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Summary 
 
A major recent initiative in our group concerns nonstandard numerical applications of 
Fourier analysis.  An essential algorithm in this context is the non-uniform fast Fourier 
transform (NUFFT).  In a typical problem, one is given an irregular sampling of N points in 
the frequency domain and is interested in rapidly reconstructing the corresponding function at 
N points in the physical domain.  The NUFFT carries out this computation in O(N log N) 
operations.  Based in part on this algorithm, we have developed a fast and accurate 
reconstruction method for magnetic resonance imaging.  We have also demonstrated that a 
new class of Fourier-space methods, making use of the NUFFT, is likely to have substantial 
impact on the design of robust methods for the solution of the heat equation in complex 
geometry.  This approach has a natural extension to low speed, incompressible flows and we 
are planning to create a new class of design tools for microfluidics and other low Reynolds 
number applications in the next few years. 
 
The non-uniform Fourier transform arises in 
a number of application areas, from medical 
imaging to the numerical solution of partial 
differential equations.  In a typical problem, 
one is given an irregular sampling of N 
points in the frequency domain and is 
interested in reconstructing the 
corresponding function in the physical 
domain.  When the sampling is uniform, the 
Fast Fourier Transform (FFT) allows this 
calculation to be computed in O(N log N) 
operations rather than O(N 2) operations.  
Unfortunately, when the sampling is non-
uniform, the FFT does not apply.   
 
Over the last decade, beginning with the 
work of Dutt and Rokhlin, a number of 
algorithms have been developed to 
overcome this limitation, which we will 

refer to generically as non-uniform FFTs 
(NUFFTs).  These rely on a mixture of 
interpolation and the judicious use of the 
FFT on an oversampled grid.  In a sequence 
of papers [Greengard and Lee, SIAM 
Review (2004), Lee and Greengard, J. 
Comput. Phys. (2005)], we observed that 
one of the standard interpolation or 
“gridding” schemes, based on Gaussians, 
can be accelerated by a significant factor 
without precomputation or storage of the 
interpolation weights.  This is of particular 
value in two and three dimensional settings, 
accelerating the NUFFT schemes by an 
order of magnitude.  
 
In magnetic resonance imaging, we have 
shown that the NUFFT together with a new 
approach to quadrature in the Fourier 



 

 

domain leads to fast and accurate image 
reconstruction using the kinds of 
experimental data acquired in “fast” imaging 
modalities [Greengard, Lee and Inati, 
Comm. App. Math. and Comp. Sci (2006)].  
 
Heat Flow 
We have developed a fast solver for the 
inhomogeneous heat equation in unbounded 
domains.  While the most commonly used 
approaches are based on finite difference 
and finite element methods, these must be 
coupled to artificial (non-reflecting) 
boundary conditions imposed on a finite 
computational domain in order to simulate 
the effect of diffusion into an infinite 
medium.  Our approach, which we refer to 
as the Fast Recursive Marching (FRM) 
method, is mathematically much more 
straightforward.  The FRM method is based 
on evaluating the exact solution of the 
governing equation, using convolution in 
space and time with the free-space Green's 
function.  This is carried out in the Fourier 
domain and relies on the spectral 
approximation of the free-space heat kernel 
[Greengard and Lin, Appl. Comput. 
Harmonic Anal. (2000)], coupled with the 
NUFFT.  There are several advantages to 
this approach.  The FRM method is explicit, 
unconditionally stable, and requires an 
amount of work of the order O(NM log N) 
where N is the number of discretization 
points in physical space and M is the number 
of time steps [Li and Greengard, J. Comput. 
Phys., to appear].  We have also developed 
NUFFT-based schemes for the rapid 
evaluation of heat potentials [Li and 
Greengard, in progress].  When coupled 
with the inhomogeneous solver described 
above, we will have completed the “core 
library” for the creation of a new generation 
of methods for the heat equation in complex 
geometry.  This is of significant technical 
importance, because the computation of 
diffusion or heat flow arises as an important 

component in a wide variety of physical 
settings and the need for implicit time-
stepping often emerges as a computational 
bottleneck.  By adopting an integral-
equation viewpoint, we have overcome that 
limitation.  Robust, easy-to-use solvers are 
being constructed.  The price to pay for this 
is a more complex set of core algorithms – 
all of which are now in place.  We are 
planning to release our NUFFT library for 
one, two and three-dimensional problems in 
late summer, 2007. 
 
Future Directions 
As indicated above, one of the reasons we 
have concentrated on developing the core 
machinery for heat solvers in complex 
geometry is that these solvers play an 
important role in numerous applications, 
including the unsteady, incompressible 
Stokes and Navier-Stokes equations.  We 
are planning to build fast solvers for these 
equations based on combining our heat flow 
tools to handle the diffusion of vorticity with 
the fast multipole method (developed 
previously) to handle the incompressibility 
constraint.  These solvers will form the basis 
for a new class of microfluidic design tools 
and new modeling capabilities for biological 
and other low-speed flows. 
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