

Supporting Online Material for

Radar Imaging of Binary Near-Earth Asteroid (66391) 1999 KW4

Steven. J. Ostro,^{*} Jean-Luc Margot, Lance A. M. Benner, Jon D. Giorgini, Daniel J. Scheeres, Eugene G. Fahnestock, Stephen B. Broschart, Julie Bellerose, Michael C. Nolan, Christopher Magri, Petr Pravec, Petr Scheirich, Randy Rose, Raymond F. Jurgens, Eric M. De Jong, Shigeru Suzuki

*To whom correspondence should be addressed. E-mail: ostro@reason.jpl.nasa.gov

Published 12 October 2006 on *Science* Express DOI: 10.1126/science.1133622

This PDF file includes:

Materials and Methods Figs. S1 to S4 Tables S1 to S4 References

Supplementary Online Material for

Radar Imaging of Near-Earth Binary Asteroid (66391) 1999 KW4

Steven. J. Ostro, Jean-Luc Margot, Lance A. M. Benner, Jon D. Giorgini, Daniel J. Scheeres, Eugene G. Fahnestock, Stephen B. Broschart, Julie Bellerose, Michael C. Nolan, Christopher Magri, Petr Pravec, Petr Scheirich, Randy Rose, Raymond F. Jurgens, Eric M. De Jong, and Shigeru Suzuki

1 Methods

1.1 Observations, Data Analysis, and Shape Modeling

In a radar experiment, one attempts to remove the Doppler frequency shift introduced by the target's radial motion by tuning the frequency of either the transmitter or the receiver according to an ephemeris, with the goal of ensuring that the frequency corresponding to echoes from the target's center of mass (here the binary system's barycenter, BARY) remains constant in the coordinate system of the acquired data. One also uses that ephemeris to slew the time base for sampling the echoes in order to register sequential samples of echoes from any given range cell on the target. In practice, there will always be a nonzero error in the Doppler-prediction ephemeris, which is equivalent to a nonzero rate of change in the delay-ephemeris's error and hence in the rate of image smearing in delay. Our initial KW4 ephemeris was based on available optical astrometry only. During the course of the experiment we subjectively estimated the location of BARY in our delay-Doppler images and used the resultant radar astrometry to refine the orbit. Table S1 gives the orbit solution used for each imaging sequence. The time for drift in the delay-prediction error to cause smearing by one delay resolution cell was between one and six hours, depending on the date. This is much longer than the time span of any images used in our analysis. Smearing in frequency due to drift in Doppler-prediction error is also negligible.

In most of our observations, we used two receiving channels to record echoes in the same rotational sense of circular polarization as transmitted (the SC sense) as well as in the opposite circular (OC). Backreflections from smooth surfaces are almost entirely in the OC sense, and the SC/OC ratio is a measure of the relative contributions to the echo of multiple reflections and scattering from interfaces with radii of curvature comparable to the wavelength. Hence SC/OC is a measure of near-surface wavelength-scale structural complexity, or "roughness."

Beta's motion with respect to the system barycenter is very much faster than Alpha's, so many of the data frames we constructed for Beta are shorter sums and hence slightly weaker than those for Alpha. In our inversion, image frames are organized into sets, and for each set we estimate coefficients of a polynomial that describes the delay-Doppler motion of the component's COM in that set's frames. We limited the number and the time span of frames in any set in order to ensure that the polynomial can accommodate the object's frame-to-frame translational motion. Our modeling used 121 images for Alpha and 265 for Beta.

Our SHAPE inversion software minimizes an objective function that consists of the weighted sum of (i) the squared residuals between delay-Doppler image pixels and the corresponding values predicted by the physical model, and (ii) penalty functions whose weights can be adjusted to suppress physical attributes that are not required by the data. We experimented with dynamical penalty functions that force uniform rotation or uniform density and structural functions that suppress concavities or topographic roughness, aiming to optimize the trade-off between allowing characteristics needed to match the images and suppressing characteristics that are not geophysically plausible.

Table S1. Observations. For sequences providing useful delay-Doppler resolution of echoes, we give the earliest receive start and the latest stop times, the number of transmit-receive cycles (runs), the number of looks (Fourier transforms) used to produce a delay-Doppler image from the run's echoes, an identifier for the JPL orbit solution used to make the prediction ephemerides used during the observations, the time-delay and Doppler-frequency resolution of the data, and the right ascension, declination, and distance of the asteroid at the midpoint of the data acquisition, and the subradar latitude at that midpoint as predicted from our Alpha model. We received echoes simultaneously in the same sense of circular polarization as transmitted (the SC sense) and in the opposite (OC) sense, but our analyses focused almost entirely on the much stronger OC images. Our Alpha shape modeling used images constructed from sums of three runs. Our Beta shape modeling used single-run images for Arecibo and three-run sums for Goldstone.

UTC	UTC				Resol	ution	Midpoi	.nt	Model
Date	Start-Stop				Delay	Doppler	RA, DEC	Dist.	Lat.
	hhmmss-hhmmss	Runs	Looks	Orbit	(us)	(Hz)	(deg)	(AU)	(deg)
GOLDSTONE									
2001 May 21	150144-154932	22	178	R01/50	1.000	3.000	334,-26	0.060	-39
2001 May 22	130640-155957	88	98	R01/52	0.500	2.000	327,-24	0.051	-35
2001 May 23	101828-135429	133	41	R01/54	0.250	1.000	317,-21	0.043	-29
2001 May 24	085550-153512	167	35	R01/56	0.250	1.000	305,-15	0.037	-19
2001 May 25	083816-144529	234	31	R01/56	0.125	1.000	288, -7	0.033	- 6
2001 May 26	052008-053530	13	30	R01/56	0.125	1.000	275, 1	0.032	+7
2001 "	074817-075710	8	98	R01/56	1.000	3.000	273, 2	0.033	+8
2001 "	080849-084704	32	31	R01/56	0.125	1.000	272, 2	0.033	+9
2001 "	090125-135939	187	31	R01/58	0.125	1.000	270, 3	0.033	13
2001 May 28	023907-065503	33	40	R01/60	0.250	1.000	244, 17	0.042	33
2001 "	052031-053212	7	148	R01/60	1.000	3.000	234, 21	0.050	33
2001 May 29	054237-103005	151	102	R01/60	0.500	2.000	233, 21	0.052	40
ARECIBO									
2001 May 26	060603-063122	21	3	R01/56	0.100	0.116	274, 1	0.032	8
2001 "	064309-070549	21	2	R01/56	0.100	0.077	274, 1	0.033	8
2001 May 27	041600-042552	9	3	R01/56	0.100	0.116	259, 10	0.035	21
2001 "	043155-044415	11	3	R01/60	0.100	0.116	258, 10	0.035	22
2001 "	044623-061407	61	2	R01/60	0.100	0.070	258, 10	0.035	22
2001 May 28	040219-043444	19	4	R01/60	0.100	0.116	245, 16	0.041	32
2001 "	043940-051605	26	4	R01/60	0.100	0.116	245, 17	0.042	32
2001 "	051738-054109	17	2	R01/60	0.100	0.057	245, 17	0.042	32
2001 May 29	022000-023000	7	4	R01/60	0.100	0.116	235, 20	0.049	38
2001 "	023141-045753	87	4	R01/60	0.100	0.116	234, 21	0.050	39
2002 Jun 1	214721-230822	20	28	R02/50	2.000	0.239	160, 2	0.127	N/A
2002 Jun 2	221018-231419	15	30	R02/50	2.000	0.239	163, 4	0.137	N/A

Table S2. 66391 (1999 KW4) heliocentric orbit. Least-squares estimates (*S1-S4*) of orbit elements for JPL solution number 77 and formal uncertainties are given for epoch 2005-Aug-04.0 (Coordinate Time). The optical data used in the estimate consist of 1683 usable measurements spanning 1998-May-29 to 2005-Aug-02, with post-fit residual mean and root mean square (rms) of (0.143, 0.657) arcseconds. The normalized rms (n-rms) obtained by first dividing each measurement by its assigned uncertainty is 0.657 since all optical data was weighted at 1 arcsecond. For the 31 radar delay measurements used in the estimate (*S4*), post-fit residual mean and rms are (22, 88) ns and n-rms is 0.281. The combined dataset (optical and radar) n-rms is 0.654. Osculating elements are in the ICRF93/J2000 coordinate frame of the DE-405 JPL planetary ephemeris, a quasar-based radio frame aligned within 0.01 arcseconds of the optical FK5/J2000. Angular elements are referred to the ecliptic and mean equinox of J2000.

Osculating element		Value		Post-Fit Std	.Dev.		
Eccentricity Perihelion distance Time of perihelion	2453 (2005	0.6883867034 0.2001480484 8676.5283086650 5-Nov-02.02831)	± ± ±	0.000000258 0.0000000164 0.0000142757	AU Julian	day	number
Longitude of ascending Argument of perihelion Inclination Semi-major axis Orbit period	node	244.9330159090 192.5958593259 38.8905365946 0.6422962390 188.01889472 (0.514758659 yrs	+ + + + + + + + + + +)	0.000001442 0.0000018719 0.0000023616 0.000000030 0.00000132	deg deg deg AU days		

Table S3. Radar astrometry. Entries report the round-trip time-delay for hypothetical echoes from the (66391) 1999 KW4 system's barycenter at the indicated UTC reception time. The reference point is the intersection of of the azimuth and elevation axes of the Goldstone 70-m antenna (DSS-14). Estimated standards errors for the measurements are based on echo strength and imaging resolution. Residuals are the measurement minus the prediction of the least-squares orbit solution (Table S2) and are a measure of how well the orbit solution fits the data. One microsecond is 150 m of range.

01	<u> </u>		
Observation	n Time	Delay measurement	Residual
<u>Date (UTC)</u>	HH:MN:SC	(microseconds)	(microseconds)
2001-05-28	06:53:25	42205766.1 <u>+</u> 0.50	-0.044
2001-05-28	06:43:21	42152816.3 <u>+</u> 0.50	-0.013
2001-05-28	06:28:39	42075785.7 <u>+</u> 0.50	-0.009
2001-05-28	06:22:36	42044182.4 <u>+</u> 0.50	-0.033
2001-05-26	13:58:22	33029703.5 <u>+</u> 0.25	0.015
2001-05-26	13:36:55	32989192.4 <u>+</u> 0.25	0.030
2001-05-26	13:20:12	32958346.1 + 0.25	-0.073
2001-05-26	12:58:36	32919456.9 + 0.25	0.157
2001-05-26	12:35:00	32878247.3 + 0.25	-0.057
2001-05-26	12:14:50	32844120.4 + 0.25	-0.153
2001-05-25	12:33:07	32686883.6 + 0.25	0.050
2001-05-25	12:03:27	32726073.7 + 0.25	0.161
2001-05-25	11:05:08	32809994.6 + 0.25	-0.162
2001-05-25	10:27:24	32869183.1 + 0.25	-0.021
2001-05-25	09:48:49	32933655.3 + 0.25	0.006
2001-05-25	09:31:15	32964318.4 + 0.25	0.084
2001-05-25	09:02:53	33015537.6 ± 0.25	0.034
2001-05-25	08:43:18	33052108.0 + 0.25	-0.061
2001-05-24	14:51:13	36024797.8 ± 0.50	0.094
2001-05-24	14:28:19	36106446.2 + 0.50	0.140
2001-05-24	10.48.52	$36944120 8 \pm 0.50$	0 179
2001-05-24	10.30.43	37017895 9 + 0 50	0 104
2001-05-24	10.17.20	$37072719 8 \pm 0.50$	0 044
2001-05-24	09.39.36	37229188 3 + 0.50	-0 001
2001-05-23	13.52.45	42912799 3 + 0 50	0 078
2001-05-23	13.25.58	$43056887 3 \pm 0.50$	0.066
2001-05-23	13.04.05	$43175424 \ 9 \pm 0.50$	0 109
2001 05 23	12.37.11	$43319123 3 \pm 0.50$	0.078
2001 - 05 - 23	11.47.00	13208210×1000	_0 093
2001 0E 22	11.10.46	43390349.0 + 0.50	-0.093
2001 0F 22	10.41.40	43/09543.9 + 0.50	
2001-05-23	_U:4_:4U	43764326.0 + 0.50	0.010

Table S4. 66391 (1999 KW4) close approaches. This list of planetary encounters less than 0.1 AU terminates at the last Earth encounter prior to the linearized 3-sigma time of close-approach uncertainty (TCA3sg) exceeding 10 days (14400 minutes) or 0.1 AU, whichever occurs first. The span of reliable encounter prediction so-defined is therefore 1179 to 2946, based on the solution #77 data set. Calendar dates after 1582-Oct-15 are reported in the Gregorian Calendar. Prior to that, dates are reported in Julian Calendar. "CA dist" is the highest probability approach distance of the reference trajectory to the given body. "MinDist" and "MaxDist" are the 3-sigma distances from the body at the nominal encounter time. "Vrel" is the nominal relative velocity. Integrations were performed using the DE-405 planetary ephemeris and include relativistic perturbations due to the Sun, planets, and Moon as well as asteroids Ceres, Pallas and Vesta. The limits of predictability for objects having multiple planetary encounters over centuries will normally be affected by additional factors such as radiation pressure, Yarkovsky acceleration, planetary mass uncertainties, and asteroid perturbations. These factors are not included here, since the relevant physical models are imprecisely defined and key parameters are unmeasured.

Date	Body	CA dist	MinDist	MaxDist	Vrel	TCA3Sg	
		AU	AU	AU	km/s	min	
1179 May 09.07555	Earth	0.022047	0.022043	0.050490	20.746	892.27	
1196 May 09.54391	Earth	0.056011	0.031941	0.085159	20.053	1315.2	
1197 May 08.30464	Earth	0.061500	0.032322	0.094942	21.816	63.65	
1214 May 08.97781	Earth	0.021734	0.021721	0.025775	20.770	252.47	
1231 May 10.40120	Earth	0.054403	0.046381	0.062805	20.082	381.92	
1232 May 08.23819	Earth	0.063177	0.053585	0.073020	21.867	28.95	
1248 May 11.48785	Earth	0.099467	0.095901	0.103060	19.712	233.86	
1249 May 08.87115	Earth	0.021612	0.021416	0.022565	20.811	75.43	
1266 May 10.19084	Earth	0.050486	0.047410	0.053625	20.138	137.99	
1267 May 09.18146	Earth	0.068101	0.064323	0.071908	21.995	19.68	
1283 May 12.19660	Earth	0.095205	0.093309	0.097109	19.733	120.75	
1284 May 08.72886	Earth	0.022640	0.021915	0.023573	20.902	36.10	
1301 May 09.80951	Earth	0.040311	0.038086	0.042597	20.282	91.76	
1302 May 09.17720	Earth	0.081166	0.078177	0.084165	22.319	29.34	
1318 May 11.61524	Earth	0.083815	0.081642	0.085999	19.808	127.42	
1319 May 09.51474	Earth	0.030848	0.028917	0.032896	21.162	26.82	
1336 May 09.35853	Earth	0.026842	0.025620	0.028159	20.518	52.67	
1353 May 10.94795	Earth	0.068629	0.067277	0.069986	19.942	69.49	
1354 May 09.35058	Earth	0.046439	0.044956	0.047935	21.533	4.44	
1371 May 10.08675	Earth	0.021077	0.020891	0.021283	20.685	14.30	
1388 May 10.62230	Earth	0.061666	0.061227	0.062105	20.020	21.02	
1389 May 09.26610	Earth	0.054205	0.053705	0.054707	21.722	0.34	
1406 May 09.96124	Earth	0.020106	0.020071	0.020143	20.727	3.98	
1423 May 11.52538	Earth	0.061274	0.061121	0.061428	20.029	7.26	
1424 May 09.19781	Earth	0.054394	0.054218	0.054571	21.744	0.21	
1441 May 09.92572	Earth	0.020588	0.020554	0.020622	20.680	2.13	
1458 May 11.72832	Earth	0.069746	0.069627	0.069865	19.946	6.07	
1459 May 10.13505	Earth	0.044128	0.043994	0.044263	21.533	0.39	
1476 May 10 05066	Earth	0 026986	0 026893	0 027080	20 498	3 48	
1477 May 09.97711	Earth	0.098049	0.097901	0.098198	22.793	2.31	
1493 May 12 29089	Earth	0 086961	0 086863	0 087058	19 806	5 72	
1494 May 10 15943	Earth	0 026200	0 026117	0 026283	21 134	1 27	
1511 May 11 36919	Earth	0 042419	0 042341	0 042497	20 247	3 02	
1512 May 09 72848	Earth	0 076773	0 076677	0 076869	22 286	0 89	
1528 May 12 60783	Farth	0 096773	0 096739	0.096807	19 744	2 11	
1529 May 10 18370	Earth	0 019670	0 019656	0 019683	20 944	0 58	
1546 May 11 46498	Farth	0 049105	0 049077	0 049133	20.544 20 166	1 15	
15/7 May 10 61000	Farth	0 068736	0 068702	0.049133	20.100	1.13	
1563 May 12 5/060	Earth	0.000730	0.000702	0.000770	19 736	0.23	
1564 May 10 11500	Earth Earth	0.09/0/9	0.037005	0.097095	20 0/0	0.90	
1004 May 10.11598	Earch	0.013030	0.019091	0.019101	20.940	0.26	

1581	May	11.22287	Earth	0.043412	0.043392	0.043432	20.251	0.78
1582	Mav	10.59589	Earth	0.076023	0.075997	0.076048	22.286	0.24
1598	Mav	23 11460	Earth	0 089755	0 089735	0 089774	19 779	1 14
1599	May	20 95033	Farth	0 024061	0 024044	0 024077	21 122	0 27
1 C 1 C	Mar	20.0000	Earth	0.024001	0.024044	0.024077	21.122	0.27
1010	мау	20.74730	Earth	0.02/484	0.027467	0.02/501	20.514	0.60
1617	мау	20.72113	Earth	0.097311	0.097286	0.097336	22.814	0.39
1633	May	22.32459	Earth	0.071458	0.071443	0.071474	19.927	0.77
1634	May	20.77401	Earth	0.042534	0.042517	0.042551	21.555	0.05
1651	May	21.44338	Earth	0.018577	0.018575	0.018579	20.742	0.13
1668	Mav	21.96354	Earth	0.063379	0.063377	0.063381	20.016	0.08
1669	Mav	20.69333	Earth	0.051426	0.051425	0.051428	21.758	0.01
1686	May	21 35126	Farth	0 017836	0 017834	0 017837	20 762	0 05
1702	More	21.05120	Farth	0.060014	0.017034	0.01/05/	10 066	0.05
1703	Maay	24.00000		0.009214	0.009203	0.009225	19.900	0.53
1704	мау	21.61133	Earth	0.044340	0.044327	0.044353	21.610	0.00
1721	Мау	22.45039	Earth	0.024462	0.024449	0.024475	20.574	0.41
1722	May	22.54670	Earth	0.099449	0.099429	0.099469	22.921	0.35
1738	May	24.64535	Earth	0.087441	0.087426	0.087457	19.818	0.89
1739	May	22.61484	Earth	0.024432	0.024418	0.024446	21.177	0.16
1756	Mav	22.77512	Earth	0.041850	0.041836	0.041864	20.288	0.50
1757	Mav	22 25590	Earth	0 076809	0 076792	0 076825	22 386	0 19
1773	May	24 97050	Farth	0 097710	0 097704	0 097717	19 754	0.17
1774	Mar	24.07000	Earth	0.007710	0.007704	0.007717	20 070	0.37
1 7 / 4	мау	22.63111	Earth	0.01/126	0.01/123	0.01/128	20.978	0.09
1791	мау	23.79950	Earth	0.046031	0.046023	0.046040	20.229	0.31
1792	May	22.15302	Earth	0.072138	0.072128	0.072149	22.286	0.11
1808	May	25.76078	Earth	0.095006	0.094998	0.095013	19.773	0.45
1809	May	23.51696	Earth	0.018693	0.018688	0.018698	21.063	0.10
1826	May	24.37391	Earth	0.031633	0.031620	0.031645	20.438	0.38
1827	Mav	24.24894	Earth	0.090718	0.090702	0.090734	22.738	0.25
1843	Mav	25 94937	Earth	0 076171	0 076159	0 076182	19 916	0 59
1844	May	23 32534	Farth	0 037006	0 036993	0 037019	21 515	0 03
1044	May	23.32334	Farth	0.037000	0.030555	0.037015	21.313	0.05
1070	Mar	23.90922	Earth	0.010873	0.010870	0.010070	20.749	0.12
18/8	мау	25.47751	Earth	0.064572	0.064565	0.064579	20.027	0.33
1879	мау	24.25222	Earth	0.049860	0.049852	0.049869	21.812	0.03
1896	Мау	23.87767	Earth	0.016301	0.016297	0.016304	20.770	0.12
1913	May	26.71622	Earth	0.074528	0.074515	0.074541	19.928	0.62
1914	May	25.18222	Earth	0.037602	0.037588	0.037617	21.555	0.03
1931	May	26.08070	Earth	0.029668	0.029654	0.029681	20.493	0.39
1932	Mav	25.06212	Earth	0.091172	0.091156	0.091189	22.771	0.27
1948	Mav	27 37013	Earth	0 094563	0 094555	0 094570	19 768	0 43
1949	May	25 21584	Earth	0 017243	0 017238	0 017248	21 095	0.19
1966	May	26 22500	Farth	0 044292	0.011296	0 044299	21.000	0.05
1007	Mar	20.32390	Earth	0.044292	0.044200	0.044298	20.200	0.21
1967	мау	25.83143	Earth	0.0/3/46	0.0/3/39	0.0/3/53	22.364	0.08
T 9 8 3	мау	28.36220	Earth	0.096900	0.096898	0.096902	19.753	0.12
1984	Мау	25.14796	Earth	0.016078	0.016077	0.016079	21.071	0.02
2001	May	25.97992	Earth	0.032332	0.032332	0.032332	20.469	0.00
2002	May	25.90998	Earth	0.088928	0.088928	0.088928	22.743	0.00
2018	May	27.55782	Earth	0.078186	0.078184	0.078188	19.900	0.09
2019	Mav	25.96154	Earth	0.034633	0.034631	0.034635	21.513	0.00
2036	Mav	25.57165	Earth	0.015534	0.015533	0.015536	20.798	0.06
2053	May	27 13010	Farth	0 067837	0 067830	0 067844	20.007	0 30
2055	Morr	27.13010	Earth	0.007057	0.007050	0.007044	20.007	0.00
2054	May	25.88679	Earth	0.045674	0.045666	0.045682	21.760	0.02
2071	мау	26.53526	Earth	0.01/531	0.01/525	0.01/53/	20.740	0.17
2088	Мау	27.67952	Earth	0.086560	0.086551	0.086569	19.844	0.47
2089	May	25.84408	Earth	0.023838	0.023829	0.023847	21.299	0.06
2106	May	27.88172	Earth	0.039420	0.039416	0.039424	20.363	0.13
2107	May	27.59663	Earth	0.079023	0.079018	0.079027	22.557	0.06
2123	Mav	30.03044	Earth	0.098019	0.098017	0.098022	19.767	0.13
2124	Mav	26.84355	Earth	0.014109	0.014107	0.014110	21.071	0.03
2141	May	27 75773	Earth	0 037573	0 037558	0 037587	20 387	0 42
21/2	Marr	27 55076	Farth	0 082301	0 080376	0 082/12	22 6/0	0.10
2150	Marr	27.JJU20 20 /E101	Earth	0.002394	0.002370	0.002412	10 065	
2150 0150	May	27.43101	Earth Derth	0.0054/1	0.005453	0.005489	17.000 01 000	0.93
2159	мау	27.68042	Earth	0.026224	0.026204	0.026243	21.382	0.09
2176	Мау	27.27578	Earth	0.015938	0.015930	0.015946	20.762	0.19
2193	May	28.84911	Earth	0.070153	0.070151	0.070154	20.008	0.05

			-					
2194	May	27.59310	Earth	0.043095	0.043094	0.043096	21.762	0.00
2211	May	29.22565	Earth	0.017669	0.017662	0.017676	20.724	0.17
2228	Mav	30.39549	Earth	0.088638	0.088626	0.088650	19.842	0.65
2229	Mav	28 55078	Earth	0 021159	0 021146	0 021172	21 309	0 09
2222	Max	20.5300,0	Farth	0 020169	0 020162	0 020175	20 272	0.00
2240	Maay	29.33390		0.039100	0.039102	0.039175	20.373	0.20
2247	мау	29.33395	Earth	0.0/94/9	0.0/94/1	0.0/9486	22.598	0.10
2263	Мау	31.65027	Earth	0.097815	0.097812	0.097818	19.770	0.16
2264	May	28.53070	Earth	0.013303	0.013301	0.013306	21.139	0.04
2281	May	29.24394	Earth	0.028299	0.028283	0.028316	20.550	0.41
2282	Mav	29.42946	Earth	0.093477	0.093457	0.093497	22.945	0.37
2298	Mav	30 76421	Earth	0 076098	0 076080	0 076115	19 942	0 82
2220	May	29 37614	Farth	0 036863	0 036842	0 036883	21 668	0.02
2299	Mar	29.37014	Earth	0.030003	0.030042	0.030003	21.000	0.02
2310	мау	29.904/7	Earth	0.012022	0.012016	0.012028	20.882	0.16
2333	мау	31.62815	Earth	0.074732	0.074717	0.074747	19.958	0.70
2334	May	30.29741	Earth	0.037184	0.037166	0.037202	21.679	0.02
2351	May	31.05570	Earth	0.026464	0.026450	0.026477	20.599	0.32
2352	Mav	30.30248	Earth	0.093705	0.093689	0.093720	22.976	0.28
2368	สมภ์	01 36354	Earth	0 098067	0 098066	0 098067	19 767	0 01
2369	May	30 29378	Farth	0 012067	0 012067	0 012068	21 1/0	0.01
2202	Morr	21 1 0 = 10	Earth	0.012007	0.012007	0.012000	21.140	0.00
2386	мау	31.16255	Earth	0.037014	0.036999	0.037029	20.442	0.42
2387	Мау	31.10246	Earth	0.082484	0.082466	0.082503	22.718	0.30
2403	Jun	01.84824	Earth	0.087012	0.086991	0.087032	19.857	1.03
2404	May	30.15672	Earth	0.024319	0.024296	0.024342	21.422	0.07
2421	May	30.70999	Earth	0.014052	0.014046	0.014058	20.833	0.12
2438	Jun	01.38951	Earth	0.076050	0.076036	0.076063	19.965	0.62
2439	Mav	31 07499	Earth	0 035779	0 035762	0 035796	21 671	0 02
2155	May	30 77180	Farth	0 023/19	0 023302	0 023446	20 656	0.59
2450	Mar	21 15015	Earth	0.023413	0.025552	0.023440	20.000	0.55
2457	мау	31.15015	Earth	0.097551	0.097520	0.097583	23.121	0.62
24/3	Jun	01.96527	Earth	0.095221	0.095210	0.095232	19.805	0.60
2474	May	31.03854	Earth	0.014035	0.014025	0.014045	21.225	0.09
2491	May	31.80024	Earth	0.030294	0.030276	0.030313	20.543	0.45
2492	May	30.99327	Earth	0.090732	0.090709	0.090756	22.966	0.45
2508	Jun	02.39998	Earth	0.081967	0.081935	0.082000	19.921	1.57
2509	Mav	31,91688	Earth	0.029910	0.029871	0.029949	21.575	0.00
2526	Jun	01 47935	Earth	0 014090	0 014069	0 014111	20 822	0 38
25/3	Jun	03 11398	Farth	0 085720	0.021009	0 085743	19 892	1 19
2545	Mar	21 0400E	Farth	0.000720	0.0000000	0.000740	21 475	
2544	т	31.04003		0.024254	0.024223	0.024284	21.4/5	0.00
2561	Jun	01.66910	Earth	0.032616	0.032569	0.032662	20.507	1.14
2562	Jun	01.82124	Earth	0.087088	0.087035	0.087142	22.896	0.96
2578	Jun	03.72591	Earth	0.096035	0.096004	0.096065	19.806	1.63
2579	Jun	01.80914	Earth	0.013507	0.013476	0.013537	21.269	0.22
2596	Jun	01.35817	Earth	0.017316	0.017272	0.017360	20.767	0.80
2613	Jun	03.85609	Earth	0.073067	0.073023	0.073112	20.008	1.92
2614	Tun	02 71867	Earth	0 040163	0 040111	0 040215	21 837	0 21
2631	Jun	03 24248	Farth	0 01/081	0 014061	0 01/102	20 840	0.21
2031	Tun	04 61765	Earth	0.014001	0.014001	0.014102	10 706	2 40
2040	Juli	04.01/05	Earth	0.090142	0.098097	0.090100	19.700	2.40
2649	Jun	02.67043	Earth	0.010044	0.009997	0.010092	21.223	0.42
2666	Jun	03.37970	Earth	0.030099	0.030078	0.030119	20.577	0.45
2667	Jun	03.67905	Earth	0.091032	0.091011	0.091052	23.013	0.41
2683	Jun	04.91382	Earth	0.081026	0.080999	0.081053	19.929	1.31
2684	Jun	02.55200	Earth	0.031689	0.031653	0.031724	21.675	0.06
2701	Jun	04 04443	Earth	0 010416	0 010366	0 010466	20 933	0 78
2718	Jun	06 30072	Farth	0 094816	0 094743	0 094890	19 810	3 80
2710	Tun	00.50072	Farth	0.004010	0.012217	0.012205	21 207	0.40
2719	Juli	04.50092	Earth	0.013300	0.013217	0.013395	21.307	0.49
2/30	Jun	04.28967	Earth	0.034767	0.034/41	0.034/94	20.524	0.66
2737	Jun	04.4/287	Earth	0.085420	0.085382	0.085458	22.901	0.66
2753	Jun	06.03268	Earth	0.090220	0.090106	0.090333	19.850	5.78
2754	Jun	04.41034	Earth	0.020584	0.020446	0.020723	21.460	0.28
2771	Jun	04.90272	Earth	0.011601	0.011589	0.011614	20.917	0.19
2788	Jun	05.84252	Earth	0.087315	0.087177	0.087453	19.882	6.61
2789	Jun	04.33157	Earth	0.022616	0.022445	0.022788	21.505	0.15
2806	Jun	05,11823	Earth	0.034217	0.034122	0.034312	20 537	2 21
2807	Tup	05 3331/	Farth	0 0857/0	0 085616	0 085850	22 011	1 95
2007	Jun	07 00040	Earth	0.000/40	0 00/040	0 000000	10 000	1 50
2023	JUUI	0/.00240	Larli	0.030010	0.090/04	0.03003/	TA.00A	1.J/

2824	Jun	04.27056	Earth	0.012425	0.012386	0.012464	21.312	0.18
2841	Jun	04.70157	Earth	0.007277	0.007260	0.007295	21.002	0.23
2858	Jun	07.00047	Earth	0.096966	0.096865	0.097066	19.820	5.19
2859	Jun	05.19771	Earth	0.010751	0.010631	0.010872	21.294	0.63
2876	Jun	04.82877	Earth	0.026435	0.026094	0.026775	20.655	6.66
2877	Jun	05.33953	Earth	0.095580	0.095178	0.095982	23.215	8.56
2893	Jun	06.33726	Earth	0.079920	0.079505	0.080335	19.977	18.37
2894	Jun	05.11888	Earth	0.033135	0.032639	0.033631	21.759	1.69
2911	Jun	06.57391	Earth	0.011006	0.010804	0.011209	20.925	2.68
2929	Jun	06.08785	Earth	0.003163	0.002875	0.003830	21.185	9.34
2929	Jun	06.26860	Moon	0.002655	0.002654	0.002943	20.802	14.08
2946	Jun	06.46567	Earth	0.007295	0.002755	0.066539	21.007	626.69

Fig. S1

Single-run Arecibo images with close-ups of Beta. Two images are near epochs determined from the shape modeling to have the components' COMs aligned in Doppler (a) or range (b), and show Beta's limbs to have similar extents. The other two are near epochs midway between conjunctions and show Beta's limbs to have very different extents. Range increases downward and Doppler increases to the right. Rotation and Beta's orbital motion are counterclockwise. The eight pictures have different delay-Doppler dimensions, but in each the delay resolution is 100 ns (15 m in range) and the Doppler resolution is 0.116 Hz (7.3 mm s⁻¹). The UT start-receive epoch, ddhhmmss = 29024153, of (a) is 0.7 minutes before Doppler conjunction. He epoch of (b), 28043409, is 1.3 min before range conjunction. The other images' epochs are (c) 26061359 and (d) 27043309.

1999 KW4 Alpha: Imaging Coverage

Fig. S2

Orientational coverage provided by Arecibo (red triangles) and Goldstone (green circles) images used in modeling of Alpha, using the estimated pole direction (Table 2). Beta imaging coverage was slightly more extensive.

Fig. S3

Root-reduced chi-square for the barycenter delay residuals (Table S3) in the heliocentric orbit estimate (Table S2), as a function of the assumed Alpha/Beta mass ratio.

Fig. S4

Principal-axis views of the Alpha (top) and Beta shape models. Yellow-shaded regions were not viewed in Arecibo images at incidence angles less than 70 degrees. Since their modeling relied heavily or entirely on Goldstone images, which are weaker than the Arecibo images, the accuracy of our reconstruction probably is lower there than for the rest of the model.

References

S1. C. L. Lawson, R. Hanson, *Solving Least Squares Problems*, SIAM Classics in Applied Mathematics, vol. 15 (Society for Industrial and Applied Mathematics, Philadelphia, PA, 1995).

S2. G. J. Bierman, *Factorization Methods for Discrete Sequential Estimation* (Academic Press, New York, 1977).

S3. J. D. Giorgini et al., Science 296, 132 (2002).

S4. http://ssd.jpl.nasa.gov/?grp=ast&fmt=html&radar=