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Abst rac t  

In  this  paper we describe the  hardware  design,  the  control  and  navigation  system,  and 
our  preliminary  experiments  with  the  robotic  wheelchair  MAid  (Mobility  Aid for Elderly  and 
Disabled  People).  MAid's  general  task is to  transport  people with  severely impaired  motion 
skills such as, for example,  paraplegia,  multiple sclerosis, poliomyelitis, or muscular  dystrophy. 
Following the  advice of disabled  people  and  physicians we did  not  set  out  to  re-invent  and 
re-develop the  set of standard skills of so-called intelligent  wheelchairs,  such as FollowWalZ, 
FollowCorridor,  PassDoorway which are commonly  described  in  the  literature.  These  maneuvers 
do  not always  require fine motion  control  and  disabled  people, in spite of their  disability,  are 
often well capable of navigating  their wheelchair  along a corridor  and  actually  eager to  do  it. 
In our work we focused instead  on  maneuvers which are very  burdensome  because  they  take 
a long time  and  require  extreme  attention.  One of these  functions is deliberative  locomotion 
in  rapidly  changing,  large-scale  environments, such as  shopping malls, entry  halls of theaters, 
and concourses bf airports or railway stations, where tens or hundreds of people  and  objects  are 
moving around.  This  function was not only  acknowledged as being  very useful but also  very 
entertaining,  because MAid  often  had to work very hard  to find its way through a crowd of 
people.  MAid's  performance was tested in the  central  station of Ulm during  rush-hour,  and  in 
the exhibition halls of the Hannover  Messe '98, the biggest industrial  fair worldwide. Altogether, 
MAid has survived more  than 36 hours of testing in public, crowded environments  with  heavy 
passenger traffic. To our knowledge this is the  first  system  among  robotic  wheelchairs  and 
mobile robots  to have  achieved a similar  performance. 

1 Introduction 

Nowadays, the freedom and  capability  to move around  unrestrictedly  and  head  for  almost  any 
arbitrary  location seems to  be  an  extremely valuable  commodity.  Mobility  has  become an essential 
component of our qualit,y of life. A natural consequence of this  appreciation of the good  mobility 
is the negative rating of the loss of nmbility  caused, for example, by a disease or by agc. The 
loss of mobility  represent,s not o11ly t h  loss of a physiologi(:al function,  but  often a c:onsidcrat)le 
social  descent.  People  with severely impaired  motion  skills have great difficulties to part.it:ipat,e in 
a regular  social lifc. Not, scldorn a loss of rnobility leads tm a loss of c:ontacts to other  non-disablcd 
people or makes it, at, I c a s t  diffic:ult, to cst,al)lish sucl~ c o n t x t s .  A loss of mobility, 111a-y it,  L C !  duc t , o  
an  injury or to adval~c:od age, is always ac:c:ompaniod by a loss o f  ; L U ~ , O I I O I ~ ~  and  sclf-dct,crlr~in~~tion, 
it, creates dopctndenco ;iIltl i n  cxt,rctInc (:its(:s it. may ov(111 affect. t , h e  ir~divitfual intimac.y i1~1t1 dignit,y. 
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The loss of one's mobility may be seen as a difficult, individual  fate. However, there  are two 
aspects which may make it not, only into an individual but also  into  a  general  problem of our society. 
First,  the average age in western societies is increasing dramatically. As a natural consequence the 
number of people suffering from severe motion impairment will increase  too. At the  same  time, 
we can observe an equally dramatic increase of the  expenditures for health care and  nursing  and 
furthermore a reduction of nursing staff in  order t80 limit the cost explosion. The  results of these 
developments are foreseeable: the quality of health  care will decay, individual  care will become  still 
more expensive and less affordable for people with  medium  and lower income,  elderly will then  be 
sent to  nursing homes much earlier than nowadays in  order to get sufficient care. 

A way out of this  unpleasant development may be  through  the development of robotic tech- 
nologies. Many  activities which a person  with severe motion  impairment is unable to execute  may 
become feasible by using  robot  manipulators and vehicles as arms  and legs, respectively. Lifting 
things,  carrying  and  manipulating  things  and moving around  in ones own home this way becomes 
feasible without  the assistance and help of a nurse.  People  with  motion  impairment  get back a 
certain  amount of autonomy  and  independence  and  can  stay  in  their  familiar  environment.  Expen- 
ditures for nursing  personnel or an accommodation in a nursing  home can  be avoided or at  least 
limited. 

In  this  paper we describe a robotic wheelchair MAid (Mobility  Aid for Elderly and Disabled 
People) whose task is to  transport people with severely impaired  motion  skills  and to provide  them 
with a certain  amount of autonomy and independence. The system  is based on a commercial 
wheelchair, which has been  equipped  with  an intelligent control  and  navigation  system. 

Robotic  wheelchairs have been developed in a number of research labs (see our review in Section 
11.) The common  set of functions provided by most of those  systems  consists of AvoidObstacle Fol- 
low Wall, and PassDoorway. In conversations with  disabled and elderly  people, and  with physicians 
we learned that not  all of these  functions are of equal  interest for people with  motion  impairment. 
Particularly Follow Wall and PassDoorway are maneuvers which most  disabled  people  still  want to 
execute  themselves  provided  they have the necessary fine motor  control. 

Following this advice,  in  our work we focused on different types of motion skills. Our  system 
has two modes of operation, a  semi-autonomous and a fully autonomous mode. In  the semi- 
autonomous  mode  tQe user can  command MAid to execute local maneuvers  in  narrow, cluttered 
space. For example; the user can  command MAid to maneuver into  the  cabin of a restroom for 
handicapped people. Maneuvers  in  narrow,  cluttered  space  require extreme  attention  and  often 
lead to collisions, particularly if the  patient lacks sufficient fine motor  control. We denoted  this 
type of maneuver  in  small,  narrow  areas as NAN (narrow  area  navigation),  and  the  implementation 
of this  capability is described in [12, 151. 

In  the second mode, MAid navigates fully autonomously  through wide, rapidly  changing, 
crowded areas, such as concourses, shopping malls, or convention centers.  The  algorithms  and 
the control  system which enable MAid to do so are  described in the following. We denoted  this 
latter  type of motion skill as WAN (wide  area  navigation).  The only action  the user has to take 
is to  enter a goal position.  Planning  and  executing a trajectory  to  the goal is completely taken 
care by MAid. MAid's capability of navigating in rapidly  changing  environments was not  only 
acknowledged as being very useful but also very entertaining. MAid often  had to work very hard 
to find its way through a crowd of people and our test  pilots were often very curious to see what 
MAid  would do  next,  bump  into a passenger - very rarely it, did - or move around. 

MAid's pcrformancc was tested in thc ccnt,ral station of Ulm during  rush-hour  and in the 
exhibition  halls of t.he Hunnouer Mcsse '98: the biggest, industrial  fair worldwidc. Alt,ogcbt,llctr, 
MAid has so far survivctl Inore tlli~11 36 hours o f  t,cst,ing ill public, crowdctJ ollvirorilll(~llt,s wit,h 
heavy I)iL.s(!Ilgcr traffic:. To 0111' k ~ ~ ~ w l o d f ; ~  t,hcrt: is no otllcx r o h t i :  wllocldlair  and 110 ot.llor Illol)i]o 
robot. syst,(!nl  which (:;LII claim 11 ( ~ ) 1 1 1 p ~ : ~ l ) l ~  r)(:rforlrl;LIlc:ct. 

Not(: t,ll:Lt, ;kt. first sight. t . 1 1 ~  t,wo t.yl)cts of r n o t , i o n  skills, N A N  ; m ( 1  WAN. whic:ll MAi(1 is (:;11):~1)10 
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of, have little in common witrll the navigation skills of other  intelligent wheelchairs. &uit,c the 
opposite is the case. In terms of its performance WAN can  be seen as a superset, of functions such 
as AvoideObstacle or Follow TVnll. When WAN is activated  and a destination at  the opposite  end of 
a hallway is specified then MAid  will automatically show a wall  following behavior and  at  the  same 
time avoid obstacles,  although  there is no  explicit  implementation of such a behavior  in the WAN 
module. Likewise, passing a door or docking at  a table  are typical  instances of NAN maneuvers. 

The  rest of this  paper is organized as follows. In  the  next section we give an overview of the 
state of the  art in the development of robotics wheelchairs. MAid’s hardware  design  is  described 
in Section 3. In Section 4, we then  describe the software architecture  and the’ algorithms which 
enable MAid to navigate in a wide, rapidly  changing, crowded environment.  Note that  although 
MAid’s capability  to  navigate in narrow,  partially  unknown,  cluttered  environment is mentioned 
several times below, the focus in this  paper is on MAid’s WAN skill. We will not go into  the det,ails 
of MAid’s NAN skill,  presented  in [ la ,  151. 

2 Related Work 

In recent years there  has been the development of several intelligent wheelchairs. A first  design 
concept for a self-navigating wheelchair for disabled  people was proposed by Madarasz  in [8]. The 
vehicle described there used a portable PC (320 KB of memory)  as  on-board  computer. The sensor 
equipment of the wheelchair included wheel encoders, a scanning  ultrasonic  range-finder  and a 
digital  camera.  The  system was supposed  to  navigate fully autonomously in  an office building. To 
find a path  to  its  destination  it used a symbolic description of significant  features of the  environment, 
such  as hallway intersections or locations of offices. The  path computed by the  path  planner 
consisted of a sequence of primitive  operations such as MoveUntil or Rotate. 

In [3], the  system NavChair is described.  NavChair’s  on-board computer is also a portable IBM 
compatible PC. An array of 12 Polaroid  ultrasonic  sensors at  the front of the wheelchair is used 
for obstacle  detection  and avoidance. NavChair’s most important  function is automatic  obstacle 
avoidance. Other  functions include wall  following and passing doorways. 

Hoyer and Holper [7] present a modular  control  architecture for an omni-directional  wheelchair. 
The drive of this  syskm is based on Meccanum-wheels. The wheelchair is equipped  with  ultrasonic 
and  infrared sensors and a manipulator.  A low-level control  unit  is  in  charge of the  operation 
of the sensor apparatus,  the  actual motion of the vehicle and  the  operation of the  manipulator. 
This  control  unit is realized on an VME-Bus-system using pSOS+.  A high-level PC/UNIX based 
planning  module  consists of a path  and a task  planner  to  execute  task  oriented  commands. 

A hybrid vehicle RHOMBUS for bedridden  persons is described  in [9]. RHOMBUS  is a powered 
wheelchair with  an omni-directional  drive which can  be  automatically reconfigured such that  it 
becomes part of a flat stationary  bed.  The  bedridden person does not have to change  seating  when 
transferring between the chair and  bed. 

Mazo et  al. [lo] describe an electrical wheelchair which can  be  guided by  voice commands. The 
wheelchair recognizes commands  such as Stop,  Forward,  Back,  Left,  Right, Plus, Minus  and  turns 
them  into  elementary  motion  commands.  The  system also has a control  mode Autonomous. In  this 
mode the wheelchair follows a wall at a certain  distance. 

Miller and Slack [ll] designed the system Tin Man I and  its successor Tin Man 11. Both  systems 
were built, on top of a c:ommercial pediatric wheelchair from Vector Wheelchair  Corporat,ioll. Tin 
Marl I used five  t,ypc:s of scnsors, drive motm crlcoders, cight (:ontact sensors used as wlliskcrs, four 
IR proxirnity sensors dist,ril)uted along t l ~ c  front, siclo of t h  whectlcllair, six sonar r:~ngo scwsors, 
arid a fiux-gat,c (:OII~J):LSS to detcrlnirlc: t,llc vchiclc’s oricntat,ion. Tin Man I had tl~rctc:  ol)(:r:lt,ioll 
rIldcs: h u w m  !pidcd  wiih o b s t a c l c  0 1 ) ~ 7 ’ % d e ,  mow forwurd ( h r q  a Ir.eatl irq,  arid m o w  t o  (:c, ? J ) .  

Thcsc? functiorls WCI’O sul~sl.ar~t,ially c!xt,cllded i n  Tin Man 11. Tin Man 11 cspabilit,ics irlcl11tlct B(J ,&IL~,  
Backtmckilrg, lYdl I;hllou1i7r!l, P n s s i y  DOOT-UML~JS, Dockirr,!] : ~ 1 1 c l  ot,]lcrs. 



Figure 1: The  robotic wheelchair MAid 

Wellman [16] proposes a hybrid wheelchair which is equipped  with two legs in addition  to  the 
four  regular wheels. These legs should  enable the wheelchair to climb over steps  and move through 
rough  terrain. A  computer  system  consisting of a PC 486 and a i860 co-processor for the  actuator 
coordination is used to control  the wheelchair. 

3 Hardware Design 

Our  system MAid (see Fig. 1) is based  on  a commercial electrical wheelchair type  SPRINT manu- 
factured  by MEYRA GmbH  in Germany. The wheelchair has two differentially driven  rear wheels 
and two passive castor  front wheels. It is powered by two 12 V batteries (60 Ah) and reaches a 
maximum  speed of 6 km/h.  The  standard vehicle can  be  manually  steered by a joystick. 

The goal of the work presented  here was to develop a complete  navigation system for a com- 
mercial  wheelchair, such as SPRINT, which would enable  it  to  automatically maneuver in  narrow, 
cluttered  space as well as in crowded large-scale environments. The  hardware core of the naviga- 
tion  system developed for the task is an  industrial PC (Pentium 166MHz) which serves as on-board 
computer.  The  computer is controlled by the  real-time  operating  system QNX. 

MAid is equipped  with a variety of sensors for environment  perception, such as collision avoid- 
ance,  and  position  estimation.  In  particular, MAid's sensor apparatus includes the following devices: 

a dead-reckoning system  consisting of a set of wheel encoders and a optical  fiber  gyroscope 
(Andrew  RD2030), 

a modular  sonar  system  consisting of 3 segments each equipped  with  8  ultra-sound transducers 
and a micro-controller,  mountred on an alurnilnllrl frame which can be  opened to enable  the 
user to sit in the Wheelchair, 

two infrared  scanners (Sharp GP2D02 mc~unt,t:d 011 s ( n o s )  for. sllort, range  sensing, 

a SICK 2D lascr rangc-fintfcr PI,s 200 ~ r l o u n t . c ~ l  0 1 1  ;I I ( ' l l l (JVii lJl(!  rack. 
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Figure 2: Hardware  architecture of MAid’s control  system 

is rather  inaccurate  with  errors accumulating  rapidly over the traveled  distance but  it is available 
at low cost and  at  all  times. 

The  sonar  system  and  the laser range finder are  the sensors which MAid uses to  actually perceive 
the  surrounding  environment.  This perception  has the form of two dimensional  range profiles and 
gives a rather coarse picture of the environment. From the range profiles MAid extracts  the 
basic spatial  structure of the environment, which is then used for two purposes: the avoidance of 
stationary and moving  objects, and  the estimation of MAid’s  position in  the  environment. 

For the  latter,  ye  apply  an  Extended  Kalman filter, provided we have a description of the 
environment. Baseda‘on such a description, on a model of MAid’s locomotion, and  its  last  position 
this filter produces a set of expectations  regarding MAid’s sensor  readings. The  deviation between 
these  expectations  and the  true sensor readings is then used to compute  correction values for MAid’s 
estimated  position. 

It should  be  mentioned  that in a wide, crowded, rapidly  changing,  mostly  unknown  environment 
there is little  advantage  in using a Kalman filter since one of its essential  ingredients,  namely  the a 
priori description of the environment is not available. For the navigation  in  such an environment, 
we have to rely exclusively on  the position  information  provided by the dead-reckoning  system. 

While all other  components of MAid’s navigation system  are low cost or can at  least be  sub- 
stituted by cheaper  components  without  reducing MAid’s performance, the laser range-finder is 
undoubtedly an expensive sensor (approx. US$ 4000). However, as we have argued  in [13, 141 
there is no other sensor which is equally  suited for detecting  and  tracking a large number of moving 
objects in real-time. This function  in turn is essential for the navigating in wide, crowded,  rapidly 
changing environments. 

Except for the laser range  finder, the  other sensors are connctct,ed to ,  and  communicate  with, 
the  on-board  computer using a field bus as shown in Fig. 2. The intcrface betwecn these  deviccs 
and  the field bus is implen~ented by a nnmber of micro-co~~troll(trs (G8HCll). Due i,o t,lw high data 
rates of t,he laser range-findcr, t,his device is directly (:onnected to t,he on-board computer by a sc!ria1 
port.. Thc rnotion commands c:orrlputcd by the navigation syst,(trn arc: also sent,  ovcr  t.ho ficld hls 
to t h c  mot.ion controller, which  powors t,he wheel motors. 
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Figure 3: Software architecture of MAid's WAN module 

The user interface of MAid's navigation  system  consists of the  original wheelchair joystick and 
of a notebook  computer.  With  the joystick the user points to  the  desired  motion  direction.  The 
notebook is used to select MAid's operation  mode  and to enter  the goal position. We are  planning 
to enhance  this  interface  with a commercial speech recognition  system,  similar to those  currently 
used in  the  automobile  industry.  It is obvious however, that in order to  be useful for a severely 
disabled  person, Mdid's user interface  has to  be  adapted  to  that person's specific disability. 

4 Control  Architecture 

MAid has a hierarchical  control  architecture  consisting of three levels: a basic  control level, a 
tactical level, and a strategic level. The components of this control system which contribute  to 
MAid's  capability of navigating  in a wide, crowded, rapidly  changing area (WAN) are shown  in 
Fig. 3 .  Note that in the following we simply  denote  these  components as WAN module. For the sake 
of clearity,  in  Fig. 3 we omit  the part,s of the control  system, which implement  MAid's  navigation 
skills for narrow,  cluttered,  partially unknown areas  (NAN). These are described in 1121. 

On  the basic  control level we compute  the values of the control  variables which put  the vehicle 
into  motion.  The velocity control module  on this basic control level receives as input a velocity 
vector ii describing the  target velocity and heading and  the  actual values of the  translational 
and  rotational (u,,w,) of the vehicle. The velocity vector is converted into  target values for the 
translational  and  rotational velocity. Out, of these  target values and  the  actual values provided by 
the vehicle's dead-reckoning systtrn the velocity (:ontroller cornputes appropriate corrcction values 
which are  then fed to  the motor c:ontrollcrs. 

On tjhe  tactical level, which cssontially forms t.lw (:or(: o f  t , h  WAN lrlodulc w(: have t,hroct sub- 
nlodulcs, a motion rtetcctiorr. nlodul~, a 111od11le for motion trucking und cstirnu2in~~ object ~)clocities 
und hc~1,din9.s, arid a rnodulc for c o ~ r r p u t i r r g  cvasiw r1/,(1,n,~~71,7)~r,~. I n  t,lle following paragraphs wo 



give a brief description of the interaction of these  submodules. The  methods which they  actually 
implement are described in detail in Section 5. 

In  order  to  be  able  to react to a rapidly  changing  environment with  potentially  many moving 
objects, MAid continuously observes the  surrounding world with a 2D laser range-finder. The 
range data provided by this range-finder essentially  represent MAid’s view of the world. In  the 
continuous  stream of range data MAid tries  to  detect  the  objects in its  environment  and  to identify 
which of these  objects  are  stationary  and which are in  motion (see [13, 141 for more details). F’rom 
the  stream of range data MAid further derives estimates for the  motion  direction  and velocity of 
the  objects by extrapolating  their  past motion trajectory  and velocity. 

Based on these  predictions  and on  its own motion  direction  and velocity MAid then  determines 
if it is moving on a collision course with one or several of the moving objects.  After an analysis 
of so-called Velocity  Obstacles [5]  MAid computes an avoidance maneuver, which is as close to  its 
original  heading  as possible but does not lead to a collision with the  objects moving in  the vicinity 
of MAid. 

Motion  detection,  motion  prediction,  the  computation of collision courses and  the  computaiton 
of the avoidance  maneuver  take  approximately 70 ms. If we include the  time for a sensor  observation 
(recording of a range  image) the cycle time  increases to 0.3 sec, thus MAid is able to compute a 
new maneuver every 0.3 s. This is primarily due  to  the low transmission rate of the range-finder. 

MAid’s main  task while it  navigates  in a wide, crowded, rapidly  changing area is to reach a 
specific goal at some distance from its present  position. In  the current  design  it  does  not  pursue  any 
more  complex, further reaching plans such as visiting a sequence of intermediate goals. Accordingly, 
the  strategic level consists of the selection of the next  goal, which is left to  the  user.  At a later 
point,  the  strategic level  will be  expanded by a path  planner, for example, which will provide  the 
WAN module  with a sequence of intermediate goals. 

5 Navigation in  Rapidly Changing, Crowded Environments 

In  this  section, we describe the  methods  and  components which contribute  to MAid’s capability of 
navigating  in a wide, crowded,  rapidly  changing area (WAN). Amongst existing  robotic  wheelchairs 
this  capability is rather unique. The  part of MAid’s control  system which implements  this  capability 
essentially  consists of three components: an algorithm for motion  detection, an algorithm for motion 
tracking,  and  an  algorithm for computing evasive courses, which is based  on the Velocity Obstacle 
(VO) approach [6]. 

5.1 Motion Detection and Motion Tracking 

A rather obvious  approach  to identify changes in the  surrounding  environment is to consider a 
sequence of single observations and  to investigate where these  observations differ from  each other. 
A discrepancy between two subsequent  observations is a strong  indication of a potential change 
in the  environment.  Either  an unknown object  has been discovered due  to  the self-motion of the 
observer or an  already discovered object  has moved  by some distance. In  the following sections we 
discuss how this simple  idea can be used in a fast  motion  detection and  tracking  algorithm. 
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Figure 4: Time  stamp maps:  darker grey cells indicate a more recent observation. 

The range  data provided by the laser range-finder are  naturally  related  to  the local frame of 
reference attached  to  the sensor. In order  to  compare two subsequent local range  images and 
to compute a differential  image, it is necessary to know precisely which motion the sensor has 
undergone between two observations, how far it  has moved from  one  viewpoint to  the next  and 
how far it  has  turned.  This  information is provided by the dead-reckoning system, which enables 
the wheelchair to keep track of its position  and  orientation over some limited  travel  distance  with 
reasonable accuracy. With  the information  about the  current  position  and  orientation of the vehicle 
it  is straightforwardjo  transform  the local range images from  earlier  measurements into  the  actual 
frame of reference. *' 

5.1.2 Representations of Time-varying Environments 

A very efficient and  straightforward scheme for mapping  range data is the occupancy grid repre- 
sentation [4]. This  representation involves a projection of the range data on a two-dimensional 
rectangular  grid, where each  grid  element describes a small region in the real-world. 

While  investigating the performance of existing grid based  mapping  procedures, we noticed that 
most of the  time was spent for mapping free space. Particularly,  the  further away the observed 
objects were, the more time  it costs to  map  the free space  between the sensor  and the  object. Also, 
before a range image could be assimilated  into a grid, the grid  had to  be completely  initialized, 
that is,  each cell had to  be  set  to some default value. For grids  with a typical size of several tens 
of thousands of cells these  operations became quite  expensive. 

Now, mapping  large  areas of free space is rather useless for detecting  and  tracking moving 
objects. To avoid this, we devised an alternative  represent,ation in which we map only the cells 
obscrved as occupied at time t ,  whcreas all other cells in t,his grid remain  untouched. We call this 
representation a time s t a m p  mup. 

Compared  to  the cassinlilation of  a r u g e  irnagc into a 1 1  occupancy grid t h c :  generatio11 of a time 
stamp map is rather simplified. Mapping a rangc In(:iLSI1r(!IlICllt. ir~volvc!~ only one sillglc step,  i.c.the 
c c l l  coinciding wit,h t.llc? rangct x~~( !~~s~~r ( !~~1( !~~ t ,  is ;tssigll(?d a tin](: stamp t .  This stamp X I I C ~ I I S  t,hat, 
tllc cell  was occupied a 2  Iimc t .  N o  otlwr (:(dl is involvcttl ill t . l k  opctr;Lf.iorl. Part,icularly, w(? ( l o  I lot .  



procedure detectMotion; 
for  each cell ensemble CS,,~. describing an object IC in TSMt 

for  each cell ci,f, in C S , , ~  

for  each corresponding  cell q t - 1 , .  . . , q , + k , .  . . , ci,f-n in 
TSMt- 1, . . . , TSMt-k, . . . , TSMt-n 

if q 2 - k  carries a time  stamp t - IC 
then Q is occupied by  a stationary object 
else ci is occupied b y  a moving object 

if majority of cells ~ , t  in C S , , ~  is  moving 
then cell ensemble cs,,t is moving 
else cell ensemble cs,,t is stationary 

Table 1: A motion  detection  algorithm based on a sequence of time  stamp  maps. 

mark  as free any cell which lies between the origin of the  map  and  the cell corresponding to  the 
range  measurement. 

The  time  variation of the environment is captured by the sequence TSMt,  TSMt-1, . . . , TSMt-, 
of those  time  stamp  maps. An example of such a sequence is shown in  Fig.  4 a) - c).  These  pictures 
show three  snapshots of a simple,  time-varying  environment  with a moving and a stationary  object 
in a time  stamp  map  representation.  The age of the observation is indicated  through different 
gray levels where darker regions indicate  more recent observations.  Note that  the  maps  are  already 
aligned so that  they have the same  orientation. A translation by a corresponding  position offset 
finally  transforms  the  maps  into  the  same  frame of reference. The aligned maps  are shown in 
Fig.  4-d). The assimilation of a range image into a 200 x 200 time  stamp  map  takes  1.5 ms on a 
Pentium 166Mhz. 

5.1.3 An  Approach  to Fast Motion  Detection 

Motion  detection  in a sequence of time  stamp  maps is based on a  simple  heuristic. We consider 
the set of cells in TSMt which carry a time  stamp t (occupied ut time t )  and  test  whether  the 
corresponding cells In TSMt-1 were occupied  too,  i.e.,  carry a time  stamp t - 1. If corresponding 
cells in TSMt, TSMt-1 carry  time  stamps t and t - 1, respectively, then we interpret  this as an 
indication that  the region in the real  world, which is described by these cells has been  occupied by 
a stationary  object. If, however, the cells in TSMt-1 carry a time  stamp different from t - 1 or  no 
time  stamp  at  all,  then  the  occupation of the cells in TSMt must  be due  to a moving object.  The 
algorithm which implements  this  idea is described  in pseudo-code notation in  Table 1. 

As we pointed out  earlier,  the  time  stamp  representation of a time-varying  environment is more 
efficient for motion  detection  than commonly used grid  representations.  Particularly,  the  time 
stamp  representation allows us to use a sequence of maps  in a round  robin  mode  without a need 
to clear and initialize the  map which is used to assimilate the new sensor  image. Outdated  time 
stamps which originate from the  mapping of previous  sensor images do  not have to  be deleted  but 
are simply  overwritten.  This  procedure leaves the  map receiving a new sensor  image  polluted by 
outdated information. However, this is not only efficient - as we save an expensive  initialization 
operation - but is also correct. Cells which are marked by an  outdated  time  stamp  are simply 
considered as free space, which has the  same effect, as assigning some default value. 
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procedure findCorrespondenwe; 
for  each object oi,t, in  TSMt 

for  each object oj,t-l in TSMt-1 
Corresponde~lceTable[i,j] = corresponding(oi,t, oj,t-l); 

function correspon.din,g(oi,t, oj,t-l); 
if oi,t is  stationary and oj,t-1 is  stationary 

then 19 = 19,; (threshold for  stationary  objects) 
else I9 = 6,; (threshold for  moving  objects) 

if d(oi,t,oj,t-l) < 
and  not-exists ok,t  : d(ok,t ,  O ~ J - I )  < d(oi,t, 0j, t-1) 

and not-exists ol,t-l : d(oi,t,ol,t-l) < d(oi, t ,  oj,t-l) 
then return true; 
else  return  false; 

Table 2: An  algorithm for tracking moving objects in a crowded environment. 

do  to  track a moving object  in environment such as a crowded concourse in a railway station is to 
collect information  about  its  past motion and  to  extrapolate  this  past  motion  into  the  near  future, 
if necessary. For this  purpose we consider the sequence of recent  sensor images and  extract  the 
information about  motion direction, velocity, or acceleration  describing the motion  history of the 
moving objects  from the  spatial changes which we find in  the mappings of these  sensor  images. 

Note that while it is sufficient for motion  detection to investigate  only the  mapping of two 
subsequent  sensor  images, provided the  objects move at a sufficient speed,  establishing a motion 
history may require to consider a more extended  sequence of sensor images. We assume that 
the cells describing distinct  objects  are grouped into ensembles, and we also assume that these 
ensembles and  their corresponding  objects are classified either as moving or as stationary by the 
motion  detection  algorithm  described above. 

The first step in  establishing  the motion  history of an object  is to identify the  object in a 
sequence of mappin s. Once we have found this correspondence  it is easy to derive the heading 
and  the velocity of a moving object from its previous  positions. To find a correspondence  between 
the  objects in the  mappings of two subsequent sensor images we use a nearest-neighbor  criterion. 
This  criterion is defined over the Euclidean  distance  between the centers of gravity of cell ensembles 
representing distinct  objects. For each cell ensemble representing  an  object at time t we determine 
the nearest  ensemble  in terms of the Euclidean  distance in  the  map  describing  the  environment at  
the preceding time  step t - 1. Obviously, this  operation  requires  the  objects  to  be  represented  in 
the same  frame of reference. 

If the  distance  to  the nearest neighbor is smaller than a certain  threshold  then we assume that 
both cell ensembles  describe the same  object.  The  threshold  depends  on  whether  the considered 
objects  and cell ensembles are  stationary or moving. For establishing a correspondence  between 
the two cell ensembles  describing a stationary  object we choose a rather  small  threshold since we 
expect the cell ensembles to have very similar  shapes and  to occupy the  same space.  Currently, we 
use a  threshold of 30cm for stat,ionary  objects. For a correspondence  between the cell ensembles 
describing a moving object  this value is accordingly larger. Here we use a threshold of 1 m which is 
approximately the  distance which a person moving at fast walking speed covers between two scnsor 
images. 

A description of  the above algorithm ill pseudo-c:ode notation is  given in  Table 2. On a Pentiunl 
lGciMHz a complctc c:yc:lc involving I ) o t h  detccting  and  tracking any moving objects  takcs  al)prox- 
irnately ci I n s .  For a nloro dot,;tilctl dcscript,ion and (1isc:ussion of  our motion detec:tion and t,r;tc:killg 
rnetJlod we rctfer t . o  [ 13. 1.11. 
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"A rd Velocity of A 

Figure 5 :  The mobile robot A and  the moving 
obstacle B. 

Figure 6: The  Relative Velocity VA,B, the Col- 
lision Cone CCA,B, and  the Velocity Obstacle 
VOB. 

The algorithms  in  Table 2 allow us to establish a correspondence  between the  objects in two or 
even more  subsequent time  stamp maps. Having found this correspondence it is straightforward to 
compute  estimates of the  heading  and  the velocity of the  objects.  Let  cog(^) and cog(oi,t-l) be 
the centers of gravity of the visible contour of the  object oi at times t and t - 1. Estimates for the 
velocity v and  the heading 4 of oi are given  by 

As the above  equations reveal, we use a very simple model for predicting the velocity and  heading 
of an  object.  In  particular, we assume  that  the  object oi moves linearly  in  the  time  interval 
from t - 1 to t. Apparently, this may be a very coarse approximation of the  true  motion.  The 
approximation,  howwer,  has proven to work sufficiently well at  a cycle time of less than 100 ms for 
motion  detection,  motion  estimation,  and  computation of an evasive course. At a slower cycle time 
a more  sophisticated,  nonlinear  model for estimating  the velocity and  heading of an  object may be 
appropriate. 

5.2 Motion Planning Using Velocity Obstacles 

In  this  section, we briefly summarize  the concept of Velocity  Obstacle (VO) for a single and  multiple 
obstacles. For simplicity, we model the robotic wheelchair and  the  obstacles as circles, thus con- 
sidering a planar problem  with no rotations.  This is not a severe limitation since general  polygons 
can be  represented by a number of circles. Obstacles move along arbitrary  trajectories,  and  their 
instantaneous  state  (position  and velocity) is estimated by MAid's sensors, as discussed earlier. 

To introduce  the Velocity Obstacle  (VO)  concept, we consider the two circular objects, A and 
B,  shown in  Figure 5 at time t o ,  with velocities VA and VB. Let circle A represent the mobile robot, 
and circle B represent an obstacle. To compute the VO, we first map B into  the Configuration 
Space of A ,  by reducing A to  the  point A  ̂ and enlarging B by the  radius of A to E, and represent, 
the  state of the moving object by it,s position  and a velocity vector attached  to i t s  center. T l t ~ n ,  t,he 
set, of colliding relativc? velocities betwcerl and E, called thc Collision Cone, CCA,,, is defined 
as CCAJ = {vA,w I X A , B  n B # S}, where VA,B is the rclativo vclocity of A with respect, 1.0 B ,  
VA,D = V A  - vN, ant1 X A , ~  is thc line of V A , ~ .  This ( :one  is the light grcy scct,or with apex i n  A ,  
I~)undad by thct two tangcllts XJ  and X, frorn A to B ,  sllowrt i n  Figure 6. Any rctlativc!  vo1ocit.y tha,f, 

A ,. A 

A 

" 
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Figure 7: The reachable avoidance velocities RAV. 

lies between the two tangents  to 6, Xf and X,, will cause a collision between A and B. Clearly, 
any  relative velocity outside CCA,B is guaranteed to  be collision-free, provided that  the obstacle 
maintains  its  current  shape  and  speed. 

The collision cone is specific to a particular  pair of robot/obstacle. To consider multiple  obsta- 
cles, it is useful to establish an equivalent  condition  on the absolute velocities of A. This is  done 
simply by adding  the velocity of B,  vg, to each velocity in CCd,g and forming the Velocity  Obstacle 
VO,  VO = CCA,B @ vg where @ is the Minkowski vector sum  operator, as shown in  Figure 6 by 
the  dark  grey sector. The VO partitions  the  absolute velocities of A into avoiding and colliding 
velocities. Selecting VA outside of VO would avoid collision with B. Velocities on the  boundaries 
of VO would result ,h A grazing B. 

To avoid multiple  obstacles, we consider the union of the  individual velocity obstacles, VO = 
U&VOB,, where m is the number of obstacles. The avoidance velocities, then, consist of those 
velocities VA,  that  are  outside  all  the VO's. 

In  the case of many obstacles,  obstacles  avoidance is prioritized, so that those  with  imminent 
collision will take precedence over those  with long time  to collision. F'urthermore,  since the VO is 
based  on a linear  approximation of the obstacle's  trajectory, using it  to predict remote collisions 
may be  inaccurate, if the obstacle  does  not move along a straight line. By introducing a suitable 
Time  Hor izon  Th, we limit the collision avoidance to those  occurring at  some time t < Th. 

5.2.1 The Avoidance Maneuver 

An avoidance  maneuver, consists of a one-step  change in velocity to avoid a future collision within 
a given time horizon. The new velocity must  be achievable by the moving robot,  thus  the  set of 
avoidance velocities is limited to those velocities that  are physically reachable by robot A at a 
given state over a given interval. This set, of reachable ldoci t ies  is rcpresented  sc2lcmatkally by 
the polygon K L M H  sllowrl in Figurc 7. The set, of rcuchable avoadancc velocitics, RAV, is dcfinod 
as  the difference t>et,ween the rc:acllal)lo velocitics i i I l d  the: vc!locity obstac:le. A mancuver  avoiding 
ot)sttd(! 13 (:iLI1 th(:n 1 ) ~  c : o ~ ~ l p u t c t d  I)y selecting iklly vc:locit,y i n  RAV.  Figuro 7 shows scllcnl;tt,i(:ally 
tllc sot R.4V consisting of two disjoint, (:losod subso1.s. For multiple ol~st.;~clos~ t h :  RAV 111ay consist, 
of  md1,ipk disjoint. sulw1,s. 
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Figure 8: a: TG strategy. b: MV strategy. c: ST strategy. 

It is possible then to choose the  type of an avoidance maneuver, by selecting on which side of 
the obstacle the mobile robot will pass. As discussed earlier, the  boundary of the velocity obstacle 
VO, { S f ,  S,}, represents  all  absolute velocities generating  trajectories  tangent to E, since  their 
corresponding  relative velocities lay on X! and X,. For example,  the only tangent velocities in 
Figure 7 are represented  by the segments KH and LM of the reachable  avoidance velocity set RAV. 
By choosing velocities in  the set  bound by segment H K  or ML,,  we ensure that  the corresponding 
avoidance maneuver will avoid the obstacle from the  rear, or the  front, respectively. 

The possibility of subdividing  the avoidance velocities RAV into  subsets, each corresponding to 
a specific avoidance maneuver of an obstacle, is used by the robotic wheelchair to avoid obstacles 
in different ways, depending  on  the perceived danger of the obstacle. 

5.2.2 Computing the avoidance trajectories 

A complete trajectory for the mobile robot consists of a sequence of single avoidance  maneuvers 
that avoid static  and moving  obstacles, move towards the goal, and  satisfy  the  robot's  dynamic 
constraints. A global search have been proposed for off-line applications,  and a heuristic  search 
is most suitable for on-line  navigation of the  robotic wheelchair. The  trajectory is generated 
incrementally by selecting a single avoidance velocity at each  discrete time  interval,  using some 
heuristics to choose gmong  all possible velocities in the reachable  avoidance velocity set RAV. 

The  heuristics  can  be designed to satisfy a prioritized  series of goals, such as survival of the 
robot as the first goal, and reaching the desired target, minimizing  some  performance  index, and 
selecting a desired trajectory  structure, as the secondary  goals.  Choosing velocities in RAV (if 
they  exist)  automatically  guarantees survival. Among those velocities, selecting the ones  along 
the  straight line to  the goal would ensure reaching the goal, the TG strategy shown in  Figure 8. 
Selecting the highest feasible velocity in the general direction of the goal may reduce  motion  time, 
the MV heuristics  shown  in  Figure 8. Selecting the velocity from the  appropriate  subset of RAV 
can  ensure a desired trajectory  structure (front or rear  maneuvers),  the  ST  heuristics shown in 
Figure 8. It is important to note  that  there is no guarantee that any objective is achievable at  any 
time.  The  purpose of the heuristic search is to find a "good" local solution if one exist. 

In  the  experiments  described in the following section, we used a combination of the  TG  and  the 
ST heuristics, to  ensure  that  the robotic wheelchair moves towards the goal specified by the user. 
When  the RAV sets  include velocity vectors aiming  directly to  the goal, the largest among  them is 
chosen for next  control cycle. Otherwise, the algorithm  computes the  centers of the RAV sets,  and 
chooses t.lle velocity corresponding t o  t,he center closest, to  the direction to the goal. This lleuristics 
adds also an  additional snfety margin t,o  t.hc mobilc robot, t.rajwtory, sincc the vchcit;y chosen is 
removctd from thc t)ourldary of its RAV set, t,hus accounting for unrnodelled uncc~taint,ics on the: 
obstacle shapcts and t.rajt.c.t,orics. 
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Figure 9: Tracking a single moving object  with  ground  truth. 

6 Experimental  Results 

MAid’s performance was evaluated in two steps. Before taking  the  system  to a realistic  environ- 
ment  such as  the concourse of a railway station, we conducted  extensive tests  under  the simplified 
and controlled  conditions of our  laboratory.  The  laboratory  embodiment of a “rapidly  changing 
environment”  consisted of an empty,  delimited,  and locked area where a second  mobile robot moved 
on prescribed paths  with known velocity profile, or groups of three  and  four people were asked to 
walk at  moderate speed in front of MAid. 

6.1 Experiments  under  laboratory  conditions 

To  examine  MAid’s’motion  detection and tracking  capability a commercial  mobile robot Nomad 
XR4000 was programmed to move along a rectangular  trajectory  in  front of the  robotic wheelchair, 
equipped  with  the laser range-finder, at a distance of 2 m.  The Nomad robot followed a velocity 
profile that made  its  center follow the polygonal trajectory represented by the solid  line  shown in 
Fig. 9. The wheelchair is identified by the cross mark at coordinates (0,O) in Fig. 9, and  its position 
or orientation were not  changed  during the  experiment. 

The  dotted line in  the figure represents the motion of the Nomad robot as it was sensed and 
tracked by MAid. The  estimated  trajectory shows a maximum  tracking  error of less than  15cm, 
which can possibly reduce the performance of the navigation  algorithm. However, this is not  the 
case, since the error is always reducing the  estimate of the obstacle  distance and  therefore  increases 
the navigation safety margins. The  nature of the error can  be easily understood by noticing that 
the  trajectory  estimation is carried out by tracking the center of the visible contour of mobile 
obstacle. Since the  the visible obstacle is smaller than  the  true  obstacle,  its  center will always 
result closer than  its real  position.  Furthermore, the  estimation error only affects the  magnitude of 
the avoidance velocity and not  its  direction, which is computed using the left and  right  boundaries 
of the visible obstacle. 

In a second set of experiments we asked a numbcr of people to lnovc at a comfortable walk- 
ing  speed  along  prescribed t.rajoctorics i n  an expcrirnont.al arca of approximately 4 x 7 1x1~. T l ~ e  
wheelchair with tho rango-firldcr was again kept, stat,ionary. Thc! results of this set, of cxpcrirneuts 
arc shown in Fig. 1Oa) - ( 1 ) .  

4 
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Figure 10: Tracking a group of people in a lab  environment. 

During the first experiment, a single person was asked to walk along a given rectangular  tra- 
jectory in the  area facing the range-finder sensor. After  several  laps, the person  headed back to his 
initial  position.  The  tracking  algorithm tracked his motion  in  real  time  without  any  problem. The 
trajectory  estimated by the tracking  algorithm is shown in  Fig.  10-a). 

In  the second  experiment,  three  people moved across the field of view the wheelchair  along 
straight lines,  more or less parallel to each other,  and  the left most person  made a sudden left turn 
and headed back to  the wheelchair, as shown in Fig.  10-b). The subjects moved at slightly  different 
speeds, so that their  co~nplete walk  was visible by the range-finder. As shown in the figure, the 
tracking  algorithm could easily track thc motion of the t h e e  people. In  the experiment,  shown in 
Fig.  10-c), we tracked the motion of t h e e  subjects moving again on parallel straight lines  directly 
away from the wheelchair. This  time  the  subjects rnovcd at, a similar  speed. 

The last, experirnent descwes a more dctailed discussion. We let two subjects rr~ove  along straight 
lines which crossed each othcr i n  front of the wheclchair. Accordingly, for a short, period of time 
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one person was occluding the  other from the range-finder view. Apparently  then,  the  algorithm 
was unable tro trrack the occluded person  during  this  period of time. This loss of tracking  manifests 
itself as the  interruption of one of the  trajectories,  as shown in Fig. IO-d). Our  algorithm lost, the 
occluded person for two time  steps.  It  detected  and  continued  to  track the motion  after the subject, 
became visible again. 

Tracking moving objects whose trajectories cross each other is a very general  problem and is 
not a specific problem of our  tracking  algorithm.  Problems of this  type  cannot  be  eliminated even 
by very sophisticated  methods  such  as  those  described  in  [2], which assume  the knowledge of a 
model of the motion of the objects  to  be tracked. As mentioned  above, we cannot make  such 
an assumption since valid models of human  motion are not available for our  application  domain. 
Experimental  results  further showing the performance of MAid’s motion  detection  and  tracking 
algorithm  in a real  environment are described in [13]. 

To complete the  laboratory  experiments, we evaluated  the performance of the  complete  system, 
including  motion  detection,  tracking and  computation of avoidance maneuvers,  under  controlled 
conditions. This is a difficult task, since no  metric is available to  quantify  the behavior of on- 
line  algorithms  reacting to unpredictable  external  events.  Our  experiment  consisted of asking two 
subjects  to  approach  the wheelchair at walking speed  (approx. 1 m/s).  The wheelchair’s initial 
velocity was set  to 0.5 m/s.  The reaction of the  system  after  it noticed the  approaching  objects 
is shown in a sequence of snapshots  in  Fig. 11. In  the figure the wheelchair is represented by 
a rectangle, whereas the two subjects  are  represented by circles. The arrows attached  to  the 
rectangle and  the circles represent the  motion direction and velocity of MAid and  the two people, 
respectively. The length of the each arrow  represents to  the  distance traveled in one  second. The 
entire  experiment  lasted less than five seconds as can  be  seen  from  the  time  stamps  attached to  the 
snapshots. 

Before time 1.54 sec the two subjects moved in a safe direction  without the danger of a collision. 
At time 1.54 sec one person changed direction and directly  headed for the wheelchair. As we can 
observe, MAid reacted to  this new situation by reducing its velocity and  turning  right. At time 3.1 
sec the  danger of a collision had  disappeared  again  and MAid turned back to  its  initial  direction  and 
accelerated to  its previous velocity. At time 4.14  sec one person  had  already left MAid’s perceptual 
field when the  othergerson  suddenly  made a turn  and directly  headed for MAid. Since this would 
have lead to  an imniediate collision MAid reduced its velocity to zero and  stopped. Half a second 
later - the  person  had slowed down too  and  turned right a little - MAid  accelerated  again in a 
direction which allowed it  to finally pass the person. 

6.2 Experiments in the concourse of a railway station 

After MAid had successfully passed a number of laboratory  experiments  similar  those  described 
above, the  time  had come to confront the real world. The real world was the concourse of the 
central  station in Ulm, a hall of approximately  25x40  m2.  First  test  runs were conducted  during 
the morning rush hours. We thought  that  this would represent the worst scenario MAid would 
ever have to face. In  fact,  after  the arrival of a commuter  train  typically  up to several  hundred 
people moved through  the concourse within two or three  minutes. We counted up  to 150 people 
crossing the concourse within  about a  minute. After two or  three  minutes however, the concourse 
was practically  empty again,  thus leaving not enough time for conducting  experiments. The railway 
station  manager, who  was observing  our  experiments  with  great  interest, finally told us t,hat, t,he 
idcal time for our ks t s  would havc h c n  Friday noon, which does not exhibit  the densest, but, t,he 
most, coxlthlous passenger t,rnffic i n  t,hc ( : O I I C O U ~ S ~ .  During  the period between 11:OOarn and 1:3Opm 
in fact., typically scvctral  tcms of p c ! o ~ ) l c  stay and nlovc around i n  t , h c  coxl(:ours(:, thus rnaking it, vory 
suit,al~lo for t h ( :  navigat,ioll c:xpctrirnc!nt,s. 
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Figure 11: Lab experiment: MAid  on a collision cows(: with two approaching  people. 
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Figure 13: Illustration of MAid's performance in  terms of wheelchair velocity and  distance between 
the vehicle and  the nearest  object. 

that  situation:  it waited until  the  group of people blocking its way had  passed  and  then it continued 
its journey. 

MAid's  perform2nce is demonstrated in the  diagrams of Fig. 13, by showing the relations 
between  some of the navigation  variables  such as ,  for example, wheelchair velocity, relative velocity 
between wheelchair and nearest  objects,  and  clearance between the wheelchair and  the nearest 
object.  Fig. 13-a) shows the wheelchair velocity plotted over the  distance between the wheelchair 
and  the  nearest  object which is on a collision course with the wheelchair. The  data  in  this  diagram 
indicate  that  with decreasing  clearance the wheelchair velocity drops to zero. Similarly, the velocity 
increases as the distance  to  the nearest  approaching  obstacle becomes larger. I t  is important  to 
note that  there is no unique  causal  relation between the wheelchair velocity and  the clearance with 
the  environment.  Rather,  the wheelchair's velocity depends  on a number of quantities,  such as the 
object  motion  direction,  the  object velocity, and  the number of objects  in MAid's proximity. This 
explains the variations  in  the  data  set. Note also that  the  distance  to  the nearest  object is measured 
with  respect to MAid's vertical  axis and not  with  respect to  the  boundary of the wheelchair. 

An equivalent  dependency is shown in Fig.  13-b).  There,  the  relative velocity between the 
wheelchair and  the nearest  object is plotted  against  the  distance between the two objects.  A 
negative value of the relative velocit,y means that  the  object is approaching  the wheelchair,  whereas 
a positive value means that  the  object is moving away from it. According to  the  data,  the velocity 
of the nearest  object  relative to  the wheelchair velocity decreases as the  distance between the two 
objects decreases. This dependency  describes the combined effect, of  motion  planning  and  control 
algorithms, which reduces MAid's velocity whcnevcr an  object  approaches  the wheelchair. Note 
that.  this is riot, a unique  causal  correlation  either. 

In Fig. 13-c) we show the relation between t,he  rel;ltivc velocity of the ncarc!st,  ol)jcc:t, arid 



the  distance at, which MAid starts  an evasive maneuver. The larger the relative velocity of an 
approaching  object,  the  sooner MAid initiates  an avoidance maneuver, and  the slower an object 
is approaching  the Wheelchair, the  shorter is distance at which MAid starts to  get out of its way. 
Fig.  13-d) finally shows MAid’s average velocity plotted over the  number of approaching object,s. 
We can see that MAid decreases its speed the more objects  are  approaching on a collision course. 

During  our  experiments  in  the concourse MAid collided several times  with  objects.  Usually 
these objects were bags or a suitcases lying on the floor invisible to MAid’s laser  range-finder and 
its  sonar sensors. To discover small  obstacles  in  front of the wheelchair we mounted two extra  sonar 
sensors to  the foot rests of the wheelchair. 

So far, MAid has  survived about 18 hours of testing  in  the concourse of the  central  station  in 
Ulm and we plan  to continue  conducting  experiments  in this environment. 

MAid was presented to a wider audience during  the Hannover Fair ’98. The Hannover  Fair is 
the largest  industrial  fair worldwide. In Hannover, MAid drove through  the  exhibition halls for 
seven days between two and  three hours  per  day at  regular  visiting  hours.  Altogether MAid has 
successfully navigated  in  crowded,  rapidly  changing  environments for more than 36 hours. 

7 Conclusion 

in  this  paper, we presented the  hardware  and software design of the navigation system of our  robotic 
wheelchair MAid. This navigation  system  enables MAid to move through crowded, rapidly changing 
environments, such as shopping malls and concourses of railway stations or airports,  and also 
through narrow, cluttered,  partially unknown environments. In this  paper we only  described  the 
first of these two capabilities, which we denoted as WAN (wide area  navigation).  Three  components 
essentially  contribute to  the capability to navigate in a wide, crowded, rapidly  changing  area: an 
algorithm for motion  detection, an algorithm for motion  tracking,  prediction  and the  computation 
of potential collisions, and finally an algorithm for computing  the avoidance maneuvers. 

The algorithms for motion  detection  and  tracking use the range data provided by a 2D laser 
range-finder. This sensor was chosen to  facilitate  the real-time  capability of the  tracking  system. 
By using a laser range-finger our  approach  differs  from  the  majority of known methods for motion 
detection  and  tracking which are based on  visual  information. 

The  time variation of the environment is captured by a sequence of temporal  maps, which 
we call time  stamp  maps. A  time  stamp  map is the  projection of a range  image onto a two- 
dimensional  grid, whose cells coinciding with a specific range value are assigned a time  stamp. 
Based on  this  representation we have discussed simple  algorithms for motion  detection  and  motion 
tracking, respectively. One  complete cycle involving both motion  detection  and  tracking takes 
approximately 6 ms. Our  algorithms for motion  detection  and  tracking  do  not  presuppose  the 
existence of kinematic  and  dynamic models of purposive human locomotion.  Those  models are not 
available in  an environment  such as a concourse of a railway station.  With a cycle time of 6 ms for 
motion  detection  and  tracking however, our  approach is definitely “quick” and  assures  the required 
real-time  capability. 

The avoidance  maneuvers are  computed using the Velocity Obstacle  approach, which allows the 
fast computation of the wheelchair velocity avoiding all static  and moving obstacles.  To  take into 
account the environment  uncertainty,  an avoidance maneuver is computed at each sampling  time, 
thus modifying in real time t,he nominal trajectory of the wheelchair. The complete trajectory  to  the 

~ goal is then computed  ix~crcmentally, by sclecting the avoidance velocities according to appropriat,c: 
hcurist,ics. The most, commonly usod heuristics  has been to sclect an avoidance velocity in the 
general  direction of  the goal, to ( ~ S I I I ‘ C  that, the whc:c!lchair does not stray to far  from  its rlorrlinal 
trajcctory,  and can r(:-acquiro its original goal after tho obst,alc:lc avoitlance. 

MAid l ~ a s  nnd(:rgorw ntt,her cxtcmsivo tosting. I t s  pcrfor1n;tncc was tasted in t h ( :  (:(:ntrad st,a- 
t,ion of  Ulm during  lusll-hour m d  i n  tho ctxhit)it.iorls llalls of t , l w  1 1 1 ~ 7 / , 7 / , 0 1 ~ 1 1 .  Mcssc. ‘98, t 1 1 c  I)igg(;st, 
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industrial fair worldwide, during  regular visiting hours. Altogether, MAid has  survived  more than 
36 hours of testing  in  public, crowded environments  with heavy passenger t,raffic. To our knowl- 
edge there is no other  robotic wheelchair, and no other mobile robot,  that,  can claim a similar 
performance. 
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