

Theorem 2. Let G be a polygonal mesh that is (δ, μ)-flat with respect a smooth
surface. If there exists a λ > 0 so that the Bounding conditions hold, then

(i) MfldRecov terminates and outputs a manifold Delaunay mesh whose vertex
set is λ-sparse,

(ii) TopoRecov terminates and outputs a Delaunay mesh homeomorphic to G
whose vertex set is λ-sparse.

Theorem 3. Let G be a polygonal mesh that is (δ, μ)-flat with respect a smooth sur-
face. If the chosen λ satisfies the Bounding conditions, then GeomRecov terminates
and outputs a Delaunay mesh homeomorphic to G whose vertex set is λ-sparse.

The key to the success of the topology recovery phase is that, for sufficiently
small δ and μ, there exists a λ satisfying the Bounding conditions. For example, if
δ = 4× 10−5 and μ = 0.1, one can choose λ = 0.02. Notice that the requirement on
δ is rather too small. First of all, this is an artifact of our proofs. Secondly, when
G is a reconstructed mesh from a dense point sample, we will see later that δ will
be O(ε2) where ε < 1 measures the sampling density and thus the requirement on ε
will be less stringent. For geometry recovery phase we explicitly need that the user
supplied λ satisfy the Bounding conditions.

We use several lemmas about the Voronoi diagram of Q to prove the above
two theorems. A common theme in these lemmas is that if a Voronoi face does not
intersect G appropriately, there is a point in G far away from all existing points in Q.
Recall that algorithmically we used this result by inserting such a far-away point to
drive the Delaunay refinement. A similar line of arguments was used by Cheng, Dey,
Ramos and Ray [CDRR04] for meshing smooth surfaces. However, as we indicated
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before, some of the proofs need different reasoning since G is not smooth. We skip
those proofs that can be adapted from Cheng et al. [CDRR04] with only minor
changes and include the ones that need fresh arguments. In particular, Lemma 9,
which needs new arguments, is an essential ingredient for other lemmas. In what
follows we assume G to be (δ, μ)-flat with respect to a smooth surface Σ for some
appropriate δ < 1 and μ < 1. All lemmas in this section involve faces of Vor Q where
Q is λ-sparse for a λ satisfying the Bounding conditions.

Lemma 9. Let e ∈ Vq be a Voronoi edge that intersects G either (i) tangentially at
a point, or (ii) transversally at two or more points. Let x be the point among these
intersection points which is furthest from q. Then, x is at least λf(q̃) away from q.

Proof. Suppose that contrary to the lemma �q − x� < λf(q̃). Observe that

�x̃− q̃� ≤ 2(λ + δ)f(q̃) (Lemma 2)

≤ 4λf(q̃) by Observation 5.1.

By Lemma 5, ∠ñx̃, ñq̃ ≤ α(4λ).
Orient e along npqr where pqr is the dual Delaunay triangle of e. The conditions

(i) and (ii) of Lemma 7 hold for pqr since G ⊂ δΣ, Q is λ-sparse and the Bounding
condition 1 holds. The circumradius of pqr is no more than �q−x� ≤ λf(q̃) satisfying
the condition (iii) of Lemma 7. So, we have

∠e, ñx̃ ≤ ∠npqr, ñq̃ + ∠nq̃, ñx̃

≤ β(12λ) + α(6λ) + α(4λ) (Lemma 7, 5).

Let g be a polygon in G containing x. Since ∠ng, ñx̃ ≤ μ, oriented e makes an
angle of at most β(12λ) + α(6λ) + α(4λ) + μ with ng.

Suppose, e intersects G tangentially at x. Then, e makes at least (π/2)−2μ angle
with the normal of one of the polygons containing x since the normals of adjacent
polygons in G make at most 2μ angle (Lemma 1). We reach a contradiction if

β(12λ) + α(6λ) + α(4λ) + μ <
π

2
− 2μ,

which is satisfied by the Bounding condition 2 proving (i).
Because of the previous argument we can assume that e intersects G only

transversally. Let y be an intersection point next to x on e and g� ∈ G be a polygon
containing y. The distance �q−y� is at most λf(q̃) as the furthest intersection point
x from q is within λf(q̃) distance from it. Then, applying the same argument as for
x, we get that e makes an angle of at most β(12λ)+α(6λ)+α(4λ)+μ with ng� . The
oriented e leaves the bounded component of R3 \ G at one of x and y. At this exit
point, e makes more than π

2
angle with the oriented normal of the corresponding

polygon. This means we reach a contradiction if

β(12λ) + α(6λ) + α(4λ) + μ <
π

2
.

This inequality is satisfied if the Bounding condition 2 holds.

Next lemma says that if a Voronoi facet does not intersect G properly, one can
find a far away point to insert. Its proof depends on Lemma 9 and is very similar to
Lemma 8 of [CDRR04].
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Lemma 10. Let F be a Voronoi facet in Vq where F ∩G contains at least two closed
topological intervals. Furthermore, assume that each Voronoi edge intersects G in at
most one point. The furthest point in F ∩G from q which lies on a Voronoi edge of
Vq is at least λf(q̃) away from q.

Next three lemmas deal with different cases of the boundaries of the manifold in
which a Voronoi cell intersects G. We skip the proof of Lemma 11 since it is same
as that of Lemma 11 of [CDRR04] and refer to [Dey05] for the proofs of others.

Lemma 11. For a vertex q in Vor Q let W = Vq ∩ G is a manifold with at least
two boundaries both of which intersect Voronoi edges of Vq. Then the point x ∈ W
furthest from q is within λf(q̃) distance.

Lemma 12. Let F ⊂ Vq intersect G in a cycle. The point in F ∩G furthest from q
is at least λf(q̃) distance away from q.

Lemma 13. For a point q ∈ Q let W = Vq ∩ G intersect no Voronoi edge. Then,
the point x ∈ W furthest from q is at least λf(q̃) away from q.

The next lemma will ensure that the point inserted by Vcell cannot be very
close to all other points in Q (proof in [Dey05]).

Lemma 14. Let x be a point in G and W ⊂ G be a subset so that x ∈ W and
�x − y� ≤ λf(x̃) for each point y ∈ W . Furthermore, W has a single boundary.
Then, W is a 2-disk when δ < 1/5 and λ < 1/4.

Observation 6.1 Let p and q be any two points in δΣ with �p−q� ≥ λf(q̃). Then,
for δ < λ, �p− q� ≥ λ

(1+4λ)
f(p̃).

Proof. If �p− q� ≥ λf(p̃), there is nothing to prove. So, we assume �p− q� < λf(p̃).
By Observation 2, �p̃ − q̃� ≤ 2(λ + δ)f(p̃) ≤ 4λf(p̃). By Lipschitz property of
f(), f(q̃) ≥ 1

1+4λ
f(p̃) which applied to the given inequality �p − q� ≥ λf(q̃) yields

�p− q� ≥ λ
1+4λ

f(p̃).

Now we have all ingredients to prove Theorem 2.

Proof. (Theorem 2) We show that the vertex set Q remains λ-sparse for a λ >
0 throughout MfldRecov and TopoRecov. Termination of these algorithms is
immediate since only finitely many points can be accommodated in the bounded
domain δΣ with non-zero nearest neighbor distances.

Initially Q is λ-sparse trivially since it contains a single point from each com-
ponent of G. Let p be any point inserted by any of the subroutines called by Mfl-
dRecov and TopoRecov.

We claim that p is at least λf(q̃) distance away from all other points in Q where
q is a nearest point to p.
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If Vedge inserts p, the claim is true by Lemma 9. If Disk inserts p, then there
was an existing point q ∈ Q so that p ∈ Vq and Δtq was not a disk. If Δtq were
empty, G ∩ Vq did not intersect any Voronoi edge. Then, by Lemma 13 the claim
is true. If Δtq were not empty, either (i) there was an edge e of Δtq not having
two triangles incident to it, or (ii) there were two topological disks pinched at q.
For (i) let F be the dual Voronoi facet of e. If e had a single triangle incident to
it, G intersected a Voronoi edge in F either tangentially or at least twice. Both of
these cases would have been caught by Vedge test. So, e had three or more incident
triangles. Hence F intersected G in more than one topological interval and the claim
follows from Lemma 10. For (ii) observe that G ∩ Vq had two or more boundaries.
The claim follows from Lemma 11. If p is inserted by Fcycle, apply Lemma 12 for
the claim. For Vcell observe that if it inserts a point, the subset W = Vq ∩ G is
not a 2-disk. Also, since it is called after all other tests, W has a single boundary.
Then, Lemma 14 is violated which implies the claim.

Applying Observation 6.1, we get that p is at least λ
1+4λ

f(p̃) away from all other
points of Q. Applying Observation 6.1 once more to any other point s ∈ Q, we get
that

�s− p� ≥ λ

1 + 8λ
f(s̃)

proving Q remains λ-sparse after insertion of p.

Next, we prepare to prove Theorem 3. Recall that q+ and q− are the two poles
defined for a vertex q. First, we show that these poles are far away from q.

Lemma 15. If Q is λ-sparse and the Bounding conditions hold, then for each vertex
q ∈ Q, min{�q − q+�, �q − q−�} ≥ f(q̃)

12
.

Proof. Following the proof of Lemma 7, we get two empty balls that are tangent to
each other at q whose radii are at least f(q̃)

12
. The centers of these empty balls reside

inside Vq. Also, they are separated locally within Vq by G. The points q+ and q−

are even further from q than these centers. The lemma follows.

Proof. (Theorem 3) Since GeomRecov calls TopoRecov it is sufficient to argue
that if Q is λ-sparse, then it remains so after inserting a point c in the steps 3(i) and
3(ii) of GeomRecov. First, consider step (i). Since Q is λ-sparse, <(t) > λ

1+8λ
f(q̃)

where q is a vertex of the shortest edge in t. Then c is at least λf(q̃) distance
away from q. Next, consider setp (ii). The radius r(t) is more than 12λhq which by
Lemma 15 is at least λf(q̃). Therefore, the point c is at least λf(q̃) distance away
from q.

Observe that in both cases q is also a nearest point of c in Q. Therefore, following
the proof of Observation 6.1, we get that Q remains λ-sparse after the insertion of
c.

7 Input Meshes

We have already seen that when δ and μ are sufficiently small, there exists a λ > 0
satisfying the Bounding conditions. This means that, for a mesh G that is (δ, μ)-
flat with respect to a smooth surface for sufficiently small values of δ and μ, the
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manifold recovery and topology recovery terminate. Figure 4 shows two examples of
polygonalized surfaces on which our remeshing algorithm is applied.

An interesting and perhaps the most important input for our algorithms would
be the polygonal meshes created from point cloud data. When G is such a mesh
we show that it is necessarily (δ, μ)-flat with respect to the surface Σ from which
the point cloud is drawn. Of course, the point cloud should be sufficiently dense.
A point set P ⊂ Σ is called an ε-sample if d(x, P ) ≤ εf(x) for each point x of
Σ [ABE98]. When G is reconstructed from an ε-sample P of Σ, it becomes (δ, μ)-
flat where δ and μ depend on the sampling density ε. In general we can assume that
any of the provable reconstruction algorithms [Dey03] is applied to create G from
P . What is important is that all these algorithms produce triangles in G with small
circumradius. For precision we assume that G is created from P using the Cocone
algorithm of Amenta, Choi, Dey and Leekha [ACDL00]. Then, the following fact
holds.

Fact 7.1 Each triangle t ∈ G has a circumradius of 1.15ε
1−ε

f(p) where p is any vertex
of t.

We can derive bounds on δ and μ from the above fact. It turns out that μ = O(ε)
while δ = O(ε2). The proofs appear in [Dey05].

Lemma 16. Let x be any point in a triangle t ∈ G. We have ∠nt, ñx̃ ≤ β(ε) +
α(4.6ε�) where ε� = ε

1−ε
.

Lemma 17. Let x be any point in a triangle t ∈ G. Then �x−x̃� ≤
�

4.6ε�
1−4.6ε�

�2

f(x̃).

From the above two lemmas, we find that δ ≤
�

4.6ε�
1−4.6ε�

�2

and μ ≤ β(ε)+α(4.6ε�)

for G. If ε ≤ 0.001, we get δ = 2×10−5 and μ = 0.009. This allows to choose λ = 0.02
to satisfy the Bounding conditions. Figure 4 shows examples of reconstructed meshes
that are remeshed.
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