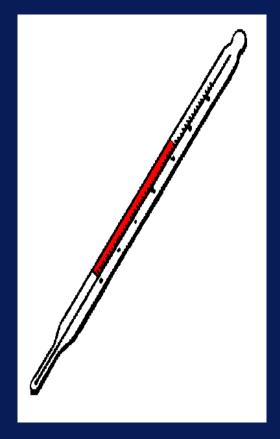
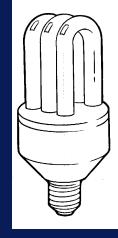
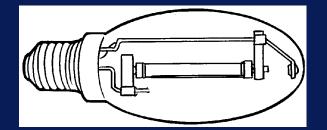
Mercury-Free Lighting: The Pros and Cons John D. Bullough Lighting Research Center Rensselaer Polytechnic Institute Troy, New York

Great Lakes Binational Toxics Strategy Mercury Workgroup Meeting

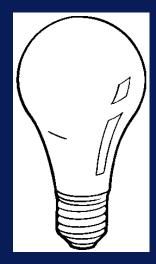

December 16, 2003


Mercury in Light Sources


- Many light sources contain mercury (Hg) as a primary component of light generation
- Pessimism among many in the lighting industry about whether mercury in discharge lamps is replaceable
- Distinction between mercury in lamp and mercury contributed to environment by generation of electricity

General Lighting Sources Containing Mercury

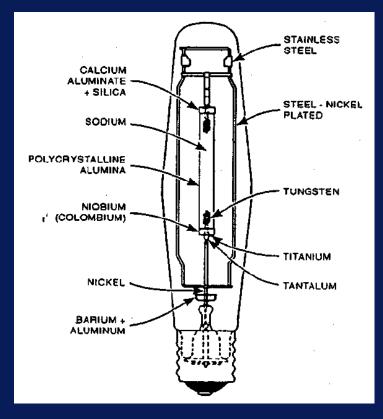
- Fluorescent lamps
- High intensity discharge lamps
 - mercury vapor
 - high pressure sodium
 - metal halide
- Alternatives include existing and "in-development" technologies



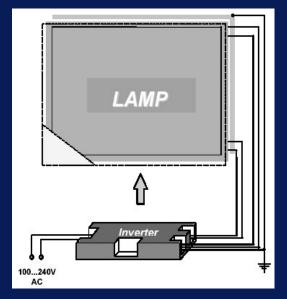

Alternatives to Hg-Containing Lamps: General Lighting

Incandescent

- Pros: Inexpensive, widely available
- Cons: Low efficacy, short life


Low pressure sodium Pros: High efficacy Cons: Poor (nonexistent) color rendering

Alternatives to Hg-Containing Lamps: General Lighting (cont'd.)

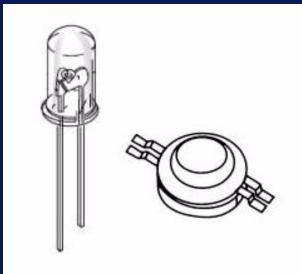

Hg-free high pressure sodium (<= 150 W)
Pros: High efficacy
Cons: Higher wattages unavailable, slightly lower efficacy than

conventional HPS

Hg-Free Alternatives: Not Yet Used for General Lighting

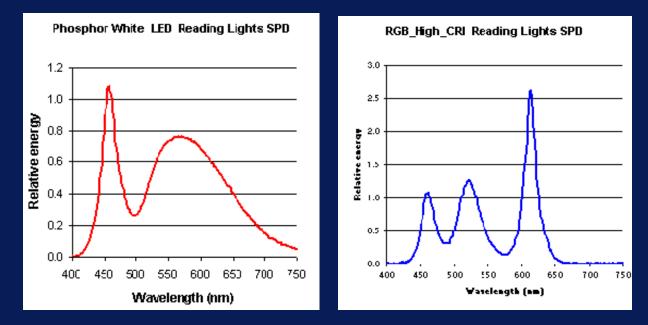
- Xenon barrier discharge used for display backlighting
 - Pros: uniform luminous appearance, long life
 - Cons: planar shape* (rather than tubular), low efficacy

*tubular discharge lamps are becoming available for architectural applications


Hg-Free Alternatives: Not Yet Used for General Lighting (cont'd.)

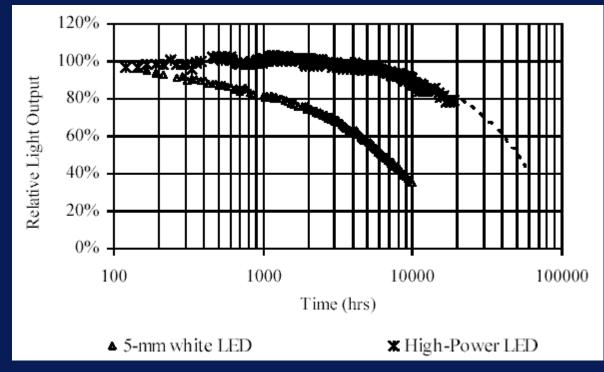
- Field emission display devices used for displays
 - Pros: uniform luminous appearance, large color gamut
 - Cons: very high voltage required, planar shape

Hg-Free Alternatives: Not Yet Used for General Lighting (cont'd.)

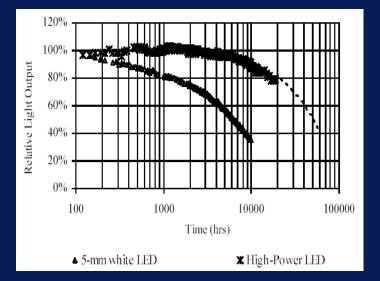

- Light emitting diodes (LEDs)
 - Pros: "long" operating life, many colors available
 - Cons: small lumen packages* available (120 lm max. for 5-W device), relatively low efficacy

*32-W T8 fluorescent lamp, approx. 3000 lm

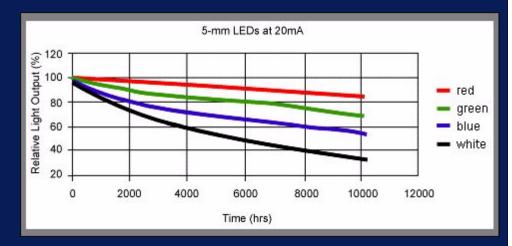
left: 5-mm indicator right: high-flux LED


White Light LEDS Two approaches: blue+phosphor and red/green/blue (RGB) mixture

- Phosphor: single package, lower efficacy
- RGB mixed: higher efficacy, mixed array needed


What is "useful" life?

 Component life can be 100,000+ hours (20,000-30,000 for linear fluorescent) but all LEDs experience lumen depreciation, depending on package



Barriers to LED Lighting

 Temperature dependence (different for each color) - heat sinking very important

 Different long-term degradation characteristics for each color

Forthcoming LED Lighting Applications

- Task lighting
- Outdoor low-level path lighting
- Indicator/wayfinding
- General lighting? *Maybe in 10+ years...*

www.lrc.rpi.edu/programs/solidstate www.lrc.rpi.edu/ltgtrans/led www.lrc.rpi.edu/programs/nlpip/lightinganswers/led

Alternatives to Hg-Containing Lamps: Not (Yet) Available

Sulfur discharge lamp

- Pros: broad spectral power distribution, relatively long life
- Cons: not presently available, magnetron needed to operate, excessive lumen package is impractical, requires air cooling, "minty green"

Alternatives to Hg-Containing Lamps: Not (Yet) Available (cont'd.)

- Zinc-based metal halides in development for automobiles
 - Pros: efficacy and color parameters near those of conventional metal halide (MH)
 - Cons: zinc-quartz reactions dramatically shorten life
- Other MH lamp materials are under investigation

Luminous Efficacy/Life

Fluorescent
MH
HPS
Incandescent
LPS
Hg-free HPS
Xe barrier/Field emiss.
LED
Sulfur
Zn, other Hg-free MH

90-100 lm/W 90-100 lm/W 100-120 lm/W 15-20 lm/W 180 lm/W 90-110 lm/W 30 lm/W 20-40 lm/W 70-80 lm/W 70-80 lm/W 20-30,000 hr 15-20,000 hr 24,000+ hr 1,000 hr 16-20,000 hr 24,000 hr 50,000+ hr? 20,000 hr?* 15-20,000 hr** too short (so far)

*"useful" life - to 80% light output **magnetron life

Prospects for Hg-Free Lighting

- Currently available general lighting technologies are less than ideal
 possible exception: low-wattage HPS?
- Closest to Hg-free seem to be HID family (HPS and MH)
- Nothing on the horizon approaches output, efficiency of linear fluorescent