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Outline

- Overview of the modes of degradation

- Discuss the major life-determining issues
- experimental results
- guidelines

- Condition monitoring
- Summary
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TBCs are complex systems
Combustion gases at @1500°C
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Plasma-Sprayed Thermal Barrier Coatings
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- Y,0,-2r0, (YSZ) top coat
- provides thermal insulation
- Metallic bond coat
- provides oxidation resistance ‘M = Ni and/or Co, X =Y, Hf, or Si
- facilitates YSZ adherence APS = air p|asma.spray
- Interfacial Al,O, scale VPS = vacuum plasma-spray
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EB-PVD Thermal Barrier Coatings
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- Strain-tolerant ceramic top coating deposited by electron beam-physical
vapor deposition (EB-PVD)

- Metallic bond coating of single-phase (Ni,Pt)Al produced by Pt electro-

plating + pack, or chemical vapor deposition (CVD) aluminizing
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Lab. thermal cycling at 1135°C: interfacial
roughness increased with tlme
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Major TBC Life-Determining Issues

- TBC application: ability to apply the specified coating

- Operating temperature: assurance of providing the design
DT at design conditions

- Cyclic operation: effects on durability

- Loss of ceramic: especially erosion/FOD

- Other duty cycle issues: off-specification fuel

- Lifetime modeling/monitoring: assurance; early warning
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Coating Application Issues

- PS vs EB-PVD

- cost
- size limitations
- control of ceramic microstructure

- Function of the bond coating

- MCrAlY or aluminide

- effect of surface finish
- BC ‘conditioning’ - aim to quickly establish an a-Al,O, layer

- Microstructure and thickness
- complexity of shape tdetermines processing route

- Cost
- low infant mortality
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Rough BC surface is an intrinsic
feature & problem of PS TBCS

VPS NiCrA-1Y [ 5
270, 1-h cycles to 1150°C (75%) &

* Evidence of localized oxidation-induced YSZ damage

» Localized Al,O, scale damage very variable—not clear whether it was a factor in
determining relative TBC lifetimes on the various MCrAIX bond coatings
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Grit-blasting of CVD (Ni,Pt)Al has unexpected benefit for

BC oxidation
As deposﬂed TBCs

k
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* All surfaces not grit-blasted contained voids at the metal-oxide interface
* Void density & scale thickness varied from grain to grain
* Grit-blasted surfaces contained no obvious voids at the metal-oxide interface

Haynes, et al., 2001



Bond coating surface finish influences first-formed

Grit-blasted bond coats OXIde
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TBC Specimen |

Laser fluorescence of as-deposited EB-PVD TBCs

* Laser fluorescence detectable through the YSZ.
Grit-blasted surfaces formed more o-Al,0,

Average stress was lower on grit-blasted surfaces.
All specimens contained detectable 0- Al,O,
Greater amounts of 6-Al,0, formed on most as-deposited “

(Ni,Pt)Al surfaces.

Haynes et al., 2002
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Operating Temperature Issues

Concerned with the effects of time at temperature:

- Effects on the ceramic layer
- phase change of YSZ
- sintering of ceramic surface
- modification of microstructure
- change in mode of failure
- BC oxide growth
- some lifing models based on rate of oxide thickening
- exhaustion of Al reservoir--formation of voluminous base metal oxides

- BC-superalloy interdiffusion
- depletion of Al
- BC phase changel/effect on CTE
- ingress of unwanted elements from superalloy
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Effect of 100 hr Aging on Phase Stability of YSZ
(after Miller, et al., NASA, 1981)
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BC oxide thickness increases withtatT

- Increasing oxide thickness equates to:
- Increased stress generation
- increased tendency for scale spallation
- increased consumption of Al reservoir
- loss of b-phase in BC (lower-Al phases do not form the desired oxide)
. approach to non-protective oxidation (voluminous scales)
- with Pt addition, min. Al content for protective oxidation is reduced from
»43 to »38 at%Al
- Oxide growth rate can be minimized by:
- forming a-Al,O, as soon as possible (Pt effects)
- controlled addition of a reactive element (Y, Hf, ...)
- MCrAlYs
- aluminides

- Resistance to scale spallation can be improved by:
- Pt additions

- removal of alloy/BC tramp S to <<1 ppm
- RE additions
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‘High’ superalloy S—increased interfacial void
growth and scale spallation on CVD-NIAI; but

Nno voids formed on CVD-NIiPtAI
200-h isothermal @ 1150°C (substrate: Hi-S N5A, S = 3.6 ppmw)
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NiAl on High-S Rene N5 NiPtAl on High-S Rene N5
* Increased substrate S resulted in. massive void formation & scale spallation on grain

boundaries & grain surfaces of NiAl.

* Neither voids nor scale spallation were observed on NiPtAl despite the increased S impurities
(and high C) of the Hi-S N5 substrate.
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RE & Pt additions improve scale spallation
lifetimes; RE additions are more potent
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* Undoped:—rapid scale
spallation

* Pt. improved resistance to
spallation...for a time

* RE-doping.—lower scale
growth rate + greatly
improved spallation
resistance

(Pint, et al., 1998)
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RE additions modify scale morphology and
reduce growth rate, Pt does not (1 200°C)

NiAl+Hf, 100h

NiPtAl+Hf, 100h
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STEM/EDS Mapping of Alumina Scales on NiPtAl
100-h isothermal @ 1150°C (substrate S ~ 0.8 ppmw, C ~1000 ppmw)
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Map area
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NiPtAl

Hf on g.bs.!

- Hf from the Rene N5 substrate was detected on the columnar oxide grain
boundaries of NiPtAl, but not in the equiaxed outer grains.

- No Hf was detected on oxide grain boundaries on NiAl.
- Apparently, Hf diffused more rapidly through NiPtAl than NiAl.

More, et al., 2001



BC-Superalloy Interdiffusion

- Concern over loss of Al reservoir
- minimum Al level for maintaining a-Al,O,

- Pt beneficial

- Ingress of other elements is typically detrimental to the
protective nature of the oxide scale
- Ti, Cr, Re...
- Hf: from good to bad

- NiAl BC phase change
- critical range appears to be 35-37.5 at% Al
- atRT: d + b; at 1100°C: one phase (b?)
- effect on CTE
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NiAl+Hf: Critical Effect of Al Content
cast alloys, oxidized 1000x1h cycles at 1200°C in O-

11200°C, 2192°F

Ni-74.7TAL5.7TPt+HE

0 100 100 300 400 500 €00 700 800
Numberof 1h Cycles at 1200°C

Critical range: 35-37.5%
two phase vs. one phase?

Pint, et al., 2001

Al contents < 37.5 at% have significant oxidation problems
» Macroscopic deformation occurs for low-Al two-phase alloys

» Addition of Pt does not stop deformation, or spallation (but no blue oxide)



Tramp elements are detrimental to NiAl+Hf

polished cross-sections after 1000x1h at 1150°C in O,

Cu-plating
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All additions accelerate scale growth rate compared to NiAl+Hf
Problems with scale adhesion with Cr and Re -> precipitates

Pint, et al., 2001



Cyclic Operation Issues

- Increased stress generation due to:
- CTE mismatch YSZ - oxide scale - BC
- BC - superalloy CTE mismatch
- oxide growth

- Need to consider matching superalloy and BC CTEs
- Can’t do much to modify the YSZ - oxide scale CTE mismatch

. Need to maximize adherence of oxide scale to BC
- Pt,S,RE effects

- Are long or short cycles worse?

- long cycles: more oxide growth between cycles, but increased opportunity for
stress relief-localized rather than massive damage?

- short cycles: more cycles/unit time
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Deformation of BC: dependson T &
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Average CTE (ppm/

Effect of Pt on CTE of Aluminide
Bond Coating Alloys

NiAls: 25 to 50.1 at%Al (Ni,Pt)Als: 39 to 52 at% Al
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* The CTE difference generates stress in the BC at temperature, which could cause
deformation
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Average CTE (ppm/

Comparison of CTE of Bond
Coating Alloys
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TBC Lifetimes: 1-h & 50-h cycles (1150°C)

41000 SX Rene N5 substrates g ?Ol;h CY:ﬂeS i
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 For PS TBCs: lifetimes longer for longer cycles
 Suggests MCrAIX CTE more dominant than oxidation-related factors?
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For EB-PVD/aluminide BC, stress in
oxide decreases with thermal cycling

Thermal Cycling at 1150°C 100 1-hr Cycles at 1150°C
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- The Al,O, compressive stress gradually decreases during thermal cycling due to
interface roughening and scale cracking

Lance, et al., 2000
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Condition Monitoring

- IR imaging (Siemens Westinghouse; ORNL)
- hot spots/debonding

- Laser flash (ANL)

- oxide-BC interface roughness
- thermal properties

- PSLS (UCSB; UConn; Howmet; ORNL; NPL and Imperial
College, UK; Universita’ di Trieste, Italy)

- stress levels in BC oxide layer
- phase content of oxide

- Eddy current techniques (Jentek; EPRI; Structural Analysis
Assoc.)
- BC Al content change with time

- EIS (U. Central Florida)
- debonding

OAK RIDGE NATIONAL LABORATORY
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Summary

 Many variables contribute to the performance of TBCs
— application route for ceramic: APS vs EB-PVD
— bond coating composition; structure; mode of application, surface finish
— superalloy substrate composition and structure

— vendor-to-vendor differences (processing parameters, e.g. surface
preparation)

* The factors to be addressed to optimize TBC performance
depend on the mode of degradation, i.e., are system-specific

* Need to understand the processes involved in TBC degradation
in order to identify the factors that have the largest contributions
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Progressive failure of an APS TBC in a high
thermal gradient cycling test

Sabol, et al.,1998
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Improved selective oxidation with Pt
Total Mass Gain during 500h cycles at 1000°C

40

Total Mass Gain (mg/cm?)

" Ni-40.3Al
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1000°C, 1832°F

Only Pt added, no Hf

Ni-42.6 Al

+ Ni-50.1Al
Ni-38.7 Al-5.6Pt
" Ni-50Al+Hf

Total = specimen+spall

NiAl+Hf - lower because of better adhesion and slower growth rate
Ni-42.6A1 & Ni-50.1Al - undoped alumina growth + some spallation
Ni-40.3Al - spinel formation increased total mass + some spallation
Ni-38.7Al-5.6Pt(20wt%) - better selective oxidation, i.e. no spallation

Pint, et al., 2001



Effects of C-Hf interactions on NiAl+Hf
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[S] = <2 ppma (by GDMS)

XS varied by changing [C] -> making graphite additions to the casting

Is XS Hf > 1 a critical parameter?

Pint, et al., 2001
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PS-TBC Microstructures at Fallure

R R ST il

' APS Ni-22Cr-10A1-1Y: 14, 50-h cycles

VPS Ni-22Cr-10A1-.3Y: 240, 1-h cycles | | APS Ni-22Cr-10A)-1Y: 276, 1-h cycles
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As-Deposited TBC & BC Microstructures
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Conventional wisdom: VPS bond coats provide superior TBC lifetimes
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EB-PVD Microstructures at Fallure
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» TBC failure mode = delamination and spallation of the Al,O, scale and/or the
overlying YSZ top coating at or near the metal-ceramic interface.

* Interfacial degradation is associated with bond coat oxidation and, in some
cases, surface deformation

Haynes, et al., 2001
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