Dhofar 1436 / Jiddat al Harasis 348

Anorthositic impact melt breccia 24.2, 18.7 g

Figure 1: Slice through JaH 348 with 1 mm scale bars below (photo by R. Korotev).

Introduction

Dhofar 1436 (paired with Jiddat al Harasis 348; Fig. 1) was discovered by an anonymous finder in 2004 on a limestone plateau in the Dhofar region of Sultanate of Oman, far from other known lunar meteorites (Fig. 2 and 3). It consists of a single brownish-green 24.2 g stone, and fusion crust is absent. JaH 348 is a slightly smaller stone of 18.7 g (Connolly et al., 2008).

Petrography and mineralogy

The meteorite consists of lithic and mineral clasts embedded in a partially devitrified glassy matrix with abundant bubbles, and can be classified as an impact melt breccia. The lithic clasts are mainly impact melt breccias and rocks of anorthositic, gabbro-anorthositic, and gabbro-noritic lithologies, with minor granular breccia clasts. Lithic fragments range from 0.01 to 7 mm in size. The major minerals are pyroxene

(orthopyroxene - $En_{68.2-84.1}Wo_{0.2-5.0}$; Fe/Mn 62 and clinopyroxene - $En_{13.4-63.7}Wo_{12.8-40.5}$; Fe/Mn 63), feldspar (An92.5-98.7Ab1.1-7.2), with minor olivine (Fo_{42.6-72.7}; Fe/Mn 96). Accessory phases are silica, Al-Ti chromite, ilmenite, Ca-phosphate, troilite and FeNi metal (from Connolly et al., 2008).

Chemistry

Compositional data so far are limited to analyis of the glassy matrix composition: $SiO_2 = 45.1$, $TiO_2 = 0.26$, $Al_2O_3 = 30.8$, FeO = 4.49, MgO = 3.94, CaO = 16.7, $Na_2O = 0.48$, $K_2O = 0.04$ [all wt%, and represents an average]. Oxygen Isotope values fall within the field expected of a lunar meteorite: $\delta^{17}O=3.286$; $\delta^{18}O=6.244$ (both %₀) (from Connolly et al., 2008).

Figure 2 and 3: Location maps of the Dhofar region in Oman (from Al-Kathiri et al., 2005) and the specific coordinates for Dhofar 1436 (just below center).

Radiogenic age dating

None yet reported.

Cosmogenic isotopes and exposure ages

None yet reported.

Lunar Meteorite Compendium by K Righter 2008