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SUMMARY

In this paper we describe a novel generalized SOR algorithm for accelerating the

convergence of the dynamic iteration method known as waveform relaxation. A new

convolution SOR algorithm is presented, along with a theorem for determining the

optimal convolution SOR parameter. Both analytic and experimental results are given

to demonstrate that the convergence of the convolution SOR algorithm is substantially

faster than that of the more obvious frequency-independent waveform SOR algorithm.

Finally, to demonstrate the general applicability of this new method, it is used to solve

the differential-algebraic system generated by spatial discretization of the time-dependent

semiconductor device equations.

INTRODUCTION

To achieve highest performance on a parallel computer, a numerical algorithm must

avoid frequent parallel synchronization [1]. The waveform relaxation approach to solving

time-dependent initial-value problems is just such a method, as the iterates are waveforms

over an interval, rather than single timepoints [2, 3, 4]. Like any relaxation scheme,

efficiency depends on rapid convergence, and there have been several investigations into how

to accelerate WR [2, 5], including using multigrid [6] and conjugate direction techniques [7].

In this paper, we investigate using successive overrelaxation (SOR) to accelerate WR

convergence. In particular, we show that the pessimistic results about waveform SOR

derived in [2] can be substantially improved by replacing multiplication with a fixed SOR

parameter by convolution with an SOR kernel. We derive the optimal SOR kernel using
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Fourier analysistechniquesand then demonstratethe effectivenessof the approachfor a
modelparabolicproblem. Finally, wedemonstratethegeneralapplicability of the approach
by usingthe method to solvethe time-dependentdrift-diffusion equationsassociatedwith
modelingsemiconductordevices.

We begin in Section 2 by reviewing waveform SOR, and in Section 3 we relate the

algorithm to pointwise SOR to demonstrate the difficulty in accelerating WR with a fixed

SOR parameter. In Section 4, we use Fourier analysis to derive the SOR kernel for the

continuous WR algorithm, and give a proof of optimality. In Section 5 we briefly consider

the effect of time-discretization, and in Section 6 we apply the method to device simulation.

Finally, conclusions and acknowledgements are given in Section 7.

WAVEFORM SOR

In this section, we consider applying waveform relaxation methods to the model linear

initial-value problem

(1) (_ + A) ac(t) = b(t) with at(0) : ac0,

where A E _n×n, b(t) E _n is a given time-dependent right-hand side vector, x(t) E _:n is

the unknown vector to be computed over simulation interval t E [0, T], and x0 E _n is an
initial condition.

Given the relaxation splitting A = D - L - U, and subtracting successive waveform

relaxation iterations, the waveform Gauss-Jacobi (WGJ) and waveform Gauss-Seidel

(WGS) iteration equations, respectively, may be written as:

(2) (_ +D) Axk+l(t) = (L + U) Axk(t)

(3) (-_ + D - L) Aack+l(t) = U A_k(t),

where Azk+l(t) = zgl(t) -- xk(t) is used to eliminate the right hand side b(t).

The waveform SOR method for acceleration of WGS is a simple extension of algebraic

SOR. To derive the waveform SOR iteration equation, compute a waveform _l(t) on

t 6 [0, T], as in WGS:

_-1 : n

(4) (d +ai,)2_,(t)=bi(t)_Eaox_,(t)_ E aijxk(t) with :_//_'l(0)=x{_,
j--1 j=i+_

and then update xk(t) in the iteration direction by multiplication with an overrelaxation

parameter w,

k(t)].(5) x, l(t) x (t)

514



Combining equations (4) and (5) yields

(6)

+ a.) x?l(t)=

)]
i=1 i=_+1 J

which, after subtracting successive waveform relaxation iterations, leads to

(7) (_ + D -wL) Axk+l(t) = [(1 --w)(_ + D) +wU] Axk(t),

where Axk+l(t) = irk+l(t) -- xk(f:).

Note that the iteration matrices implied by equations (2), (3) and (7) correspond

exactly to the standard algebraic relaxation and SOR matrices with diagonal matrix D

replaced by (_ + D). Also note that waveform SOR as defined by (7) is not the same as

the dynamic SOR iteration considered in [2], because, unlike WGJ or WGS, the waveform

SOR iteration equations are not of the form

(8) _d Azk+l + MAck+I = NAxk
dt

where M, N E _,,xn.

RELATION TO POINTWISE SOR

Discretizing (1) in time using a multistep integration method yields

(9)

8 8

_ ajx[m - j] = h __,t_i (b[m - j]- Ax[m - j]),
/=0 i--o

where a0 = 1 and x Ira] denotes x(t) at timepoint t = mh with timestep h. Thus, the

time-discretized model problem can be rewritten as a sequence of linear algebraic problems

(lo)

[I + hfloA] z[m] =
8 8

hflob[m] - _ ajx[m - j] + h _ _i (b[m - j] - Ax[m - j]).
/=1 /=1

We now compare the convergence of the waveform SOR method to the convergence of

pointwise SOR, in which algebraic SOR is used to solve the matrix problem at each

timepoint.

The pointwise SOR iteration equations are derived by applying the relaxation splitting

A = D - L - U to equation (10) and taking the difference between the (k+l)st and kth
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iterations. More precisely, the pointwise SOR iteration equation applied to solve (10) for

A_+l[m] = x_l[m]- _k[m] is

[(I + h/3oD) -whfloL] Axk+l[m] =

(11) [(1 --w) (I + h/9oD) + whfloU] Axk[m],

where w is the S0R parameter. It follows that the spectral radius of the iteration matrix

generated by pointwise SOR at the mth timestep is

If waveform SOR is used to solve the model problem (1), and a multistep method is

used to solve iteration equation (7), then A_c k+lIra], now denoting the discretized difference

in waveform iterates, satisfies

(13)

_] aj [Axk+l[m - Jl - (1 - w) Axk[m - j]] =
j=O

8

h )-_j{ -(D-wL)Ax_l[m - j] + [(1 -uJ)D +wg]A_k[m-j]}.
j=O

This can be rewritten as the discrete-time analogue of (7):

8

(14)

E [ (a_I + h_iD) - whfl_L]Ax_-l[m - j] =
j=o

8

_] [ (1 - w) (a._I + hlg_D) + wht3_U]Axk[m - j].
j=o

As the similarities of equations (11) and (14) suggest, if the time interval is finite,

i.e. the number of timesteps is some finite L, then for a given timestep h and a given

SOR parameter w, the time-discretized waveform S0R method has the same asymptotic

convergence rate as pointwise SOR.

Theorem 3. I. On a finite simulation interval, the iterations defined by (11) and (14)

have the same asymptotic convergence rate.

Proof. Let yk denote the large vector consisting of the concatenation of vectors A_ k [m]
T

at all L discrete timepoints, i.e. yk = [Axk[1]T,... ,A_k[L]T] . Collecting together the

equations (14) generated at each timepoint into one large matrix equation in terms of

vectors yk+l and yk yields MAy k+l = NAy k where M,N 6 ]t_ LnxLn are block lower

triangular banded matrices, with blocks of size n x n, and with block bandwidth s. It is

then easily seen that M-1N is block lower triangular, with diagonal blocks equal to

(15) [(I + hfloD) -whtgoL]-l[ (1-w)(I + ht3oD)+whl3oU].
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Therefore, p(M-1N) is given by (12), implying that the iterations defined by ill) and (14)

have identical asymptotic convergence rates. I-I

Theorem 3.1 suggests that parameter w for waveform SOR should be chosen to be

precisely equal to the optimum parameter for the pointwise SOR method. However, this

does not necessarily lead to fast convergence, as the following example illustrates.

Example 3.1. Let t 6 [0,2048], x(0) -- 0, and let matrix A 6 ]_32×32 and time-

dependent input vector b(t) 6 _32 of the model problem (1) be given by

(16)

b(t)

A

bl(t)
0

0

-1

2 ""

"'. "', --1

-1 2

(2.t where bl(t) = 1 - cos \2-_]
0

if t < 256
m

otherwise.

Consider the four problems generated by discretizing in time with the first-order backward

difference formula, using 64, 128, 256, and 512 uniform timesteps of size h = 32, 16, 8 and

4 respectively.

Since the tridiagonal matrix A is symmetric and is consistently ordered [8, 9], the

matrix (I+ h_oA) of the pointwise time-discretized model problem (10) is also consistently

ordered, and the optimum pointwise SOR parameter wopt is given by

2
(17) Wopt =

1+ vfl- p_

where #1 -- p(HGj) is the spectral radius of the pointwise Gauss-Jacobi iteration matrix

HGj = (I + hj3oD)-1(h_L + hfloU). For the four problems with 64, 128, 256 and

512 timesteps, the optimum pointwise parameters Wopt are 1.669, 1.586, 1.482 and 1.364

respectively.

Curves PT64, PT128, PT256 and PT512 of Figure 1 show the convergence of the

waveform SOR method versus iteration for the four problems with their Optimum pointwise

SOR parameters wopt. Note that as the total number of timesteps is increased, the initial

convergence rate is slower, approaching a limiting value of the convergence rate of the

continuous Gauss-Seidel WR algorithm (shown as WR in Figure 1). In each case, the

convergence rate of the waveform SOR eventually approaches the expected asymptotic

value of Wopt - 1. Note that with a reasonable error accuracy tolerance such as 10 -8 as a

stopping point, the asymptotic convergence rate is ne re," reached. For comparison, Figure i
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also shows the superposition of four convergence plots (CSOR) of the new convolution SOR

method to be introduced in the following sections.

10_

_ WR
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l_,, OR F1"25

lO-_
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Fza. 1. Convergence of wave form SOR using

the pointwise optimal parameter (PT) compared to

waveform relaxation (WR), and convolution SOR
(CSOR), with 64, I28, 256 and 512 timesteps.
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FIG. 2. Effect on convergence of the 256-timestep

waveform SOR of varying the SOR parameter from

the pointwise optimum Wopt = 1.482.

To illustrate the effect of choosing a different SOR parameter w, Figure 2 shows the

convergence versus iteration of the 256-timestep example for waveform SOR with values

of the SOR parameter w not equal to the pointwise optimum wopt = 1.482. When

w = 1.30 < wopt, the convergence curve lies between the pointwise optimum curve and

the WR convergence curve, i.e. both initial and asymptotic convergence rates are slower.

By increasing the SOR parameter to w = 1.63 > Wopt, the initial convergence rate can

be made faster at the expense of slowing down the asymptotic convergence rate. But as

the w -- 1.70 curve shows, once the SOR parameter is increased beyond some point, the

waveform SOR method may appear to diverge before eventually converging. Also, the

solution produced by the w = 1.70 example contains spurious oscillations, as shown in

Figure 3. Note both the growth and translation of the oscillation with iteration.

The optimum pointwise SOR parameter Wopt does not dramatically improve the

convergence rate of waveform SOR because the matrix M-1N which describes the

waveform SOR convergence is far from normal. This suggests that although the spectral

radius of the iteration matrix determines the asyT_ptotic convergence rate of waveform

SOR, it does not determine the practically observable convergence rate. The convergence

rate could be characterized, for example, by computing the pseudo-eigenvalues [10] of the

waveform SOR iteration matrix. In the following section, we take an alternate approach.
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FIG. 3. Delta waveforra Ax_ 1(t) = x_ I(t) -

x_6(t ) versus time after iterations 250 and 500,
for the 256-timestep waveform SOR method using
w = 1.70, showing the growth and translation of an

oscillating region.
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FIG. 4. The spectral radii as functions of frequency
fl of the Gauss-Jacobi WR (solid), Gauss-Seidel
WR (dashed) and waveform SOR (dotted) iteration
matrices for an 8 × 8 version of the continuous-time
problem of Example 3.1.

FOURIER ANALYSIS

In [2], the spectral radius of dynamic iteration operators which map x k to x k+l, such

as those given by equations (2), (3), and (8), was related to their Fourier transform. In this

section, we make a more detailed use of Fourier analysis to derive a frequency-dependent

SOR parameter for the waveform SOR operator of equation (7).

The Fourier transform of zk(t) is given by

(18) Sxk(if_) = xk(t)e -m dt = y{xk(t)},
OC._

where f_ is frequency. Standard Fourier identities can be used to show that Axk+l(if_) =

H(ift) Axk(if_), where for WGJ (2), WGS (3) and waveform SOR (7), the iteration

operator H(ift) is given by

(19) HGj(if_) = (iftI + D)-I(L + U)
(20) Hcs(in) = (inI + D- L)-lu
(21) Hson(if_) = (iQI + D -wL)-l[(1 -w)(ifH + D) +wU]

respectively. The obvious interpretation of equations (19)-(21) is that the spectral radius

p(H(ift)) yields the asymptotic convergence rate for errors in the frequency component f_.
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Figure 4 is a plot of the spectral radii of HGj(if_), Hvs(if_) and HsoR(if_) for an

8 × 8 version of the continuous-time problem given in Example 3.1, using w = 1.49 for

HsoR(i_2). From the plot it is clear that very high frequency components of the error are

damped much more quickly than low frequency components. However, the spectral radius

p(HsoR(if_)) is greater than one over a range of frequencies, and therefore the waveform

SOR iteration magnifies errors in this frequency range. This effect was predicted in [2] and

is easily seen in Figure 3.

This situation can be remedied by using a generalized SOR algorithm, in which

equation (5) is replaced by an overrelaxation convolution with a time-dependent SOR

parameter w(t),

(22) /f

The Fourier transform of the SOR operator is then given by

(23)

where w(il2) is the Fourier transform of the time-dependent w(t). We refer to the SOR

algorithm represented by iteration matrix (23) as the convolution SOR algorithm (CSOR).

The theorem below, which is the main result of this paper, gives a formula for determining

the optimal frequency-dependent SOR parameter w(iQ).

Theorem 4.2. If the spectrum of HGj(if_) lies on the line segment [-#1(iI2), #1 (i12)]

with 1#11 < 1, then the spectral radius of Hc(i_) is minimized at frequency 12 by a unique

optimum w(i_2) = wopt(i_) e C given by

(24) ,,,o,,,(ia)=
1 + _1- #1(i12) 2

where x/: denotes the root with the positive real part.

Proof. For brevity, the argument (if_) will be omitted in the following, and He (w) will

denote the convolution SOR operator (at frequency f_) computed using SOR parameter w.

Let #i = ri#l denote each eigenvalue of HGj , where ri E [-1, 1]. Classical SOR

theory [8, 9] guarantees that for each #i = r_#l, there is an eigenvalue )_ of He(w) which

satisfies

(25) _, - _r,,1V_' + (_ - 1)= 0,

and therefore, from the quadratic formula,

(26) - _ + -w+l.
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Let w to be the conjectured optimal wopt. Combining equation (24) with (26) yields

= _1 02 _]1 ----- I_1 °ptl'(27) _ 12#lopt[ri + 102

where the rightmost equality follows from the fact that Ir_ + _1

And as (27) holds for all i,

(28) p(Hc(02o,t))= I_,1= _,_02o,,,)= Iw,,pt- 1l.

= 1 for ri E [-1, 1].

Equation (28) implies that p(Hc(02)) cannot be decreased below p(Hv(02op,)) by using

an w such that I02 - 11 > I02opt - 11- This follows from the fact that, in general [8, 9],

(29) p(Ho(02))>_I02-11

for any w.

To show that p(Hc(02)) also cannot be decreased by choosing a value of 02 such that

I02 - 1] < ]02_t - 11, consider the eigenvalue A1 corresponding to/_1:

(_0) _ = ]÷(02)= ,1___+ . + 12

and note that f+ : C _ C, given by equation (30), is a single-valued, continuous function

that is analytic except at

(31) 021 _ 022 --

l vq- 

Since I/_11 < 1, points wl and 022 lie in the interior and exterior, respectively, of the

circle 102- 11 = 1 in the complex w-plane. Note that 021 equals the conjectured 02opt from

equation (24).

Let D denote the interior of the curve given by the perimeter of the circle 102- 11 = 1,

except with a cut along the line defined by the circle's center and 027. The cut follows the

line from the perimeter down to 027, and then back up the other side to the perimeter, as

shown in Figure 5. The function f+ is nonzero everywhere within D, since equation (25)

implies that a zero can occur only at 02 = 1, and f+(1) = #7. Therefore, the minimum

modulus theorem [111 implies that If+(w)l attains its minimum value somewhere on the

boundary of D. Finally, the lower bound in (29) implies that 021 = 02opt in (24) is the only

point on D which can achieve as low a p(Hc(02)) as given in (28), completing the proof.

Note that when the eigenvalues # lie on a real line segment, this is yet another

alternative proof of a classic SOR Theorem [8, 9, 12]. Also note that, in general, the

optimal overrelaxation parameter w(if_) is complex.
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FIG. 5. The region D and branch cuts in the complex w-plane.

The conditions of optimal SOR parameter Theorem 4.2 are satisfied by a large class of

matrices.

Corollary 4.3. If A in (1) is consistently ordered, symmetric, and has constant diagonal

D = dI, then the optimal SOR parameter is given by (24),

(32) =

1+ 1-\d+if_ ]

where #1 denotes the spectral radius of D-I(L + U).

Proof. To show that Theorem 4.2 applies, note that (19) implies that for a constant

diagonal A, the HGj(if_) eigenvalues #(igt) are given by #(iQ) = dpo/(d + il2), where #0

are the eigenvalues of D-I(L + U). Since/_0 lie on the real axis, the #(il2) lie on a line

rotated in the complex plane. [:]

Corollary 4.4. If A in (1) is consistently ordered, symmetric, and has constant diagonal

D --- dI, then the optimal time-dependent SOR convolution waveform wit ) is real.

Proof. Equation (32) implies that wopt(if_) is a conjugate-symmetric function of f_. 0

DISCRETE-TIME MODIFICATION

For the sake of brevity, we consider only the first-order backward difference formula,

in which case equation (14) becomes

Ax_t4[rn] + h(D --wL)Axk4q[m] -- Ax_l[m - 1] =

(33) (1--w)Axk[m]+ [(1-w)hD+hwU]Axk[m]-(1-w)Axk[m-- 1],
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where h is the uniform timestep. The z-transform of x [m], defined by

(3a) x(z) = E x[mlz-m = z{_[ml},
_--_

may be used to show that Axk+:(z) = He(z) Axk(z), where the z-dependent convolution

SOR operator is

h I+D w(z)L (1-w(z)) 1-z -1= __ _ _ I+D +w(z)V .

Since w(z) depends on z, overrelaxation becomes a convolution sum

(35)
co

k

where w(z) = Z{w[m]}. To determine the optimal w(z), we have the following theorem,

whose proof is analogous to that of Theorem 4.2.

Theorem 5.5. If the spectrum of Hog(Z) lies on the line segment [-_u: (z), #1 (z)] with

[#:] < 1, then the spectral radius of He(z) is minimized at z by the unique optimum

_(z) = _op_(z)ec givenby

(36) wopt(z) =
I + _/I - #:(z)2

where x/: denotes the root with the positive real part.

In Example 3.1, matrix A has constant diagonal D = dI, so that

(37) Wovt(z) --

I+

2 _

1 - 1 - z-:

d+--- K-

where #: denotes the spectral radius of D-:(L + U). Thus, to compute the optimal

convolution SOR sequence w[m] for the four CSOR plots of Figure 1, equation (37) was

used to compute w(z), and then the inverse z-transform of w(z) was computed analytically

by series expansion.
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DEVICE TRANSIENT SIMULATION

A device is assumed to be governed by the Poisson equation, and the electron and hole

continuity equations:

(38) V2u+cl(p-n+N) -- 0

On

(39) V2n - VnVu - nV2u = c2-_

Op
(40) V2p + VpVu + pV2u = c3-_

where u is the normalized electrostatic potential, n and p are the electron and hole

concentrations, N is a background concentration, and cl, c2, c3 axe physical constants [13].

Given a rectangular mesh that covers a two-dimensional slice of a MOSFET, a common

approach to spatially discretizing the device equations is to use a finite-difference formula

to discretize the Poisson equation, and an exponentially-fit finite-difference formula to

discretize the continuity equations [13]. On an N-node rectangular mesh, the spatial

discretization yields a differential-algebraic system of 3N equations in 3N unknowns.

The convolution SOR method was implemented in the WR-based device transient

simulation program WORDS [14]. WORDS uses red/black block Gauss-Seidel WR, where

the blocks correspond to vertical mesh fines. The equations governing nodes in the same

block are solved simultaneously using the first order backward-difference formula. The

implicit algebraic systems generated by the backward difference formula are solved with

Newton's method, and the linear equation systems generated by Newton's method are

solved with sparse Gaussian elimination.

The three MOS devices of Figure 6 were used to construct six simulation examples,

each device being subjected to either a drain voltage pulse with the gate held high (the D

examples), or a gate voltage pulse with the drain held high (the G examples). All examples

ranged from low to high drain current, and in the G examples, the gate displacement current

was substantial because the applied voltage pulses changed at a rate of .2 _ 2 volts per

picosecond.

device

kar

ldd

sol

description

abrupt junction

lightly-doped drain
silicon-on-insulator

mesh

19 x 31

15 x 20

18 x 24

5v

unknowns

1379 __j
656
856 .2 microns

I:A
0psec 512pscc

Fro. 6. Description of devices and illustration of the drain-driven karD example.
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Figure 7 shows the convergence of the six examples as a function of iteration for WR,

ordinary waveform SOR (using the pointwise optimum parameter), and the convolution

SOR algorithm. The convolution SOR sequence wire] was calculated by linearizing (38)-

(40) about the initial condition, estimating the spectral radius of the iteration matrix as a

function of z, applying Theorem 5.5 and inverse transforming. Both overrelaxation methods

were applied only to the potential variable u. All simulations began with 64 initial WR

iterations, and used 256 equally-spaced timesteps. In Figure 7, convergence was measured

using the terminal current error.

Despite the nonlinearity of the semiconductor equations, the convolution SOR algo-

rithm converged substantially faster than either WR or ordinary waveform SOR, demon-

strating the robustness of the approach.
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FIG. 7. Terminal current error of the six examples as a function of iteration for WR (dashed), ordinary
waveform SOR (dotted), and convolution SOR (solid).
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CONCLUSION

In this paper, a new waveform overrelaxation algorithm was presented and applied

to solving the differential-algebraic system generated by spatial discretization of the time-

dependent semiconductor device equations. In the experiments included, the convolution

SOR algorithm converged robustly, and substantially faster than ordinary WR.

The author would like to acknowledge extensive conversations with his advisor,

Professor Jacob White, and also thank Professors Alar Toomre, Donald Rose, Paul

Lanzcron, Andrew Lumsdaine and Olavi Nevanlinna for many valuable suggestions.
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