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Shape of the Quantum Diffusion Front
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We show that quantum diffusion has well-defined front shape. After an initial transient, the wave
packet front (tails) is described by a stretched exponential P�x, t� � A�t� exp�2jx�wjg�, with 1 , g ,

`, where w�t� is the spreading width which scales as w�t� � tb , with 0 , b # 1. The two exponents
satisfy the universal relation g � 1��1 2 b�. We demonstrate these results through numerical work
on one-dimensional quasiperiodic systems and the three-dimensional Anderson model of disorder. We
provide an analytical derivation of these relations by using the memory function formalism of quantum
dynamics. Furthermore, we present an application to experimental results for the quantum kicked rotor.
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Transport in quantum systems exhibits a variety of dif-
ferent behaviors ranging from ballistic motion to diffusion,
and to localization. In between also lies the more exotic
type known as anomalous diffusion, where a wave packet
spreads slower than a linear function of time for ballis-
tic motion, but not proportional to the square root of time
as in the normal diffusive case. Anomalous diffusion has
been found theoretically in quasicrystal models [1–7], in
two-dimensional (2D) lattices in magnetic fields [2,3,6,8],
and at metal-insulator transitions in disordered systems [9].
Previous work has been mainly focused on the analysis of
the temporal decay of the survival probability at the initial
position and the growth of the wave packet width. The
time-averaged survival probability typically decays as t2d

at large times with 0 , d # 1, where the exponent has
been shown to be given by the fractal dimension of the lo-
cal density of states [3,6]. On the other hand, the width of a
wave packet grows as tb with 0 , b # 1, where the expo-
nent depends not only on the energy spectrum [2,5,10] but
also on the fractal characteristics of the eigenwave func-
tions [4].

In this Letter, we focus on the spatial form of wave pack-
ets in quantum diffusion, and establish a universal relation-
ship between the front shape and the time dependence of
0031-9007�01�86(12)�2485(5)$15.00
the width of a spreading wave packet. We find that, at long
times, the front of a wave packet becomes time invariant
after scaling in width w�t� and height A�t�. Moreover, the
probability distribution in the tail regions is described to a
high accuracy by the stretched exponential,

P�x, t� � A exp�2jx�wjg� , (1)

where the exponent is time independent with 1 , g , `.
Furthermore, we reveal a universal relationship,

g � 1��1 2 b� , (2)

between the shape exponent g and the diffusion exponent
b as defined by w�t� � tb . We demonstrate these results
through numerical work on the Fibonacci chain and the 3D
Anderson model, and present an application to experimen-
tal results for the quantum kicked rotor. We also provide
an analytical derivation of Eqs. (1) and (2) using the mem-
ory function formalism of quantum dynamics.

The spreading of a wave packet in a quantum system
is governed by the Schrödinger equation, which for tight-
binding models has the form i �c�n, t� � V �n�c�n, t� 1P

n0 h�n, n0�c�n0, t�, where c�n, t� is the wave function
amplitude at position n at time t, V �n� is the on-site
potential, and h�n, n0� are the nearest-neighbor hopping
© 2001 The American Physical Society 2485
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integrals. The initial condition is chosen to be a wave
function localized at a single site. For a given potential
V �n�, the probability distribution P�n, t� � jc�n, t�j2 can
be obtained either by integrating the Schrödinger equation
directly or by expanding in terms of the eigenstates.

We start with the Fibonacci chain, a 1D model of qua-
sicrystals [11,12]. The hopping integrals take the form
h�x, x0� � 1 (here x and x0 are integers) and the on-site po-
tential takes two values a � 2V and b � V arranged ac-
cording to the Fibonacci sequence, abaababa . . . , which
can be constructed from a by iterating the inflation rule
�a ! ab, b ! a�. In Fig. 1, we present the semilog plot
of P�x, t� versus x at t � 500 with different values of V .
The width of the wave packet depends strongly on the po-
tential strength with the widest corresponding to the bal-
listic case V � 0 and the narrowest corresponding to the
largest V . Moreover, they have different shapes ranging
for boxlike to wedgelike.

The wave packet can be well fitted to the stretched ex-
ponential of the form in Eq. (1). In Figs. 2(a)–(f), we
present the scaled probability distribution P�x, t��A as a
function of x�w at different times for each V . Values of A
and w were obtained by fitting (the standard mean square
fit) the raw data of P�x, t� to a stretched exponential with
g � 7.69, 3.13, 2.0, 1.67, 1.47, and 1.33 from Figs. 2(a) to
2(f). We clearly see that, after scaling P�x, t� in width and
in height by using its fitting parameters w and A, the wave
packet at different times overlap together in each panel, in-
dicating that the scaled front shape is invariant in time. We
note that such a good fit holds over 30 orders of magni-
tude up to the precision limit of the simulation. This result
provides unambiguous evidence that the front shape of a
wave packet is well defined and follows the description of
the stretched exponential.

More surprisingly, we find that the shape exponent g

is completely specified by the diffusion exponent b. The
power-law time dependence of the width w�t� � tb can
be seen in Fig. 3 from the straight lines in the log-log
plot of w versus t, where the slopes give b � 0.87, 0.68,

FIG. 1. Semilog plot of P�x, t� versus x at t � 500 for the
Fibonacci chain with different V .
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0.50, 0.40, 0.32, and 0.25 for various values of the poten-
tial V � 0.5, 1.0, 1.65, 3.0, 5.0, and 10.0, respectively.
These values of b are indistinguishable from those ob-
tained from calculations of the second moment [1]. We
show in the inset the correlation between b and g, which
is found to be well described by the simple formula Eq. (2).
Therefore, the normal diffusive case b � 1

2 has a Gauss-
ian wave packet similar to the classical behavior. On the
superdiffusive side �b . 1

2 � and towards the ballistic limit
�b � 1�, the distribution becomes flatter on the top and
steeper at the edges; while on the subdiffusive side �b ,
1
2 � and towards the localization limit �b � 0�, the wave
packet becomes sharper in the middle and more ramped in
the tails.

The same results have been found not only for other
1D systems, such as the silver-mean quasiperiodic chain
[13], the Harper model [14,15], and the random dimmer
model [16], but also for higher dimensional systems such
as the 3D Anderson model at the critical disorder of the
metal-insulator transition. In the Anderson model, the
site energies V �n� are uniformly distributed in the inter-
val 2U�2 # V �n� # U�2, and the nearest hopping inte-
grals take the form h�n, n0� � 1. At the transition with
U � 16.5 [17], electron wave packets display anomalous
diffusion with b � 1

3 [9]. Figure 4 shows the probabil-
ity distributions P�x, 0, 0, t� at the transition at t � 1 for
systems of different sizes, each obtained by averaging

FIG. 2. Semilog plot of the scaled probability distribution
P�x�w, t��A versus x�w at different times �t� for the Fibonacci
chain with different V . Lines of wave packets at different t
overlay nicely together after scaling, where t � 100, 200, 500,
and 1000 in (a); t � 100, 500, 1000, and 2000 in (b); t � 100,
500, 1000, and 5000 in (c); t � 100, 1000, 10 000, and 100 000
in (d); t � 100, 1000, 10 000, and 100 000 in (e); and t � 100,
10 000, 100 000, and 1 000 000 in (f). Open circles from (a) to
(f) are fitting results to a stretched exponential with g � 7.69,
3.13, 2.0, 1.67, 1.47, and 1.33, respectively.
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FIG. 3. The scaling behavior of the spreading width w�t� �
tb in a Fibonacci chain with different V . The linear fit (solid
lines) gives b � 0.87, 0.68, 0.50, 0.40, 0.32, and 0.25 for V �
0.5, 1.0, 1.65, 3.0, 5.0, and 10.0, respectively. Inset shows the
relation between exponents g and b with error bars indicated.

100 different disorder configurations. As expected from
Eq. (2), the front shape shown in Fig. 4 is well described
by the stretched exponential with g � 1.5. In addition, we
found g � 2 in the metallic regime �U , 16.5� for normal
diffusion and g � 1 in the insulator regime �U . 16.5�
for localization.

Equations (1) and (2) provide a useful framework for
analyzing experimental results of anomalous diffusion.
Experiments have been performed using an atom-optics
realization of the quantum kicked rotor, which is known
to be described by a 1D quasiperiodic tight-binding
model in momentum space; the details of the experiment
are described in [18]. In each case that we study, the
distributions after 30, 40, 50, 60, and 70 kicks are fit
simultaneously to Eq. (1) while imposing Eq. (2) as a
constraint. We study three distinct cases, beginning with
dynamical localization (with the kick strength K � 11.2),

FIG. 4. Semilog plot of the probability distribution P�x, 0, 0, t�
at t � 1 at the 3D Anderson transition for different system sizes
L 3 L 3 L. Results for L � 11, 13, 15, 17, and 19 have been
shifted by multiples of 22 for clarity. Lines are the fitting results
to a stretched exponential with g � 1.5.
where we find an exponent g � 1.06 6 0.19, which
is consistent with exponential localization. In the next
case, the wave packets exhibit anomalous diffusion
�K � 8.4� [18], where the fit yields g � 1.48 6 0.16;
this larger exponent is consistent with the curved, nonex-
ponential distribution tails observed in the experiments
[19]. Finally, we study the kicked rotor with K � 11.2
driven strongly (200%) by amplitude noise, where the
dynamics mimic classical diffusion; in this case, we
find g � 2.03 6 0.14, which is consistent with normal
diffusion. We did not attempt to fit the central peaks
where the stretched exponential is not expected to apply.
The data and fits for all three cases are shown at 70 kicks
in Fig. 5, showing excellent agreement in the tails of the
distributions.

We have thus demonstrated the universality of the
stretched exponential distribution Eq. (1) and the scaling
relation Eq. (2), and we now show how they may be de-
rived from the general principles of quantum mechanics.
As an exact consequence of Schrödinger’s equation and
under the initial condition of a diagonal density matrix,
the probability distribution follows the generalized master
equation (GME) [20],

≠

≠t
P�n, t� �

Z t

0
dt0

X
n0

W�n, n0, t 2 t0�DP�n0, n, t0� ,

(3)

where DP�n0, n, t0� � P�n0, t0� 2 P�n, t0�, and P�n, t� is
the probability at site n. W�n, n0; t 2 t0� is known as the
memory function which is related to the off-diagonal terms
of the Liouville equation for the density matrix. The GME
is non-Markovian, but is causal and has time-translational
symmetry. After performing a coarse graining in the posi-
tion n, the GME still preserves its form [21] but becomes

FIG. 5. Experimental quantum kicked rotor data (heavy lines)
with best fits (open circles), shown only at the time of 70 kicks
for clarity. The three regimes shown are (a) exponential local-
ization, (b) anomalous diffusion, and (c) noise-induced delocal-
ization, for which the respective exponents are g � 1.06, 1.48,
and 2.03.
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translationally invariant due to the statistical homogeneity
of the system. Denoting the coarse-grained position by x,
we have

≠

≠t
P�x, t� �

Z t

0
dt0

X
Dx

g�Dx; t 2 t0�DP�Dx, x, t0� , (4)

where DP�Dx, x, t0� � P�x 1 Dx, t0� 2 P�x, t0�. At long
times and in the tail regions, the coarse-grained density
varies slowly in space, and we may take a gradient expan-
sion of DP in Dx. Assuming that g�Dx, t� has a finite
range in Dx to support this gradient expansion and that
the quantum diffusion has no preferred direction, then a
Laplace transform of Eq. (4) leads to

sP̃�x, s� � Ĩ�s�
≠2P̃
≠x2 �x, s� , (5)

with Ĩ�s� being the Laplace transform of I�t� � � 1
2 � 3P

Dx g�Dx; t� �Dx�2. The solution of Eq. (5) is P̃�x, s� �
B�s�e2jxjf�s�, where f�s� �

p
s�Ĩ�s� and B�s� is a normal-

ization constant.
We calculate the probability P�x, t� using the inverse

Laplace transform,

P�x, t� �
Z

ds B�s� exp�st 2 jxjf�s�� . (6)

Consistent with the observed anomalous diffusion, we
assume now the power-law behavior f�s� � f0sb as
s ! 0. Using the stationary phase approximation, which
occurs for s � �bf0jxj�t�1�12b , we obtain the leading
exponential behavior of the probability as Eq. (1), with
a width w � tb�f0bb�1 2 b�12b and an exponent g

given by the relation Eq. (2). The above analysis is valid
for tb , jxj , t, because the stationary point needs to
be close to s � 0 to be consistent with the long time
assumption, and yet the separation needs to be larger
than the width of the stationary phase. These inequalities
indicate that the stretched exponential is valid beyond the
width of the wave packet and within the causal zone of
ballistic motion. Our results thus complement the recent
finding of P�x, t� � jxjD21 for the central part of a wave
packet with jxj , tb , where D is a multifractal dimension
of the eigenstates [4].
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