1	THERMAL CALIBRATION SYSTEM	30	.By differential temperature
2	.By thermal radiation emitting		measurement along undisturbed
-	device (e.g., blackbody		thermal gradient
	cavity)	31	CALORIMETRY
3	.By immersion in liquid having	32	.Total radiant energy or power
-	controlled temperature		measurement
4	LEAK OR FLAW DETECTION	33	.With control of heat added to or
5	.With heating or cooling of		lost from a sample container
	specimen for test		(e.g., isothermal calorimetry)
6	DISTANCE OR ANGLE	34	With controlled adiabatic
7	.Thickness, erosion, or		shield
	deposition	35	.Heat absorbing heigh temperature
8	FLAMMABILITY TESTING		gas probe (e.g., enthalpy or
9	EMISSIVITY DETERMINATION		fluid cooled probe)
10	DIFFERENTIAL THERMAL ANALYSIS	36	.Heat value of combustion (e.g.,
11	.Detail of electrical heating		'calorific value')
	control	37	Having specified control of
12	.Detail of sample holder or		input of mixture
	support therefor	38	Having bomb or cartridge
13	Formed by thermoelectric		ignition chamber
	element	39	.Gain or loss of heat by heat
14	THERMAL GRAVIMETRIC ANALYSIS		utilizing load in path of heat
15	BY APPLYING KNOWN THERMAL		exchange fluid
	GRADIENT (E.G., INDICATION OF	40	Determined by combining flow
	RESPONSE BY LOCATION)		rate and temperature signals
16	TRANSFORMATION POINT	11	of heat exchange fluid
	DETERMINATION (E.G., DEW	41	Signals combined electrically
	POINT, BOILING POINT)	42	.Throttling calorimeter (e.g.,
17	.By change in optical property	10	steam quality)
	(e.g., transmission)	43	DETERMINATION OF INHERENT THERMAL
18	By reflection (e.g., polished		PROPERTY (E.G., HEAT FLOW COEFFICIENT)
	surface)	44	.Thermal conductivity
19	Sensed by instrument (e.g.,	45	THERMAL TESTING OF A NONTHERMAL
	photocell)	-15	QUANTITY
20	Controlling heating or	46	.With loading of specimen (e.g.,
	cooling	10	stress or strain)
21	.By electrical condition of	47	Cyclic
	specimen	48	Torsional
22	.By change in motion of movable	49	Tensile
	element	50	With detail of heating or
23	Driven element	50	cooling structure
24	.By change in pressure of flow	51	Compressional
0.5	rate	52	Bending or flexing
25	.By thermal arrest (e.g., time-	53	.Of cure or hardenability
0.6	temperature curve)	54	.Of fluid volume
26	Of molten metal (e.g., carbon	55	.Expansion or contraction
07	content)		characteristics (e.g.,
27	.Between gaseous and liquid		dilatometry)
2.0	states	56	Including electrical sensor
28	Dew point	57	.Of susceptibility to thermally
29	HEAT FLUX MEASUREMENT		induced deteriouration, flaw,
			or failure

374 - 2 CLASS 374 THERMAL MEASURING AND TESTING

100	TEMPERATURE MEASUREMENT (E.G.,	127	Hav
	THERMOMETER)		lim
101	.Composite temperature-related		(e.
	paramenter	128	Hav
102	Time-temperature relationship		han
	(e.g., integral,		lin
	deterioration, change)		COM
103	Time-temperature integration	129	Com
	performed by particular		ref
	circuit arrangement	130	Opt
104	Peak (maximum or minimum) with		(e.
	respect to time	131	Wi
105	Indicating tube with sensing		ele
	material return prevention	132	Sen
106	Permanent visual indication		con
	(i.e., irreversible)	133	Amb
107	Rate of change		COM
108	Degree-days		sen
109	Climate related (e.g., wind-	134	Extr
	chill factor, discomfort		sim
	index)	135	By f
110	Plural spaced temperature		sen
	function		tra
111	Highest or lowest of spaced		pre
	temperatures	136	.Geoph
112	Difference or gradient		und
113	By thermoelements connected	137	.Tempe
	in series opposition		pro
114	By current modifying elements	138	.With
	in circuit (e.g., bridge)	139	.Of mc
115	Space average	140	Lanc
116	By single sensor (e.g.,	141	.Combi
	elongate or with plural fluid	142	With
	intakes)	143	Pre
117	.By a vibratory effect (e.g.,	144	With
	resonant frequency,	145	Coc
	acoustical)	146	Ra
118	Resonant frequency by fluid		the
	flow	147	With
119	Vibration velocity (e.g., echo		(e.
	timing)	148	Sen
120	.In spaced noncontact	149	With
	relationship to specimen		doo
121	By thermally emitted radiation	150	With
122	By microwave arrangement	151	With
123	Transparent material		pac
	measurement or compensation	152	With
	(e.g., spectral line, gas,		(e.
101	particulate suspension	153	With
124	With scanning or temperature		sup
105	distribution display	154	Wit
125	With fluid flow purging device		sen
126	Having emissivity compensating	4	ele
	or specified radiating surface	155	With

L27	Having significant frequency limitation or relationship
20	(e.g., peak, ratio)
L28	Having significant signal
	handling circuitry (e.g.,
	linearizing, emissivity compensation)
L29	Compensation
129	reference standard
L30	Optical system structure
	(e.g., lens)
L31	With radiation conducting
	element
L32	Sensor or mounting temperature
	control
L33	Ambient temperature
	compensated (e.g., dummy
	sensor)
L34	Extrapolation (e.g.,
	simulation, heat flow)
L35	By fluid flow within or to
	sensor (e.g., convection, heat
	transfer, differential
	pressure)
L36	.Geophysical (e.g., well bore,
	underwater)
L37	.Temperature distribution or
	profile
L38	.With fluid flow deflector
L39	.Of molten metal
L40 L41	Lance (e.g., consumable)
L41 L42	.Combined with diverse art device
L42 L43	With other measuring device
L43 L44	Pressure With combustion engine
L44 L45	
L45 L46	Cooling system Radiator cap mounted
140	thermometer
L47	With fluid carrying conduit
14/	(e.g., shower pipe)
L48	Sensor within conduit
L49	With cooking compartment or
	door thereof (e.g., oven)
L50	With bottle (e.g., nursing)
151	With confection or infant
	pacifier
L52	With electrical component
	(e.g., transformer)
L53	With roll or rotary specimen or
	support
L54	With coupling between rotating
	sensor and stationary
	electrical circuitry
L55	With percing element

156	With float	186	.With specified recording
157	With sampling cup	105	arrangement
158	.With removable cover for sensor (e.g., disposable sheath)	187	.Mechanical (e.g., expansion or contraction of materials)
159	.Nonelectrical, nonmagnetic, or	188	Having electrical indication
	nonmechanical temperature responsive property	189	Plural zones (e.g., indoor- outdoor)
160	Melting or softening	190	Indicating tube type
161	Change of optical property	191	With optical element (e.g.,
162	Color	1)1	magnifying)
163	.By electrical or magnetic heat	192	With holder for shaking
T02	sensor	192	
164		193	Having specified cross section
-	With preheated sensing probe		With support or housing
165	With heat exchanger or	195	With detail of motion
1 C C	conductor	100	transmitting mechanism
166	At plural zones	196	One sensing element within
167	Scanning		another
168	With self-rebalancing	197	With compensation
	arrangement (e.g., servo-	198	With adjustment
	potentiometer, thermal link)	199	Mechanical loading of sensor
169	With thermal lag compensation	200	Adjustment of limit stop
170	Digital output	201	Expanding fluid
171	With digital linearizing	202	With distinct pressure
1 7 0	circuitry		transmitting fluid
172	With compensation for sensor	203	Bourdon tube or bellows
1 = 0	nonlinearity or lead impedance	204	Multiple distinct sensing
173	By feedback in amplifier		elements
	circuit or with constant current source in circuit	205	Compound sensing element (e.g., bimetallic)
174	By conductive fluid or work	206	Coil
	function within sensor (e.g.,	207	Helix
	ionization)	208	HOUSING, SUPPORT, OR ADJUNCT
175	Thermal noise generated in	200	.Removable probe cover
	conductor	210	MISCELLANEOUS
176	Including sensor having hysteresis or cryogenic	210	ALDCELLANEOOD
	property (e.g.,		
	ferromagnetism,	E-SUB	CLASSES
	superconductivity)		
177	Ferroelectric		
178	By barrier layer sensing	The fo	llowing subclasses beginning with
	element (e.g., semiconductor	the le	tter E are E-subclasses. Each E-sub-
	junction)	class	corresponds in scope to a classifi-
179	By thermoelectric potential	cation	in a foreign classification system,
	generator (e.g., thermocouple)	for ex	ample, the European Classification
180	Specimen is part of	system	(ECLA). The foreign classification
	thermoelectric circuit	equiva	lent to an E-subclass is identified
181	Reference junction	in the	subclass definition. In addition to
	compensation		uments classified in E-subclasses by
182	Reference junction temperature		miners, documents are regularly
100	control		fied in E-subclasses according to
183	By current modifying sensor		assification practices of any for-
184	Reactive element (e.g.,		ffices identified in parentheses at d of the title. For example, "(EPO)"
10-	capacitive)		e end of a title indicates both Euro-
185	Detail of resistive sensor	at the	end of a citte indicates poth EUro-

pean and US patent documents, as classified by the EPO, are regularly added to the subclass. E-subclasses may contain subject matter outside the scope of this class.Consult their definitions, or the documents themselves to clarify or interpret titles.

E19.001 TESTING OR CALIBRATING CALORIMETERS (EPO)

- E17.001 MEASURING QUANTITY OF HEAT (EPO)
- E17.002 .For measuring the power of light beams, e.g., laser beams, etc. (EPO)
- E17.003 .Microcalorimeters, e.g., using silicon microstructures, etc. (EPO)
- E17.004 .Calorimeters using transport of an indicating substances, e.g., evaporation calorimeters, etc. (EPO)
- E17.005 ..Where evaporation, sublimation or condensation caused by heating or cooling, is measured (EPO)
- E17.006 .Calorimeters using compensation methods (EPO)
- E17.007 .Measuring quantity of heat conveyed by flowing mediums, e.g., in heating systems, etc. (EPO)
- E17.008 ..Based upon measurement of temperature difference (EPO)
- E17.009 ...Between an inlet and an outlet point, combined with measurement of rate of flow of the medium if such, by integration during a certain time-interval (EPO)
- E17.01Indicating product of flow and temperature difference directly (EPO)
- E17.011Using mechanical means for both measurements (EPO)
- E17.012Using electrical or magnetic means for both measurements (EPO)
- E17.013Using electrical or magnetic means for one measurement and mechanical means for the other (EPO)

- E17.014Where the indicatinginstrument is driven electrically or magnetically by the temperature-measurement device and mechanically by the flow-measurement device (EPO)
- E17.015 ... Across a radiating surface, combined with ascertainment of the heat transmission coefficient (EPO)
- E15.001 TESTING OR CALIBRATING OF THERMOMETERS (EPO)
- E15.002 .Calibrated temperature sources, temperature standards therefor (EPO)
- E7.001 MEASURING TEMPERATURE BASED ON THE USE OF ELECTRIC OR MAGNETIC ELEMENTS DIRECTLY SENSITIVE TO HEAT (EPO)
- E7.002 .Using pyroelectric elements (EPO)
- E7.003 .Using superconductive elements (EPO)
- E7.004 .Using thermoelectric elements, e.g., thermocouples, etc. (EPO)
- E7.005 ... Provided with specially adapted connectors (EPO)
- E7.006 .. Expendable thermocouples (EPO)
- E7.007 .. Arrangements for signaling rupture or disconnection of the thermocouple (EPO)
- E7.008 ..Using microstructures, e.g., made of silicon, etc. (EPO)
- E7.009 .. The object to be measured not forming one of the thermoelectric materials (EPO)
- E7.01 ... The thermo-electric materials being arranged one within the other with the junction at one end exposed to the object, e.g., sheathed type, etc. (EPO)
- E7.011 .. The object to be measured forming one of the thermoelectric materials, e.g. pointed type, etc. (EPO)
- E7.012 .. Arrangements for compensating for auxiliary variables, e.g., length of lead, etc. (EPO)
- E7.013 ...Arrangements with respect to the cold junction, e.g., preventing influence of temperature of surrounding air, etc. (EPO)

E7.014	Circuits for cold-junction compensation (EPO)
E7.015	Arrangements for modifying the output characteristic, e.g., linearizing, etc. (EPO)
E7.016	Particular circuit arrangements (EPO)
E7.017	(EPO) (EPO)
E7.018	.Using resistive elements (EPO)
E7.019	The element being an electrolyte (EPO)
E7.02	In a specially-adapted
	circuit, e.g., bridge circuit, etc. (EPO)
E7.021	The element being a linear
	resistance, e.g., platinum resistance thermometer, etc. (EPO)
E7.022	
	the resistive element (EPO)
E7.023	Using microstructures (EPO)
E7.024	In a specially-adapted circuit, e.g., bridge circuit, etc. (EPO)
E7.025	(EPO) (EPO)
E7.026	(EPO) (EPO)
E7.027	For modifying the output characteristic, e.g.,
	linearizing, etc. (EPO)
E7.028	The element being a non-linear
	resistance, e.g., thermistor, etc. (EPO)
E7.029	Characterized by the shape of the resistive element (EPO)
E7.03	
E7.05	Using microstructures, e.g., silicon spreading resistance, etc. (EPO)
E7.031	
E7.051	circuit, e.g., bridge circuit, etc. (EPO)
E7.032	In an oscillator circuit (EPO)
E7.033	For modifying the output characteristic, e.g.,
	linearizing, etc. (EPO)
E7.034	.Using thermal noise of
	resistances or conductors (EPO)
E7.035	.Using semiconducting elements
	having PN junctions (EPO)
E7.036	Using microstructures, e.g., made of silicon, etc. (EPO)

E7.037	.Using capacitative elements (EPO)
E7.038	The dielectric constant of
	which is temperature dependant (EPO)
E7.039	.Using magnetic elements, e.g.,
	magnets, coils, etc. (EPO)
E7.04	The variations of temperature
	influencing the magnetic permeability (EPO)
E7.041	.Using ionization of gases (EPO)
E7.042	.Circuits for reducing thermal
	inertia; Circuits for
	predicting the stationary
	value of temperature (EPO)
E7.043	
	integrated systems (EPO)
E3.001	THERMOMETERS GIVING RESULTS OTHER
	THAN MOMENTARY VALUE OF
	TEMPERATURE (EPO)
E3.002	.Circuits arrangements for
	indicating a predetermined
	temperature (EPO)
E3.003	.Giving means values; giving
	integrated values (EPO)
E3.004	In respect of time (EPO)
E3.005	In respect of space (EPO)
E3.006	.Giving differences of values;
	giving differentiated values (EPO)
E3.007	In respect of time, e.g.,
	reacting only to a quick
	change of temperature etc. (EPO)
E3.008	
	contraction of materials (EPO)
E3.009	In respect of space (EPO)
E9.001	MEASURING TEMPERATURE BASED ON
	MOVEMENTS CAUSED BY
	REDISTRIBUTION OF WEIGHT,
	E.G., TILTING THERMOMETER, ETC. (EPO)
E5.001	
E2.001	
	THE EXPANSION OR CONTRACTION OF A MATERIAL (EPO)
E5.002	
	(EPO)
E5.003	Manufacturing of this
	particular type of thermometer (EPO)
E5.004	
E5.005	
	the liquid column (EPO)

E5.006 ...Capillary tubes (EPO)

374 - 6 CLASS 374 THERMAL MEASURING AND TESTING

E5.007	Containers for the liquid (EPO)
E5.008	Selection of liquid compositions (EPO)
E5.009	_
E2.009	The liquid displacing a further liquid column or a solid body (EPO)
E5.01	With electric contacts (EPO)
E5.011	With electric conversion means for final indication (EPO)
E5.012	
E5.013	With means for indicating a
	<pre>maximum, e.g., a constriction in the capillary tube, etc. (EPO)</pre>
E5.014	
E5.015	With provision for measuring the difference between two
	temperatures (EPO)
E5.016	With provision for adjusting zero point of scale, e.g.,
	Beckmann thermometer, etc. (EPO)
E5.017	.The material being a gas (EPO)
E5.018	The gas displacing a liquid column (EPO)
E5.019	.The material being a fluid
	contained in a hollow body
	having parts which are
	deformable or displaceable
	under the pressure developed by the material (EPO)
E5.02	
	(EPO)
E5.021	Using a fluid container
	connected to the deformable body by means of a capillary tube (EPO)
E5.022	The body being a tubular
	spring, e.g., Bourdon tube, etc. (EPO)
E5.023	Of spiral formation (EPO)
E5.024	
E5.025	
E5.026	
E5.027	
E5.028	
	for final indication (EPO)

E5.029	Using electrical contact making or breaking devices
	(EPO)
E5.03	.The material being a solid (EPO)
E5.031	-
	configuration memory e.g., Ni- Ti alloys, etc. (EPO)
E5.032	Using microstructures, e.g., made of silicon, etc. (EPO)
E5.033	Arranged for free expansion or contraction (EPO)
E5.034	With electrical conversion
	means for final indication (EPO)
E5.035	Consisting of pivotally- connected elements (EPO)
E5.036	Constrained so that expansion
	or contraction causes a
E5.037	deformation of the solid (EPO) The solid body being formed of
19.097	compounded strips or plates,
	e.g., bimetallic strip, etc.
	(EPO)
E5.038	Details of the compounds
E5.039	system (EPO) Selection of composition of
62.022	the components of the system (EPO)
E5.04	Shape of the system (EPO)
E5.041	Specially adapted for
E5.042	indicating or recording (EPO)
E3.04Z	means for final indication
	(EPO)
E5.043	The solid body being
	constrained at more than one
	point, e.g., rod, plate,
E5.044	diaphragm, etc. (EPO) The body being a flexible
13.011	wire or ribbon (EPO)
E11.001	MEASURING TEMPERATURE BASED UPON
	PHYSICAL OR CHEMICAL CHANGES
	NOT COVERED BY ANY OF THE
E11 000	PRECEDING SUBCLASSES (EPO)
EII.UUZ	.Using absorption or generation of gas, e.g., hydrogen, etc.
	(EPO)
E11.003	.Using measurement of the effect
	of a material on microwaves or
	longer electromagnetic waves, e.g., measuring temperature
	via microwaves emitted by the
	object, etc. (EPO)
E11.004	Using evaporation or

E11.004 .Using evaporation or sublimation, e.g., by observing boiling, etc. (EPO)

- E11.005 .. From material contained in a hollow body having parts which are deformable or displaceable under the pressure developed by the vapor (EPO)
- E11.006 .Using melting, freezing, or softening (EPO)
- E11.007 .. Of disposable test bodies, e.g., cone, etc. (EPO)
- E11.008 .Using sintering (EPO)
- E11.009 .Using measurement of acoustic effects (EPO)
- E11.01 .. 0f the velocity of propagation of sound (EPO)
- E11.011 .. Of resonant frequencies (EPO)
- E11.012 ...Using surface acoustic wave (SAW) (EPO)
- E11.013 .Using measurements of density (EPO)
- E11.014 .Using measurement of the effect of a material on X-radiation, gamma radiation or particle radiation (EPO)
- E11.015 .Using changes in transmission, scattering or fluorescence in optical fibers (EPO)
- E11.016 .. At discrete locations in the fiber, e.g., by means of Bragg gratings, etc. (EPO)
- E11.017 ... Using changes in fluorescence, e.g., at the distal end of the fiber, etc. (EPO)
- E11.018 .Using change of color or translucency (EPO)
- E11.019 ..Using change in reflectance (EPO)
- E11.02 .. Of inorganic materials (EPO)
- E11.021 .. Of organic materials (EPO)
- E11.022 ...liquid crystals (EPO)
- E11.023 .. Of materials which change translucency (EPO)
- E11.024 .Using thermo-luminescent materials (EPO)
- E13.001 ADAPTATIONS OF THERMOMETERS FOR SPECIFIC PURPOSES (EPO)
- E13.002 .For measuring body temperature (EPO)
- E13.003 .. Infrared clinical thermometers, e.g., tympanic, etc. (EPO)
- E13.004 .For cryogenic purposes (EPO)
- E13.005 ..Using microstructures, e.g., made of silicon, etc. (EPO)

moving fluids or granular materials capable of flow (EPO) E13.007 ... Suction thermometers (EPO) E13.008 .For measuring temperature of moving solid bodies (EPO) E13.009 .. In linear movement (EPO) E13.01 .. In rotary movement (EPO) E13.011 .For measuring temperature within piled or stacked materials (EPO) E13.012 .Combined with sampling devices for measuring temperatures of samples of materials (EPO) E13.013 .. For siderurgical purposes (EPO) E1.001 **DETAILS OF THERMOMETERS NOT** SPECIALLY ADAPTED FOR PARTICULAR TYPES OF THERMOMETER (EPO) E1.002 .Special applications of indicating or recording means, e.g., for remote indications, etc. (EPO) E1.003 ..Recording (EPO) E1.004 .. For remote (EPO) E1.005 .. Arrangements for monitoring a plurality of temperatures, e.g., by multiplexing, etc. (EPO) E1.006 .. Arrangements for numerical indication (EPO) E1.007 ...Scales (EPO) E1.008 ... Temperature indication combined with the indication of another variable (EPO) E1.009 ... Arrangements for facilitating reading, e.g., illumination, magnifying glass, etc. (EPO)

E13.006 .For measuring temperature of

- E1.01Of liquid column thermometers (EPO)
- E1.011 .Protective devices, e.g., casings, etc. (EPO)
- E1.012 ...For clinical thermometers, e.g., contamination preventing sleeves, etc. (EPO)
- E1.013 ...For tympanic thermometers (EPO)
- E1.014 ..For preventing chemical attack (EPO)
- E1.015 ... For siderurgical use (EPO)
- E1.016 .. For preventing damage due to heat overloading (EPO)
- E1.017 ... For siderurgical use (EPO)

374 - 8 CLASS 374 THERMAL MEASURING AND TESTING

E1.018	.Supports; Fastening devices;
	mounting thermometers in
	particular locations (EPO)

- E1.019 ..For measuring surface temperatures, e.g., of pipe walls, etc. (EPO)
- E1.02 .. Arrangements for moving thermometers to or from a measuring position (EPO)
- E1.021 .Special arrangements for conducting heat from the object to the sensitive element (EPO)
- E1.022 ..For reducing thermal inertia (EPO)
- E1.023 .Compensating for effects of temperature changes other than those to be measured, e.g., changes in ambient temperature, etc. (EPO)
- E1.024 ..By means of fluid contained in a hollow body having parts which are deformable or displaceable under the pressure developed by the fluid (EPO)
- E1.025 ..By means of compounded strips or plates, e.g., by bimetallic strips, etc. (EPO)
- E1.026 .Compensating for effects of pressure changes (EPO)

FOREIGN ART COLLECTIONS

FOR 000 CLASS-RELATED FOREIGN DOCUMENTS