The Energy Frontier: in the Search for New Physics

> Marcela Carena Theoretical Physics Dept. Fermilab

Texas A&M University

College Station, October 23, 2003.

Outline

• Introduction: Physics Landscape \implies Certainties and Unknowns

- **–** The Standard Model **–** Open Questions
- Models of New Physics
- * Supersymmetry * Models of Strong Dynamics
- \star Little Higgs Models $~~\star$ Extra dimensional theories

• The Energy Frontier in this and the Next Decade

- The role of the Tevatron at Fermilab in shaping the next decade
- \star Precision Measurements
- \star Discovery of new particles or new bosonic or fermionic (SUSY) dimensions
- The Large Hadron Collider (LHC) at CERN:
 Largest Potential in Direct Searches for New Particles
- A Linear Collider (LC), somewhere in the world:

Precision measurements testing Properties of New particles

 \star Particle masses \star Couplings \star Branching ratios \star Spin \star Parity

• Outlook

The Standard Model

The universe is made by matter particles: <u>Fermions</u> held together by force particles: <u>Gauge bosons</u>, Graviton SM ⇒ Quantum field theory that successfully describes how all known fundamental particles interact via the strong, weak and electromagnetic forces ⇒ based on a gauge field theory with a symmetry group

 $G = SU(3)_c \times SU(2)_L \times U(1)_Y$

• Strong Interactions:

protons and nucleons formed by quarks, bound together by gluons (force carriers) $m_g = 0$ Very strong at large distances \longrightarrow confinement: no free color particles.

• Electromagnetic Interactions:

electrons interact with protons via quantum of electromagnetic energy: Photon Long range force $\longrightarrow m_{\gamma} = 0$

• <u>Weak Interactions:</u>

Short range force inside the protons and neutrons \longrightarrow massive carriers W, Z bosons: $m_Z \simeq 80.5 \text{ GeV}, m_W \simeq 91.2 \text{ GeV}$

Origin of mass of Z, W \leftrightarrow spontaneous ElectroWeak Symmetry Breaking (EWSB); $SU(2)_L \times U(1)_Y \to U(1)_{em}$

Similar to Superconductivity

Standard Model Particles

There are 12 fundamental gauge fields: 8 gluons, 3 W_{μ}'s and B_{μ} and 3 gauge couplings g_1, g_2, g_3

The matter fields:

3 families of quarks and leptons with same quantum numbers under gauge groups

But very different masses!

 m_3/m_2 and $m_2/m_1 \simeq$ a few tens or hundreds $m_e = 0.5 \ 10^{-3} \text{ GeV}, \ \frac{m_\mu}{m_e} \simeq 200, \ \frac{m_\tau}{m_\mu} \simeq 20$

Largest hierarchies $m_t \simeq 175 \text{ GeV} \qquad m_t/m_e \propto 10^5$ neutrino masses as small as $10^{-10} \text{ GeV}!$

FERMIONS matter constituents spin = 1/2, 3/2, 5/2,							
Leptor	Qua	Quarks spin = 1/2					
Flavor	Mass GeV/c ²	Electric charge	Flavor		Approx. Mass GeV/c ²	Electric charge	
Ve electron neutrino	<1×10 ⁻⁸	0	U up		0.003	2/3	
e electron	0.000511	-1	d down		0.006	-1/3	
$ u_{\mu}^{\mu}$ muon neutrino	<0.0002	0	C charm		1.3	2/3	
$oldsymbol{\mu}$ muon	0.106	-1	S strange	e	0.1	-1/3	
$ u_{\tau}^{tau}$ neutrino	<0.02	0	t top		175	2/3	
$oldsymbol{ au}$ tau	1.7771	-1	b botton	n	4.3	-1/3	

Precision Tests of the SM

• The SM has been tested with very high precision (one part in a thousand) at experiments around the world: CERN, Fermilab, SLAC

	Measurement	Pull	(O ^{meas} –O ^{fit})/σ ^{meas} -3 -2 -1 0 1 2 3
$\Delta \alpha_{had}^{(5)}(m_Z)$	0.02761 ± 0.00036	-0.16	
m _z [GeV]	91.1875 ± 0.0021	0.02	
Γ _z [GeV]	2.4952 ± 0.0023	-0.36	•
$\sigma_{\sf had}^0$ [nb]	41.540 ± 0.037	1.67	
R _I	20.767 ± 0.025	1.01	-
A ^{0,I} fb	0.01714 ± 0.00095	0.79	-
A _I (P _τ)	0.1465 ± 0.0032	-0.42	-
R _b	0.21644 ± 0.00065	0.99	-
R _c	0.1718 ± 0.0031	-0.15	•
A ^{0,b}	0.0995 ± 0.0017	-2.43	
A ^{0,c} _{fb}	0.0713 ± 0.0036	-0.78	-
A _b	0.922 ± 0.020	-0.64	-
A _c	0.670 ± 0.026	0.07	
A _l (SLD)	0.1513 ± 0.0021	1.67	
$sin^2 \theta_{eff}^{lept}(Q_{fb})$	0.2324 ± 0.0012	0.82	
m _w [GeV]	80.426 ± 0.034	1.17	
Г _w [GeV]	2.139 ± 0.069	0.67	-
m _t [GeV]	174.3 ± 5.1	0.05	
sin ² θ _W (νN)	0.2277 ± 0.0016	2.94	
Q _w (Cs)	$\textbf{-72.83} \pm 0.49$	0.12	•
			-3 -2 -1 0 1 2 3

Winter 2003

• Standard Model \implies the pillar of particle physics that explains data collected in the past several years and provides description of physical processes up to energies of ≈ 100 GeV.

However, it is only an effective theory.

 \rightarrow at least Gravity should be included at $M_{Pl} = 10^{19} \text{ GeV}$

• Many open questions

- \star origin of the mass of fundamental particles
- \star generation of big hierarchy of scales $M_{Pl}/m_Z = 10^{17}, m_Z/m_\nu = 10^{12}$
- \star connection of electroweak and strong interactions with gravity
- \star generation of hierarchies of fermion masses.
- \star explanation of matter-antimatter asymmetry of the universe
- \star dark matter

 \implies crucial to get the complete picture valid up to higher energies, M_{Pl}

• Collider Experiments: Tevatron, LHC, LC (TeV reach)

our most robust handle to reveal the new physics that should answer these questions

EWSB occurs at the TeV scale

 \implies New Phenomena should lie in the TeV range or below, within reach of LHC/LC

The Quest for EWSB

is the search for the dynamics that generates the Goldstone bosons that are the source of mass for the W and Z.

Two broad classes of theories have been proposed:

- weakly interacting self-coupled elementary (Higgs) scalar dynamics
- strong interaction dynamics among new fermions (mediated perhaps by gauge forces)

Both mechanisms generate new phenomena with significant experimental consequences

$\mathbf{Standard}\ \mathbf{Model} \rightarrow \mathbf{example}\ \mathbf{of}\ \mathbf{weak}\ \mathbf{EWSB}$

Introduce a self interacting complex scalar doublet \implies Higgs with non trivial quantum numbers under $SU(2)_L \times U(1)_Y$

The Higgs Mechanism:

The Higgs field acquires nonzero value to minimize its energy

$$V(\phi) = -m^2\phi^2 + \frac{\lambda}{2}\phi^4$$

Higgs vacuum condensate $v \Longrightarrow$ scale of EWSB

- Spontaneous breakdown of the symmetry generates 3 massless Goldstone bosons which are absorbed to give mass to V=W,Z
 - * Interactions with gauge fields: $g_{\phi VV}^2 \phi^2 V_{\mu}^2 \longrightarrow m_V^2 = g_{\phi VV}^2 v^2/2 \longrightarrow v = 174 \text{ GeV}$
 - \star Mass to fermions via Yukawa interactions: $g_{\phi\ f\bar{f}}\Phi\bar{\psi}_L\psi_R\Longrightarrow m_f=\sqrt{2}g_{\phi\ f\bar{f}}v$
- one extra physical state left in the spectrum $\equiv \underline{\text{HIGGS Boson}}$ with mass $m_{\phi}^2 = 2\lambda v^2$

<u>Present Data</u> \rightarrow no direct evidence of Higgs $[m_h > 114.4 \text{ GeV (LEP2)}]$

but, electroweak observables depend logarithmically on m_{ϕ} via quantum corrections

- SM with weakly coupled Higgs is in excellent agreement with precision EW data $m_{H_{SM}} \leq 210$ GeV at 95 % C.L.

In weakly coupled approach, SM most probably embedded in <u>Supersymmetric theory</u> fermion-boson symmetry \implies Stabilization of hierarchy/naturalness problem: Why $v \ll M_{Pl}$?

In the SM

- Quantum corrections to dimensionless couplings prop. to $\log(\Lambda_{eff})$
- $\Lambda_{eff} \longrightarrow$ cutoff scale at which a more fundamental theory supersedes the SM.
- Quantum corrections to Higgs potential mass parameter: quadratically divergent!

$$m^2 = v^2 \lambda = m^2 (\Lambda_{eff}) + \alpha \Lambda_{eff}^2$$

To explain $v \simeq \mathcal{O}(m_W)$, either $\Lambda_{eff} \leq 1$ TeV or extreme fine tuning to give cancellation

In Supersymmetry:

for every SM fermion there is a boson with same mass and couplings. Cancellation of quadratic divergences in Higgs mass quantum corrections has to do with SUSY relation between couplings and bosonic and fermionic degrees of freedom

$$\Delta m^2 \propto g^2_{\phi f \bar{f}} [m_f^2 - m_{\tilde{f}}^2] \ln(\Lambda_{eff}^2 / m_{\phi}^2)$$

No SUSY particle, degenerate in mass with its SM partner, has ever been seen \implies SUSY must be a broken symmetry

• In low-energy SUSY: quadratic sensitivity to Λ_{eff} is replaced by quadratic sensitivity to SUSY breaking scale

Minimal Supersymmetric Spectrum:

- SUSY associates a complex scalar $\tilde{f}_{L(R)}$ to each chiral fermion $f_{L(R)}$
- Minimal model: 2 Higgs doublets H_1 , H_2 to generate mass to up and down quarks and leptons, and have an anomaly free Higgsino sector
- SUSY Particle masses \longrightarrow depend on the specific mechanism of SUSY breaking

If SUSY exists, many of its most important motivations demand some SUSY particles at the TeV range or below

 \star Solve hierarchy/naturalness problem by having $\Delta m^2 \simeq \mathcal{O}(v^2)$

SUSY breaking scale must be at or below 1 TeV if SUSY is associated with EWSB scale !

\star EWSB is radiatively generated

In the evolution of masses from high energy scales \longrightarrow a negative Higgs mass parameter is induced via radiative corrections

 \implies important top quark effects!

 \star Play central role in unification of gauge couplings

SM:

All couplings tend to converge at high energies, but unification is quantitatively ruled out

MSSM:

Unification at $\alpha_{GUT} \simeq 0.04$ and $M_{GUT} \simeq 10^{16} \text{ GeV}$

Experimentally, $\alpha_3(M_Z) \simeq 0.118 \pm 0.004$ in the MSSM: $\alpha_3(M_Z) = 0.127 - 4(\sin^2 \theta_W - 0.2315) \pm 0.008$

Bardeen, M.C., Pokorski & Wagner

Remarkable agreement between Theory and Experiment!!

 \star Large value of m_t can be understood as a result from quasi infrared fixed point of top-Higgs Yukawa coupling.

fixing m_b and α_s while varying $h_b(M_{GUT})$ and $h_\tau(M_{GUT})$ away from exact unification \longrightarrow varying $h_t(m_t)$ prediction $\tan \beta = v_2/v_1; \quad m_t = h_t v_2$

$$m_t^{pole} \simeq h_t(m_t) v \left[1 + \frac{4\alpha_s(m_t)}{3\pi} \right] \sin\beta \sim (185 \text{ GeV}) h_t(m_t) \sin\beta$$

Bardeen, M.C., Pokorski, Wagner

The Energy Frontier: The Search for New Physics

\star Provides a good dark matter candidate \longrightarrow

 \rightarrow SUSY dark matter candidate is likely to be the lightest neutralino with mass possibly below 500 GeV and almost degenerate with the stau

\star Provides a possible solution to the observed baryon asymmetry

Baryogenesis at the electroweak phase transition:

- \star Start with B=L=0
- \star CP violating sources \implies create chiral baryon-antibaryon asymmetry in the symm. phase
- \star Net Baryon number diffusse in the broken phase
- \star Strong first order phase transition \implies baryon number violating processes are out of equilibrium in the broken phase \implies preserve the generated baryon asymmetry

In the SM:

- EW Baryogenesis demands a Higgs mass below 40 GeV
 ⇒ ruled out by experiment
- Independent problem: not enough CP violation

In Supersymmetry: both problems solve

- New bosonic degrees of freedom with coupling of order one to the Higgs \implies sufficiently strong first order phase transition with a Higgs mass up to 120 GeV
- New sources of CP violation from the sfermion sector

 Another interesting feature: Allows natural introduction of gravity SUSY algebra naturally includes coordinate trasformations
 ⇒ Local SUSY ↔ SuperGravity

Higgs and Supersymmetry

SUSY Theories \implies larger Higgs sector with lightest Higgs having (usually) SM-like properties and $m_h \leq 200 \text{ GeV}$

MSSM: simplest extension

- two neutral scalars acquire vacuum expectation values: v_1 , v_2 with $\tan \beta = v_2/v_1$
- gauge bosons masses fix $v^2 = v_1^2 + v_2^2$
- 5 physical states:
 2 CP-even h, H
 1 CP-odd A
 and a charged pair H[±]

Lightest Higgs: important quantum corrections due to incomplete cancellation of particles and SUSY particle loops

$$m_h \leq 135 \text{ GeV}$$

The mechanism of SUSY breaking is not well understood.

Different SUSY breaking scenarios \longrightarrow crucially different patterns of low energy spectrum –production and decays–

 Important to develop a comprehensive search strategy to explore the main signals in different SUSY breaking scenarios.

SUGRA Scenarios

Supersymmetric particles odd under a discrete symmetry: R-parity: $R_p = (-1)^{3B+L+2S}$ \rightarrow naturally avoids too fast proton decay

 \downarrow

• If R-parity Conserved: Lightest Supersymmetric Particle (LSP) Stable \implies lots of $\not\!\!\!E_T \rightarrow$ distinctive SUSY signature

• LSP Stable \implies good Dark Matter candidate.

Best candidate: Neutralino \implies SUSY partner of the neutral Higgs or gauge bosons

• Strongly interacting particles (due to RG effects) tend to be heavier than weakly interacting ones.

Gauge-Mediated Low-energy SUSY Breaking Scenarios

• Special feature \longrightarrow LSP: light (gravitino) Goldstino: $m_{\tilde{G}} \sim 10^{-6} - 10^{-9} \text{GeV}$

If R-parity conserved, heavy particles cascade to lighter ones and $NLSP \longrightarrow SM$ partner $+ \tilde{G}$

$$e.g., \ \tilde{\chi}_1^0 \to (h, Z, \gamma) \ \tilde{G}; \qquad \tilde{\ell}^{\pm} \to \ell^{\pm} \ \tilde{G}; \qquad \tilde{q} \to q \ \tilde{G}$$

Superpartner masses proportional to their gauge couplings.

• Signatures:

decay length
$$L \sim 10^{-2} \text{cm} \left(\frac{m_{\tilde{G}}}{10^{-9} \text{GeV}}\right)^2 \times \left(\frac{100 \text{GeV}}{M_{\text{NLSP}}}\right)^5$$

 \star NLSP can have prompt decays:

Signature of SUSY pair: 2 hard photons, (H's, Z's) + $\not\!\!\!E_T$ from \tilde{G}

 * macroscopic decay length but within the detector:
 displaced photons; high ionizing track with a kink to a minimum ionizing track (smoking gun of low energy SUSY)

 \star decay well outside the detector: $\not\!\!\!E_T$ like SUGRA

Strongly Coupled EWSB Dynamics

(a) Models which do not require a Higgs Boson

- \implies Strong interactions at the TeV scale: <u>Technicolor</u>,
- New gauge interaction which is a symp. free and becomes strong at scales of order 1 ${\rm TeV}$
- \rightarrow new fermions (technifermions) feel this interaction and form condensates \rightarrow EWSB

Robust prediction:

vector resonance with mass ≤ 2 TeV (to unitarize the $W_L^- W_L^+ \to W_L^- W_L^+$ amplitude)

(b) Strong interactions above TeV scale give rise to bound states

 \implies Composite Higgs Models

Top-condendate models: effective four-Fermi interactions that induce bound states with the same quantum numbers than a Higgs, and condensation of such bound state \rightarrow EWSB

Top quark seesaw theory:

- Higgs is a bound state of left-handed top and right-handed component of a new vector-like fermion: $m_H \simeq 500$ GeV.
- New contributions from additional quarks bring agreement with precision electroweak measurements.

(c) Little Higgs Models:

• Higgs is a pseudo-Goldstone boson from a spontaneous global symmetry breaking at scale 10-30 TeV. \implies New Dynamics needed above that scale.

• Global symmetry explicitly broken by gauge and Yukawa interactions, however, no single int. breaks all the symmetries, hence protecting the Higgs mass Higgs acquires mass only radiatively at the electroweak scale.

• Non-linearly realized symmetry yields cancellation of quadratically divergent quantum corrections between fields of the same spin.

A fermion loop cancels a fermion loop.

The gauge and Higgs loops are cancelled by diagrams with new bosons in loops.

Cancellation of quadratic divergences works at one loop.

 \implies new fermionic partners for SM quarks and leptons and

new gauge boson partners for SM gauge fields at the TeV scale.

- LHC should discover some of them;
- LC: precision measurement of heavy gauge boson couplings to fermions via polarized cross sections and asymmetries.

Many possible Signatures of strongly coupled EWSB:

- Strong WW scattering Anomalous gauge couplings
- Extra scalars \rightarrow composites of underlying strongly coupled fermions
- Extra Fermions Heavy vector bosons

• Extended Higgs sector at TeV scale or below \rightarrow mixing can bring the SM-like Higgs down to 200 GeV.

No compelling model exists that can be called the Standard Model of Strongly coupled EWSB

Why is it so difficult?

 \star The mechanism of fermion mass generation is ackward (not simple as in the simplest Higgs model) and it is distinct from the gauge bosons mass generation mechanism

 \star In most models, the energy scale associated with the flavor dynamics is rather close to the scale of EWSB \longrightarrow need to address the origin of EWSB and flavor in the same overall picture

 \star No clear connection to fundamental physics at high energy. Gauge coupling unification must be regarded as accidental.

 \star Strongly-coupled systems are hard to treat theoretically \Longrightarrow explicit computations are often very difficult

A daring alternative: Extra Dimensions (ED)

- If seen by SM particles, they should be quite small: $R < 10^{-17} cm \approx 1 \text{ TeV}^{-1}$ • If seen only by gravity \longrightarrow they can be larger: $R \leq 1mm$

Gravity in $ED \implies$ fundamental scale, pushed down to electroweak scale by geometry

Metric: $ds^2 = e^{-2k|y|} \eta_{\mu\nu} dx^{\mu} dx^{\nu} + dy^2 \implies$ Solution to 5d Einstein eqs.

k=0 (flat) gravity flux in $ED \implies$ Newton's law modified: $M_{Pl}^2 = (M_{Pl}^{\text{fund.}})^{2+d} R^d$ this lowers the fundamental Planck scale, \implies depending on the size & number of ED. $M_{Pl}^{\text{fund.}} \simeq 1 \text{ TeV} \Longrightarrow \text{R} = 1 \text{ mm}, 10^{-12} \text{ cm if } \text{d} = 2.6$

 $k \neq 0$ (warped ED) $M_{Pl}^2 = \frac{(M_{Pl}^{\text{fund.}})^3}{2k} (1 - e^{-2kL})$ fundamental scales: $M_{Pl} \sim M_{Pl}^{\text{fund.}} \sim v \sim k$ \implies Physical Higgs v.e.v. suppressed by e^{-kL} $\implies \tilde{v} = v \ e^{-kL} \simeq m_Z \text{ if } kL \approx 34$

How can we probe ED from our 4D wall (brane)?

4-D effective theory:

SM particles + gravitons + tower of new particles: Kaluza Klein (KK) excited states with the same quantum numbers as the graviton and/or the SM particles

mass of the KK modes $\implies E^2 - \vec{p}^2 = p_d^2 = \sum_n (m_{KK}^{(n)})^2$ imbalance between measured energies and momentum in 4-D = momentum in ED

Signatures

<u>flat</u>

• Coupling of gravitons to matter with $1/M_{Pl}$ strength $M_{G_1} \simeq 10^{-2}$ GeV $(d=6); M_{G_1} \simeq 10^{-4}$ eV (d=2);

(b) Graviton exchange in $2 \rightarrow 2$ scattering – deviations for SM cross sections or new decays

warped

• Graviton KK modes have 1/TeV coupling strength to SM fields and masses starting with a few hundred GeV.

KK graviton states produced as resonances or may contribute to $f\bar{f}$ production.

SM fields propagating in ED

 \implies TeV-scale Extra dimensions or warped extra dimensions

• Gauge bosons and/or fermions in the bulk \implies new particles may be within reach of LHC.

Universal Extra Dimensions (flat ED):

All fields in the bulk – no wall or branes \implies momentum conserved in ED.

- KK modes produced by pairs
- no big corrections to EW observables
- Lightest Kaluza-Klein Particle (LKP) \longrightarrow good dark matter candidate

What Can We Learn from the Tevatron?

- <u>Precision measurements:</u>

• top quark mass: $\delta M_t \simeq 3 \text{ GeV}$ with 2 fb⁻¹ • W mass: $\delta M_W \simeq 30 \text{ MeV}$ with 2 fb⁻¹

high precision for M_t is important to

 \implies exploit precision on M_W in the context of electroweak precision measurements

 $M_t - M_W - M_H$ Correlation

- direct M_t and M_W measurements from LEP and the Tevatron
- Indirect M_t and M_W determination from SM fit to precision data (LEP, SLD, νN)
- SM relationship for $M_t M_W M_H$ \implies crucial information on M_H

 $\implies \begin{array}{l} \text{A light SM Higgs Boson} \\ \text{strongly favored by data} \end{array}$

Stop and Sbottom Searches

In many models (MSUGRA, extended Gauge– and Anomaly–Mediated) $\longrightarrow \tilde{t}$'s and \tilde{b} 's can be quite light

prospects: with $\int \mathcal{L} dt = 4 \text{ fb}^{-1}$

$m_{\tilde{t}_1} \leq$	200/210	in $\tilde{t}_1 \to b \tilde{\chi}_1^{\pm} / \tilde{t}_1 \to b l \tilde{\nu}$
$m_{\tilde{t}_1} \leq$	180	in $\tilde{t}_1 \to c \tilde{\chi}_1^0$
$m_{\tilde{b}_1} \leq 1$	230	in $\tilde{b}_1 \to b \tilde{\chi}_1^0$

generic squark & gluinos: 350–450 GeV

New Studies: jets + photons + $\not\!\!E_T$ with 4 fb⁻¹ M.C., Choudhury, Logan, Diaz & Wagner \longrightarrow possible signature of gauge-mediated scenarios In the cases $\tilde{t} \to c\gamma \tilde{G}$ and $\tilde{t} \to bW\gamma \tilde{G}$, sensitivity up to $m_{\tilde{t}_1} \leq 300 \text{ GeV}$ For generic squark production, $\tilde{q} \to q\gamma \tilde{G}$, sensitivity up to $m_{\tilde{q}} \leq 400 \text{ GeV}$

Tevatron Run II reach for stops probes Baryogenesis at the Electroweak scale!

• To preserve baryon asymmetry generated at the EW phase transition light stop $m_{\tilde{t}_R} \leq M_t$ and an MSSM Higgs boson with $m_h \leq 120$ GeV are required \implies Higgs associated with electroweak symmetry breakdown has SM-like properties

• Other stop needs to be heavy, $m_{\tilde{t}_L} \simeq 1$ TeV, to induce a Higgs mass above the current experimental limit, $m_h \ge 114$ GeV

M.C., Quiros & Wagner

A definite test of this scenario at the LHC: Higgs and Stops searches.

What Will We Know by the End of the Decade?

After the first run period of the LHC $\longrightarrow 10-30$ fb⁻¹ collected

- If the SM Higgs exists, it will be discovered at the LHC.

mass regions -

• m_H in the range $2M_Z - 600$ GeV best channel is $H \to ZZ \to 4\ell$

$$m_H > 600 \text{ GeV}$$

 $H \to ZZ \to \ell^+ \ell^- \nu \bar{\nu} \text{ and}$

$$H \to WW \to \ell \nu JJ$$

more demanding :

•
$$m_H < 2 M_Z$$
 (esp. below 130 GeV)
need combination of three channels:

$$H \to \gamma \gamma, \qquad H t \bar{t} \to b \bar{b} t \bar{t},$$

 $q \bar{q} H \to q \bar{q} \tau^+ \tau^- / W W^*$
to achieve 5σ discovery with 10 fb⁻¹ (~ 1 yr)

• Higgs Bosons in the Minimal Supersymmetric Extension of the Standard Model (MSSM)

- many different channels for $H, A \& H^{\pm}$
- but full coverage assured only for h

LHC: SUSY particles, especially strongly interacting ones, are produced at large rates.

- most likely types of signatures:
 - 'mSUGRA' type high E_T jets and $\not\!\!\!E_T$ (maybe leptons)

If low-energy SUSY is there, we expect to see some of its signature(s) by the end of this decade.

The Energy Frontier During the Next Decade

LHC: high luminosity, up to 300 fb⁻¹

Continue Exploration of Higgs Physics

- Mass:

 δm_H to 0.1% (leptonic & $\gamma\gamma$ modes) 1% ($b\bar{b}$ final states)

Couplings

$$\delta g^2/g^2 \sim 20\%$$
 for $H \to Z, W, \tau, t \ (m_h > 150 \ {\rm GeV})$

Branching Ratios

$$\begin{split} &\delta Br(H\to ZZ)/Br\sim 10\text{--}20\%~(m_H>125~\text{GeV})\\ &\delta Br(H\to b\bar{b})/Br\sim 50\%~(m_H\sim 120~\text{GeV}) \end{split}$$

MSSM Higgs

- higher luminosity allows access to many additional channels
- \longrightarrow better coverage of H, A, H^{\pm}, h

still some regions where only h is visible
some prospects to cover part of this region with Higgs decay in SUSY particles

Higgs Physics \longrightarrow LHC will have a great shot at it.

Extra Dimensions

- <u>Flat Extra Dimensions</u>
- emission of KK graviton tower states $p\overline{p} \to g G_N \ (G_N \to \not\!\!\!E_T) \longrightarrow \text{jet} + \not\!\!\!\!E_T$
- cross section summed over full KK towers

 $\implies \sigma \propto (\sqrt{s}/M_{\rm Pl}^{\rm fund})^{2+d}$

emitted graviton appears as a continuous

Discovery reach for fundamental Planck scales in the order of 5-10 TeV (depending on d = 4,3,2)

• Warped Extra Dimensions

from top to bottom: $k/M_{Pl} = 1, 0.5, 0.1, 0.05, 0.01$

 \star angular distributions reveal spin of resonance

Extra Dimensions

Exciting Possibility: **TeV-scale Production of Black Holes**

If $M_{BH} \gg M_{\rm Pl}^{\rm fund} \Longrightarrow$ BH properties understood:

• Two partons with center of mass energy: $\sqrt{\hat{s}} \equiv M_{BH}$ moving in opposite direction If impact parameter smaller than the Schwarzschild radius \implies BH forms

• If $M_{\rm Pl}^{\rm fund} \sim 1 \text{ TeV} \Longrightarrow$ more than 10^7 BH per year at the LHC !!

Signal: sprays of SM particles in equal abundances
 → look for hard, prompt leptons & photons;

May be the first signal of TeV-scale Quantum Gravity!

- At LHC, limited space for trans-Planckian region and quantum gravity pollution
- At a VLHC ($\sqrt{s} \ge 100$ TeV), perfect conditions

High Energy Lepton Colliders

- High Luminosity LHC
 - New information on Higgs and Supersymmetry.
 - explore our ideas of space and time.
 - uncover other new particles & interactions

a LC will add uniquely to this program.

- High precision Higgs physics
- A window to the Childhood of the Universe (GUT Physics)
- A window to the Cosmos

Higgs Physics

• If kinematically accessible, LC can observe Higgs bosons independent of their decay patterns using the Z recoil mass method.

$$\sigma(e^+e^- \to Z\phi) \Longrightarrow g_{\phi ZZ}$$

This is the most powerful feature unique to the LC.

- W boson fusion:
$$\sigma(\phi \nu_e \bar{\nu}_e) \Longrightarrow g_{\phi WW}$$

ratio $\frac{g_{\phi WW}}{g_{\phi ZZ}}$ tests SU(2) symmetry

- $\sigma(e^+e^- \to \phi t\bar{t}) \Longrightarrow g_{\phi t\bar{t}}$ direct measure of Yukawa coupling
- Higgs Decay Width: from cross sections + observed decay modes

$$\Gamma_H = \Gamma_W / Br(\phi \to WW)$$

• Accuracy on Branching Ratios $\delta Br/Br$ LC typical precision ~ 2–10% for $m_H \sim 110$ –150 GeV LHC \longrightarrow 10–50% in same mass range 10–20% if $m_H > 150$ GeV

• Accuracy on couplings $\delta g/g$ LC typical precision $\rightarrow 1-5\%$ for $m_H \sim 110-150$ GeV LHC $\rightarrow 15-25\%$ in same mass range 5-10% if $m_H > 150$ GeV

Super-LHC with 3000 fb^{-1} will improve precision by about a factor 2.

<u>Prec. Meas. of Br's & Γ 's</u>

- distinguish MSSM/SM Higgs
- indir. evidence for m_A beyond kin. reach
- info on SUSY vertex corr. to bottom Yuk. coupl.

• Precision Measurement of Higgs Mass $\delta m_h \sim 50 \text{ MeV} (\text{LHC: 100-150 MeV})$

- Higgs quantum numbers: spin and parity
- threshold dependence of excitation curve
- angular distributions $e^+e^- \to Z\phi; e^+e^- \to f\bar{f}\phi$

One can determine unambiguously spin & parity of the particle produced.

Marcela Carena, Fermilab

Supersymmetry

(a) Measurements of SUSY particles masses

 $\implies \text{sleptons, charginos, neutralinos} \\ \text{with an accuracy of 1\% or less} \\ \text{If any visible SUSY particle produced,} \\ \longrightarrow \delta M_{\tilde{\chi}_1^0} \sim 1\% \implies \text{important for LHC meas.} \\ \end{cases}$

(b) Measurement of SUSY parameters

- $\begin{array}{c} \bullet \quad \tilde{\chi}_i^{\pm}, \, \tilde{\chi}_i^0 \text{ production \& decay} \\ \longrightarrow \text{ param. of mixing mass matrix to } 1\% \\ \longrightarrow \text{ determine composition in terms of} \end{array}$
 - SUSY partners of γ, Z, W, H
- slepton and squark mixing angles from cross sections with polarized beams

(c) Spin of SUSY particles:

Simplicity of production reactions allows spin determination from angular distributions

Precise SUSY measurements at LC

- + LHC input on gluinos/squarks
- \implies allow for precise extrapolation of SUSY parameters at high energies

TeV scale Physics can provide our first glimpse of the Planck scale regime!!

Linear Collider and the Cosmos

- Weak-interacting particles with weak-scale masses naturally provide Ω_{DM} .
- \Rightarrow A coincidence or DM provides fundamental motivation for new particles at EW scale.
- * Understanding what DM is made of demands Collider & Astrophysical/Cosmological input.
- If the LSP is found to be a stable neutralino → accurate meas. of $\tilde{\chi}_1^0$ mass & composition ⇒ Comput. of $\tilde{\chi}_1^0 \tilde{\chi}_1^0$ annih. cross section

- $\implies \frac{\text{determined thermal relic density}}{\text{assuming SM evolution of the universe}}$
- comparing this result with $\Omega_{\rm DM}$ from Astrophysical/Cosmological input
- \implies new insights into history of our universe

- **Dark Matter Detection:**
- Direct: depends on $\tilde{\chi}_1^0 N$ scattering \longrightarrow input from both collider and

conventional DM experiments

• Indirect: through annih. decay products $(\tilde{\chi}_1^0 \tilde{\chi}_1^0 \to \gamma' \text{s in galactic center}, e^+ \text{'s in halo}, anti-protons, <math>\nu' \text{s in centers of Earth \& Sun})$

 $\Longrightarrow \tilde{\chi}^0_1\,N$ scattering not necessarily in one-toone correspondence with DM detection rates

 \implies LC will provide important info about DM halo densities and velocity distributions.

Flat ED:

Extra Dimensions

graviton emission: $e^+e^- \rightarrow \gamma G_N$

• if signal observed, reach on $M_{\rm Pl}^{\rm fund}$ comparable to LHC if beams partially polarized • varying \sqrt{s} one can determine values of fundamental parameters: $M_{\rm Pl}^{\rm fund}$ & δ

graviton exchange in $2 \rightarrow 2$ processes:

• deviations for $e^+e^- \to f\bar{f}$ or

new decays with hh or $\gamma\gamma$

• ability to determine spin-2 nature

Warped ED:

• Given sufficient center-of-mass energy, KK graviton states produced as resonances:

 $\sigma(e^+e^- \rightarrow \mu^+\mu^-)$ as a function of \sqrt{s} , including KK graviton exchange, $m_1 = 500 \text{ GeV}, \ k/M_{Pl} = 0.01\text{--}0.05 \text{ range}.$

Energy Frontier – Outlook

By the End of This Decade

Tevatron

- will have measured M_t , M_W to unprecedented accuracy \longrightarrow indirect constraints on $M_{H_{SM}}$
- If Nature is kind, discovery of new particles.

– LHC

- If Higgs & SUSY are there, we will find out.
- If Nature is kind, we will know exactly which type of SUSY is there.

In the Next Decade

- **LHC:** A *sure* window to new physics:
 - Higgs SUSY New Dimensions New Particles & Interactions

LC

- unique capabilities which complement LHC opening the window to Planck scale physics
- unique connection with Cosmology

$Great \ Challenges \iff Great \ Discoveries$

 \implies Shed light on most of the fundamental open questions of Physics and Cosmology!

More on Top Physics (explore hints for NP)

- top electroweak and strong interactions
- accurate measurement of $\sigma_{t\bar{t}}$ (10 %)

 \implies precision test of SM QCD; or if $\sigma_{t\bar{t}} > \sigma_{t\bar{t}}^{SM} \implies$ non-SM prod. mechanism Search for $t\bar{t}$ resonances in the invariant mass $(M_{t\bar{t}})$ spectrum:

 \rightarrow resonant top color Z', multiscale technicolor...

- measurement of CKM matrix element $|V_{tb}|$ (10 %): best via measurement of $\Gamma(t \to bW)$ in single top production
- test SM production mechanisms and decays or find hints for new physics
- probe EW top couplings via W polarization in top decays
- search for anomalously large rare top decays: $t \to c\gamma$, ... and non-SM decays: $t \to H^{\pm}b, t \to \tilde{t}\tilde{\chi}$...

Tevatron Higgs Searches

Gauge-Mediated Tevatron Reach

 $\sim 260 \text{ GeV} (discovery)$

Tevatron Searches for KK Gravitons

Flat ED

 \star Drell-Yan and di-photons

Warped ED

$$\star \ p\overline{p} \to \ell^+ \ell^- \qquad \ell = e \text{ and } \mu$$

 \rightarrow with 2 fb⁻¹, expected reach is in the few TeV range

after a high luminosity run

still some regions where only h is visible
some prospects to cover part of this region with Higgs decay in SUSY particles
LHC will have a great shot at Higgs Physics. In some cases, one can reconstruct decay chains. ex: $\tilde{g} \to \tilde{b}b; \ \tilde{b} \to b\tilde{\chi}_2^0; \ \tilde{\chi}_2^0 \to \tilde{\ell}_R^{\pm} \ \ell^{\mp}; \ \tilde{\ell}^{\pm} \to \ell^{\pm} \ \tilde{\chi}_1^0;$

Directly measure $M_{\tilde{b}}$ and $M_{\tilde{g}}$ to 10% High tan β demands high luminosity.

If SUSY is there, depending on the signal, info about mass patterns will enable us to constrain models of SUSY breaking

SUSY

after a high luminosity run

- estimation of SUSY mass scale, M_{SUSY} , from the jets+ \not{E}_T signal
- $M_{\rm SUSY}^{\rm eff} = (M_{\rm SUSY} M_{\tilde{\chi}}^2/M_{\rm SUSY})$ takes into account a heavy LSP – reduces the number and p_T of observed jets
- a precision of 10 (30)% can be obtained on $M_{\rm SUSY}^{\rm eff}$ after 100 fb⁻¹
- use correlation between $M_{\rm SUSY}^{\rm eff}$ and $\sigma_{\rm SUSY}$ to discriminate different models

In some cases, can reconstruct decay chains. $ex: \ \tilde{g} \to \tilde{b}b; \ \tilde{b} \to b\tilde{\chi}_2^0; \ \tilde{\chi}_2^0 \to \tilde{\ell}_R^{\pm} \ \ell^{\mp}; \ \tilde{\ell}^{\pm} \to \ell^{\pm} \ \tilde{\chi}_1^0;$

Directly measure $M_{\tilde{b}}$ and $M_{\tilde{g}}$ to 10% High tan β requires high luminosity.

If SUSY is there, depending on the signal, info about mass patterns will enable us to constrain models of SUSY breaking

Marcela Carena, Fermilab

KK Excitations of Gauge Bosons

 γ/Z excitations in TeV scale extra dimensions –

• detect peak in $\ell^+\ell^-$ invariant mass for $M_{\rm Pl}^{\rm fund} < 5.8 \text{ TeV} (100 \text{ fb}^{-1})$

no peak $\implies M_{\rm Pl}^{\rm fund} > 12 \text{ TeV} (300 \text{ fb}^{-1})$

study lepton angular distributions \implies distinguish KK excitations & alternatives

Strong Dynamics

- Technicolor-type models
- \Rightarrow detect ρ_T up to the TeV range

best channel:

$$\rho_T^{\pm} \to W^{\pm} Z \to \ell^{\pm} \nu \ell^+ \ell^-$$

- Strongly Coupled Vector Boson Scattering (strongly coupled resonances)
- LC $\longrightarrow e^+e^- \rightarrow \nu \bar{\nu} W^+ W^- / ZZ$ LHC, 300 fb⁻¹: bump in $W^+ W^-$ scattering

 $(\text{LET} \rightarrow \text{enhancement in } \sigma_{SM})$

Latest ATLAS study shows sensitivity to longitudinal gauge vector boson scattering only for SLHC luminosities ($\sim 3000 \text{ fb}^{-1}$)

Extra Dimensions

emission of KK graviton tower states • $p\overline{p} \to g G_N \ (G_N \to \not\!\!\!E_T) \longrightarrow \text{jet} + \not\!\!\!\!E_T$ cross section summed over full KK towers $\implies \sigma \propto (\sqrt{s}/M_{\rm Pl}^{\rm fund})^{2+d}$ emitted graviton appears as a continuous mass distribution GeV √s = 14 TeV Events / 20 🔄 jW(eγ), jW(μγ) 10 6 🔀 jW(τγ) 🛛 jZ(vv) bac karound 10 10 2 10 Discovery reach for

fundamental Planck scales in the order of 5-10 TeV (depending on d=4,3,2) Exciting Possibility:

TeV-scale Production of Black Holes

If $M_{BH} \gg M_{\rm Pl}^{\rm fund} \Longrightarrow$ BH prop. understood:

- two partons: $\sqrt{\hat{s}} \equiv M_{BH}$ moving in oppo. dir: if impact parameter smaller than Schwarzschild radius \Longrightarrow BH forms
- $M_{\rm Pl}^{\rm fund} \sim 1 \text{ TeV} \Longrightarrow$ more than 10⁷ BH per year at the LHC !!
- Signal: sprays of SM particles in equal abundances;
- \longrightarrow look for hard, prompt leptons & photons;

May be the first signal of TeV-scale Quantum Gravity!

• Warped Extra Dimensions

Narrow Graviton Resonances

 to demonstrate that the resonance is a graviton and not another exotic object (spin-1 Z', ...)
 ⇒ use angular distributions to determine the spin of the resonance

construct a likelihood function to quantify angular distribution information \implies spin can be determined with 90% CL for $M_G \sim 1700 \text{ GeV} (100 \text{ fb}^{-1})$

\star SM Fields in the Bulk

• Universal Extra Dimensions (UED)

Important property: Spectrum of 1st KK excitations can mimic a SUSY spectrum, though particles have different spin

LC has the unique opportunity of distinguishing SUSY from UED: examine p- versus s-wave production

Comparison of cross section production for smuon pairs Vs first KK mode muon pairs.

$$e^+e^- \rightarrow \mu_1^+\mu_1^-(\tilde{\mu}^+\tilde{\mu}^-)$$
 as a function of \sqrt{s} ,
for $M = 300$ GeV.

(Tait et al. in prep.)

 $e^+e^- \rightarrow \mu_1^+\mu_1^-(\tilde{\mu}^+\tilde{\mu}^-)$, as a function of M, at a 1 TeV LC

Top Seesaw Model

• Extended SM fermion content: a vector pair of quarks, $\chi_{L,R}$ with the same quantum numbers as t_R

• The dynamics of the model yields mixing between the right & left-handed top & heavy quark components. \implies the left mixing has a direct influence on the interaction of the physical top with the weak bosons:

• Modification of left-handed top coupling with $s_L \simeq \mu_{t\chi}/m_{\chi\chi}$

$$\frac{\delta g_L}{g_L} = \frac{s_L^2}{1 - 4\sin^2\theta_W/3}.$$

 $m_{\chi\chi} \longrightarrow$ heavy quark mass constrained by EW data \longrightarrow 3.8–7 TeV $\mu_{t\chi} \sim 700$ GeV to reproduce physical m_t

• A LC can test the Top Seesaw model via accurate determination of top-vector boson couplings at the level of 1.5%.

• It can also measure directly the heavy Higgs associated to this model and hence determine a range of acceptable χ masses.

