Benefits of Mesaba Energy Project

Clean Coal Power Initiative - Round 2 -

Next-generation full-scale Integrated Gasification Combined Cycle (IGCC) using ConocoPhillips' E-Gas[™] technology

Jason Lewis – Environmental and Industrial Division National Energy Technology Laboratory

Outline

- Executive Summary
- Mesaba Project Basics
- Fuel Coal Supply
- Mesaba Process
 Configuration
- Team Composition
- IGCC and ConocoPhillips E-Gas[™] Process
- Air Emissions
- Estimated Benefits
- Conclusion

Executive Summary

- Full Scale Demonstration Project is the next step in successful commercialization of this technology developed under the DOE Fossil Energy Program
- Facility will utilize Integrated Gasification Combined Cycle (IGCC) technology to achieve higher plant efficiencies and availability, lower emissions (including mercury), and lower operating costs (fuel flexibility and by-product marketability)

Executive Summary (continued)

- Avoided emissions through use of Mesaba contribute to cleaner environment
- Marketable byproducts provide a potential positive annual cash flow stream at Mesaba

Mesaba Energy Project Basics

- A new utility scale IGCC power plant using ConocoPhillips' E-Gas[™] technology for coal gasification at the Mesaba Energy Project ("Mesaba")
- Nominal Plant generation capacity 606 MWe (net)
- Preferred project location is West Range Plant Site
 - Greenfield, but land designated for auxiliary mining purposes
 - Iron Range near Taconite and Bovey, about 70 miles northwest of Duluth
 - Remote location, but near natural gas pipelines, high voltage transmission line corridors and viable rail service

Mesaba Energy Project Basics (continued)

• Alternate project location is the East Range Plant Site

- Iron Range near Hoyt Lakes, about 50 miles north of Duluth
- Greenfield, but former taconite mining operations nearby
- Access to water and feed-stock transportation options
- Total Project Costs: \$1.97 Billion (DOE Share: \$36 Million)
- Schedule
 - 2006 Project Start
 - 2006 to 2011 Construction
 - 2011 to 2012 Operations

Regional map showing locations of preferred and alternative sites.

Fuel/Coal Supply

- Plant designed to be fuel flexible
 - Base Case Fuel-Bituminous Coal (Illinois Basin No. 6)
 - Predominant Case, Fuel Blend-Sub-Bituminous Coal (Powder River Basin) and Petroleum Coke

Mesaba Process Configuration

CCPI.2 - J. Lewis, 322 , 10/05

Team Composition

- Partner: Excelsior Energy (Minnetonka, MN)
- Engineering, Procurement and Construction (EPC): Fluor Enterprises (Aliso Viejo, CA)
- Technology Rights Holder: ConocoPhillips (Houston, TX)

IGCC and ConocoPhillips E-GasTM Process

- The Mesaba project will improve commercial scale IGCC performance as a result of:
 - DOE funded investigations of potential performance and technological upgrades
 - 1600 operational lessons learned from the Clean Coal Technology (CCT) Wabash River Coal Gasification Repowering Project in Terre Haute, IN (Wabash River)
 - Research and development efforts of DOE and the ConocoPhillips gasification teams

Air Emissions

- Greater than 90% Hg
 removal from coal input
- Better than 99% sulfur removal for bituminous coal, slightly less for subbituminous coal
- NO_x emissions reduced to 15 ppmvd @ 15% oxygen
- Very low particulate matter emissions, i.e., on order of natural gas
- CO₂ emissions reduced by 15%
- CO₂ capture adaptable

Estimated Benefits *Approach*

- Quantify emissions and those avoided on an annual basis for Mesaba
- Compare emissions against those for other conventional coal-burning technologies

Estimated Benefits Annual Emissions Reductions

Air Emissions Avoided	100% Sub- Bituminous Coal	100% Bituminous Coal
Sulfur Dioxide (SO ₂), TPY	19,400	108,000
Nitrogen Oxides (NO _x), TPY	2,400	3,300
Carbon Dioxide (CO ₂), TPY	850,000	750,000
Mercury, Pounds/Year	240	320

Estimated Benefits

Coal-Fired Power Plant Emissions Comparison: 606 MWe (net) Basis, 90% Availability

Tons per year	Supercritical Pulverized Coal	Pulverized Coal with ESP & FGD	Circulating Fluidized Bed	Mesaba IGCC
SO ₂	3,370	4,140	3,500	560
NO _x	1,470	1,820	1,860	1,300
Hg	0.4	0.1	0.1	0.013

Estimated Benefits

Coal-Fired Power Plant Emissions Comparison: 606 MWe (net) Basis, 90% Availability (continued)

Tons per year	Supercritical Pulverized Coal	Pulverized Coal with ESP & FGD	Circulating Fluidized Bed	Mesaba IGCC
PM/ PM10	380	410	350	250
VOC	80	N/A	90	70
СО	2,530	2,270	2,560	760

CCPI.2 – J. Lewis, 322 , 10/05

Estimated Benefits *Combustion Utilization By-products*

Marketable Combustion By- Products	100% Sub- Bituminous Coal	100% Bituminous Coal
Elemental Sulfur, TPY	9,700	54,000
Gasifier Slag, TPY	133,000	205,000

- A ready market exists for both byproducts
- Existing transportation options provide cost effective access to these markets

Estimated Benefits Regional

Reduced land disturbance

- Minimizes land and resource requirements
- Recovered elemental sulfur and slag combustion utilization byproducts offset both mining and landfill capacity for these materials

Reduced impact on local water sources

- Plant make-up water is readily available from existing abandoned mine pits
- Zero liquid discharge system eliminates waste waters associated with contact cooling

process

Regional Benefits (continued)

- Remote location is not near major population center
- Both project locations zoned for industrial usage
- Construction employment could bring as many as 1000 temporary jobs
- Plant operation is anticipated to result in the addition of 300 to 400 permanent and support operations jobs to the area

Estimated Benefits *National*

Will implement further refinements in IGCC, advancing the technology into mainstream national generation mix

- Largely eliminates the uncertainty of emerging regulatory
 programs associated with Greenhouse Gas Emissions, Mercury, and fine particulate matter that would otherwise complicate the permitting of a conventional coal fired power plant
- Availability increases to 90%, up from 77% at Wabash River, resulting in a smaller construction footprint
- Integrated Air Separation Unit-Gas Turbine (first in U.S.) increases technology efficiency and reduces auxiliary electrical load
- Standard replicable design configuration with sound basis for installed costs provides pathway for similar installations
- Flexibility to process both high- and low-rank coals into a clean synthesis gas that contains hydrogen and includes petroleum coke, which may have a negative economic value

National Benefits (continued)

- Reduced overall emissions, including CO₂
- Carbon capture adaptable
- Will utilize the Nation's abundant coal resources and increase energy security as a result
- Further the President's environmental initiatives for America:
 - -Clear Skies
 - -Global Climate Change
 - -FutureGen
 - -Hydrogen

Conclusions

 Significant emissions and energy security benefits will result from the successful demonstration and commercialization of the Mesaba Energy Project and other technologies developed

under the Clean Coal

Power Initiative

Visit the NETL web site for information on all Power Plant Improvement Initiatives and Clean Coal Power Initiative projects

www.netl.doe.gov/coal/CCPI

CCPI.2 - J. Lewis, 322 , 10/05