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Applying Time Series Models in Forecasting 

Age-Specific Fertility Rates 

William Bell 
U.S. Bureau of the Census 

1. Introduction 

Fertility projections often involve the forecasting of age-specific 

fertility rates. This may be done to take advantage of the tiown age 

stn@ure of the existing female population in using the cohort-component 

approach to fertility projection, or because age-specific fertility is itself 

of interest. If rates for single years of age are used, this creates a 

forecasting problem of large dimension, with fertility rates for 30 or more 

ages to forecast. If long-term projections are being made, care must also be 

taken to insure that projections for different ages are consistent in the 

sense of the long-term shape of fertility across age looking reasonable in 

comparison to historical data. 

One approach to general forecasting problems involves the use of 

statistical time series models. In this approach one selects a particular 

time series model for the series to be forecast, fits the model to the data, 

and uses the fitted model to produce point and interval forecasts. The 

autoregressive-integrated-moving average (ARIMA) models discussed by Box and 

Jenkins (1970) comprise one popular class of models. These models have been 

applied to fertility projection and related problems by Lee (1974, 19751, 

Saboia (1977), McDonald (1979, 19Sl>, Miller and Hickman (19811, Land and 
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Cantor (1983), Miller and McKenzie (19841, Carter and Lee (19861, Miller 

(19861, Bell et al. (19881, and Bozik and Bell (1988). The use of these 

models need not be exclusive: they can be used in combination with other 

models (e.g. econometric models) and with demographic judgmental projections. 

Bell et al. (1988) projected fertility by combining short-term forecasts from 

time series models with long-term demographic judgmental projections. 

This paper is cnncerned with applying time series models in doing 

fertility projectic-2. In section 2 we give a review of ARIMA time series 

models and their use in forecasting. Section 3 discusses general 

considerations in using time series models to forecast fertility. We suggest 

time*series models are useful tools for short-term forecasting with 50 or more 

observations of age-specific fertility time series data analyzed on a period 

basis. Time series models can be used in a more judgmental fashion if less 

data are available, and in long term forecasting. Transformation to the TFR 

(total fertility rate) and relative fertility rates, and then to the 

logarithms of these, is likely to be helpful. Forecast intervals from time 

series models provide useful guides to the amount of uncertainty in the 

forecasts, and can be used to help develop alternative projections. Section 4 

considers in more detail some approaches to applying time series methods in 

forecasting age-specific fertility, with particular attention to the 

dimensionality and consistency problems mentioned earlier. We present results 

of some recent research at the U.S. Census Bureau where these problems were 

addressed by fitting scaled and shifted gamma curves to age-specific fertility 

rates, and another approach based on principal components. 

The analysis presented in sections 3 and 4 primarily uses fertility rate 

data for white women in the U.S. from 1921-84. Data for women of ages 14 and 
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under, single years of age 15 through 48, and 49 and over are available. (The 

upper age limit actually used varies in different analyses.) Some analyses 

are also shown of fertility rate data for women in The Netherlands for 

1950-86, covering ages 15 and under, single years of ages 16 through 48, and 

49 and over. 

It should be kept in mind that many of the general ideas discussed here 

could be applied to other problems, such as forecasting age-specific mortality 

rates, age-specific marriage rates, etc. We expect to investigate some of 

- these applications (particularly mn ,stality projection) at the Census Bureau in 

coming years. 
* 

2. ARIMA Time Series Models and Their Use In Forecasting 

Detailed discussions of ARIMA time series modeling are given in the books 

by Box and Jenkins (1970) and Abraham and Ledolter (1983); the latter 

emphasizes the use of ARIMA models in forecasting. Brockwell and Davis (1987) 

is a more theoretical book on time series models that covers some recent 

developments. Tiao and Box (1981) discuss multivariate ARIMA modeling. Bell 

(1984) also gives a brief review of time series models and gives examples of 

forecasting of birth rate series. Several statistical packages are available 

for doing time series modeling and forecasting; most of the analysis for the 

examples presented later was done with the SCA statistical package (Liu et al 

1986). 

We shall only give a brief s ummary of time series models here, and refer 

the reader to the above references for thorough discussions of modeling. We 

shall assume the time series has already been modeled and we are proceeding 
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with the fitted model as if it were the true model. We shall be primarily 

concerned in this paper with the application of these models in forecasting 

age-specific fertility. 

2.1 ARIMA Time Series Models 

Let Yt be the (univariate) time series being modeled and forecast. A 

simple time series model is the autoregressive model (AR(p)) 

. 

* Yt 
= #lYt-l + --* + BpytBp + at (2.1) 

where #,,...,# 
P 
are parameters, p is the the order of the model, the at's are 

independent, identically distributed N(0,a2), and we assume, for now, 

E(Yt) = 0. (2.1) looks much like a regression model for Yt in terms of its 

own past values - hence the name autore-- +sive model. Letting B be the 

backshift operator (BYt = Ytml and BJY,. 
:'t-j 

) we can write (2.1) as 

(l-(lB - ._ - (pBp)Yt = at (2.2) 

or #(B)Yt = at where ((B) = 1 - dlB - . . . - dpBP. 

The moving average model (MA(q)) is 

Yt t 
=a - Qa,-1 - - - - eqatwq (2.3) 

or Yt = (l-BIB - . . . - oqBq)at or Y, = d(B>at. For reasons we shall not go 

into here, we shall generally assume the zeroes of the polynomials 
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l-#lx - . . . - dpxp and 1+x - . . . - flqxq are greater than 1 in absolute 

value. Additional flexibility results from combining (2.2) and (2.3) to get 

the autoregressive-moving average model (ARMA(p,q)) 

(l-#lB - --a - #pBp)Yt = (l-BIB - . . . - dqBq)at. (2.4) 

We can allow for a nonzero mean of Yt in (2.2) - (2.4) by replacing Yt by 

Yt-p, where p = E(Yt) is the same for all t. 

9 
In the above we essentially assumed the time series Yt to be stationary. 

Thi\effectively means the statistical properties of any segment of the Y, 

series are the same as those of any other segment, including the assumption 

that E(Yt) = Jo remains constant over time. Stationarity is an unrealistic 

assumption for most demographic and economic time series. One generalization 

of the models to deal with this, allowing E(Yt) to vary over time, will be 

discussed later. Another useful generalization assumes that not Yt itself, 

but some difference of Yt, is stationary. For example, we might use an ARMA 

model (2.4) for the first difference of Y 
t 
: 

Yt - yt-l = Cl-B)Yt = VY, 

or the second difference 

(V = 1-B) 

Yt - 2y,-1 + Yt-2 = (1-B) [(l-B)Yt] = (l-B)2Yt = V'Y, . 
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In general, we may need to take the d 
th 

difference, VdYt, though rarely is d 

larger than 2. Substituting VdYt for Yt in (2.4) yields the ARIMA (p,d,q) 

model 

(l-(lB - - - - - (pBp)V%t = (l-BIB - . . . - oqBq)at (2.5) 

or ((B)VdYt = B(B)at. (The "I" in ARIMA stands for "integrated", the inverse 

of differencing). If VdYt has a constant nonzero mean, this can be allowed 

* for by adding a parameter e. to the right hand side of (2.5): 

((B)VdYt = 8, + ti(B)at (2.6). 

As will be discussed in section 3, another useful generalization is to let Yt 

be some transformation (e.g. logarithm) of the original series of interest. 

Two further generalizations of these models are worth mentioning. The 

first is seasonal models for sub-annual series (e.g. monthly) with an annual 

cycle. These models allow additional AR, MA, and differencing operators in 

the backshift operator B raised to the seasonal period (e.g. B 
12 

for monthly 

data). This lets the models explain the strong relations between observations 

that are one or more full years apart. One useful model is the 

ARIMA(0,1,1)x(0,1,1)12 model 

(l-B)(l-B12)Y = t (l-0 B) (1-B 1 12 
B12)a 

t' 

This model and others are discussed in detail by Box and Jenkins (1970). Land 

and Cantor (1983) used such models with monthly birth and death rate series. 



We shall not consider seasonal models further since the applications we are 

concerned with here are to annual time series of fertility rates. 

The second generalization is to multivariate, or vector, ARIMA models. 

If not one, but k time series Ylt,...,Ykt are to be modeled, we generalize the 

previous models by replacing Yt by Yt = (Ylt,...,Ykt?', at by 
I 

Ft = (a lt'"e'akt )( which is iid N(0, E) where c = Var(at) is kxk, and 

parameters 4i and flj by kxk parameter matrices Pi and 8.. Thus, the 
J 

multivariate ARIK4(p,d,q) model generalizing (2.5) is 

. 

* 
(I-qB - . . . - tipBp)[Vdytl = (I - tilB - . . . - oqBq)at (2.7) 

where I is the kxk identity matrix. Notice in (2.7) that Vd = (l-B)d remains 

a scalar operator, indicating each series Yit is differenced the same number 

of times. This is common in practice, though not essential. One can also 

allow nonzero means by replacing Yt by Yt- p with ,u a kxl mean vector (if 

d=O), or putting a kxl vector f. on the right hand side of (2.7), analogous to 

(2.6). The vector AR(p) model can be written as 

(2.8) 

Such models (possibly with VdYt, VdYtml,..., instead of Yt, Ytwl, . . . ) are 

used extensively in econometrics. (2.8) yields an equation for each Yit in 

terms of p past lags of itself and each of the other series Y jt j#i, and a 

shock a. 
1t 

which may be correlated with shocks a. 
Jt 

from the other equations 

(j#i), implicitly allowing contemporaneous relations between Yit and Yjt. 
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The applications in section 4 exclusively use autoregressive models for 

differenced data, both univariate and multivariate. Evidence from the data 

for moving average terms in models was not strong. Models with MA terms tend 

to be more important with seasonal time series. 

2.2 Regression Models with AROMA Errors 

A linear regression model for the time series Yt is 

Yt = B,Xl, + - * * + am& + et (2.9) 
* 

where Xlt,...,Xmt are explanatory (independent) variables, deterministic 

variables observed over time, and the error term e thasmeanO. The 

expression plXlt + . . . + prnXmt models a changing mean function, E(Yt). 

Standard regression analysis would assume the et are uncorrelated over time, 

but this is unrealistic for time series data. Instead, we can let et follow 

an ARIMA model. We write the combined model as (2.9) and (2.5) with et 

substituted for Y, in (2.5), or we write the model in one equation as 

d(B)Vd[Yt - ~ Pixitl 
1 

= fl(B)at (2.10) 

We can look at the model (2.10) as either generalizing the error structure of 

the regression model (2.9), or as generalizing the mean function of (2.5) 

(where we assumed E(VdYt) = 0). 
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Regression terms in time series models such as (2.10) have many uses. 

Bell and Hillmer (1983) give an approach to developing such models, with 

particular attention to modeling calendar "trading day" and holiday effects 

in monthly economic time series. Miller and McKenzie (1984) apply such models 

to monthly birth rate series, finding calendar effects in the data, and 

showing the use of regression variables to account for these produces much 

better models than pure ARIMA models such as were used by Land and Cantor 

(1983). Modeling effects of known interventions (Tiao and Box 1975) and 

* unknown outliers (Bell 1983) are useful applications where the Xit are 

appropriate indicator variables; such applications will he il.lust.rated later. 

Another useful application with seasonal data is the modeling of a 

deterministic seasonal component with a regular annual cycle. 

Polynomial regression, i.e. use of l,t,t2,... for Xlt,X2t,X3t,... in 

(2.9), has often been used in time series forecasting. However, if we use 

polynomial Xit in (2.10) with d>O, some of the terms are wiped out since 

Vdtj=O for j=O,l,. ..,d-1; hence the coefficients B,,...,p,-, would not be 

estimable. Thus, the ARIMA(p,d,q) model (2.5) implicitly allows for a 

polynomial of degree d-l in modeling and forecasting Yt. This implicit 

polynomial is adaptive and need only apply locally, in the sense that the 

polynomial coefficients are effectively redetermined as each new data point is 

added. The model (2.6) implicitly allows for a polynomial of degree d which 

is non-adaptive in the sense that the coefficient of t d is Be/d! at all time 

points. Because of these results, it is rarely necessary to explicitly 

include polynomial terms in ARIMA models beyond the 8, in (2.6). 

The problem with using polynomial regression in modeling and forecasting 

time series is that the assumption that the regression error terms are 



10 

uncorrelated over time is virtually always unrealistic. Bell (1984) points 

out that this has the following bad effects: the behavior of long run 

forecasts is unreasonable (tending to +DI or -a>, if the fit of the curve at 

the end of the series is poor short run forecasts are likely to be bad, and 

variances of forecast errors from regression theory are usually highly 

unrealistic. ARIMA models tend not to suffer from these drawbacks. In fact, 

if a polynomial regression model of degree d is really appropriate, then the 

time series modeling process should lead approximately to the model 

. 

VdYt = (l-BldYt = O. + (l-B)'at ~ 

Solving this difference equation for Y, leads back to the polynomial 

regression model. (See Abraham and Ledolter 1983.) Thus, ARIMA models allow 

for polynomial regression when appropriate. 

If Xt in (2.10) (assuming only one X for simplicity of discussion) is not 

deterministic but is itself a stochastic time series, then (2.10) becomes a 

particular case of a transfer function model; these are discussed in detail in 

Box and Jenkins (1970). For forecasting purposes the distinction between a 

deterministic and stochastic Xtis important since if X, is stochastic its 

future values are not known, and to forecast Yt using (2.10) we must also 

forecast X,. This shifts some of the responsibility for forecasting Y, onto 

forecasting Xt, and the error in forecasting X, leads to part of the error in 

forecasting Yt (Box and Jenkins 1970). Transfer function models are useful in 

forecasting if (1) the relationship between Y+, and Xt is strong, so that Xt 

explains a significant amount of the variability in Yt, and (2) X, can be more 

accurately forecast than Yt. One case where (2) occurs is for "leading 
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indicators", where Yt this period depends heavily on the value of some other 

variable last period, (X,-,1 or in some other preceeding period (Xtwr), in 

which case the explanatory variable is known exactly at least through r time 

periods ahead when forecasting Yt. McDonald (1981) found marriages to be a 

useful leading indicator in transfer function models for forecasting first 

births in Australia. For the most part the preceeding comments apply also to 

jointly modeling and forecasting Y, and X, with a multivariate ARIMA model, of 

which transfer function models are a special case (Tiao and Box 1981). 

9 

2.3 Forecasting With ARIMA Models 

I 

Given an ARIMA model, forecasts having minimum mean squared error may be 

easily computed recursively as shown in Box and Jenkins (1970). (Brockwell 

and Davis (1987) consider some additional theoretical details.) Denote such a 

forecast of Yn+L as k(L), where n is the forecast origin (time of the last 

data point), and e the forecast lead. When using a model with regression 

terms, (2.101, one forecasts ? 
n+L = Y,+e 

- i$? x 
i i i,n+l' 

and then adds F BiXi n+l 
i ' 

back in to get Yn(.!). Variances of forecast errors, V(C) = Var(Yn+e - Yn(e)), 

are also easily computed. One can then compute forecast intervals under 

normality for the future values Yn+e from 

fp> - k(V(e))1'2 < Y,+! < Yn(e, + kWd’2 (2.11) 

where, for example, k=l would yield an approximate 67% interval, and k=2 an 
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approximate 95% interval. Time series software packages such as SCA (Liu et 

al 19SS) can perform the computations required. 

Consider the "forecast function", Yn(!) as a function of forecast lead .!?. 

Box and Jenkins note that for an ARIMA(p,d,q) model Y,(E) satisfies a 

difference equation for C > q-p-d (for all .!! if q 5 p+d). As such, it is a 

linear combination of damped exponentials, damped sine waves, and a polynomial 

(if d > 0). For large c the polynomial term will eventually dominate. One 

can also obtain results about the behavior of the forecast error variance 

- function, V(L). The behavior of Y,(.!!) and V(.!) for large !! with an 

ARIM&(p,d,q) model can be summar ized as follows: 

(i) If d = 0 then k(e) + p and V(e) + Var(Y,) as .! -) m where ,% = 0 for 

(2.5), p = 80/(l-(1 - . . . - dp) for (2.6), and fi is replaced by 

E(Y n+JJ) for (2.10). 

(ii) If d > 0 then Yn(L) is eventually dominated by a polynomial of 

degree d-l for (2.5), and of degree d for (2.6). For (2.10) Yn(4?) 

is eventually the sum of a polynomial of degree d-l and the 

m 
regression function ' Pixi m+l' Also, if d > 0 

1' 

V(L) + m as L + m . 

Table 1 s ummarizes the behavior of in(e) and V(l) for some popular models. 
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3. General Considerations in Using Time Series Models to 

Forecast Age-Specific Fertility 

The general considerations we discuss here are not necessarily restricted 

to the use of ARIMA time series models in forecasting age-specific fertility. 

It should be clear that many apply to the use of other types of models, and 

even to judgmental forecasting. Some obviously apply to other forecasting 

problems, such as forecasting age-specific mortality. 

9 

3.1 Length of Series 
* 

One of the first questions that arises when considering the use of time 

series models for forecasting is how much time series data there is to work 

with. This question is important because the usual approach uses the 

available time series data to select and fit a model, and then uses the fitted 

model in forecasting as if it were the "true model". The more data we have 

(the longer the time series) the more likely it is that we will select a model 

that can approximate the structure of the data well, and the better our 

parameter estimates will be. Both of these make the assumption that we how 

the "true model" more reasonable. Recent research (Thompson and Miller 1986, 

Ansley and Kohn 1986) attempts to deal with the effect of uncertainty about 

model parameters in forecasting. 

As to exactly how much data is needed for time series modeling, Box and 

Jenkins (1970, p. 18) suggest at least 50 observations, though this 

requirement obviously can depend on the particulars of the series involved. 

We generally prefer to use as much data as possible, subject to some 
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qualifications mentioned later. Some things can be done using time series 

models with more limited data. Model selection might be based on properties 

of the resulting forecast function, since the data will be unlikely to supply 

definitive evidence about what model is appropriate. This approach was taken 

by Bel.1 et al. (1986) in forecasting household headship proportions with 27 

years of annual data. When forecasting many short time series it may be 

possible to make assumptions that effectively increase the sample size for 

estimating the parameters. For example, with few observations over time of 

* 
age-specific fertility rates, we might consider assuming the same model for 

each-age or across groups of ages. Thisted and Wecker (1981) discuss a 

generalization of the "same model" idea. In general, the more limited are the 

available data, the more assumptions one must make in using time series 

models, bringing this closer to doing judgmental forecasting. With very 

limited data one might pick both the model and its parameters judgmentally, 

according to the behavior of the resulting forecasts. 

However much data is available, there may still be a question about how 

much of the data should be used in modeling. While generally more data are 

better, this assumes that the same model applies over all the data. However, 

there may be known events thought to affect the data, or other reasons to 

suspect the structure of the data may have changed over time. There are two 

basic ways of dealing with this: drop the affected data, or attempt to model 

the effects. Regression terms are useful for the latter as discussed in 

section 2. Here we shall mention some of the data considerations in the 

development of time series models to forecast white fertility in the U.S. (see 

Bell et al. 1988). 



15 

Age-specific fertility rate data were available for the years 1917-84, 

but ultimately data for 1917-20 were dropped because of concerns about effects 

of World War I and the 1919 flu epidemic on fertility. It was thought that 

retaining these four years of data was not worth the trouble of trying to 

model these effects. The data for 1942-47 appear to be affected by World War 

II (see Figures 3, 8, 9, and 12). While some approaches to fitting time 

series models will handle missing data (e.g. Jones 19801, so that data for 

these years could potentially have been dropped, our existing computer 
. 
software did not allow this. Instead, indicator regression variables for the 

yearsl942-47 were used as suggested in section 2. Other empirically 

determined outliers were also handled this way. (See Bell et al. 1988.) 

Miller and Hickman (1981) discuss empirical evidence that different models 

should be used for pre- and post- World War II U.S. fertility data. However, 

their analysis used the suspect 1917-20 data; reanalysis of TFR without this 

data suggested a possibility of model change but did not offer conclusive 

evidence. There was also some concern about changes in the quality of the 

data over time. While birth registration in the U.S. in recent years is 

essentially complete, this was not so in earlier years. However, our data 

were corrected for underregistration of births (Passel, Rives, and Robinson 

1977). Perhaps a more serious consideration was the quality of population 

estimates in earlier years. In particular, population figures for 1921-29 

were obtained by interpolating between the 1920 and 1930 censuses, rather than 

estimated by demographic analysis as were figures for later years. This might 

suggest dropping the 1920-29 data, though we did not try this. 

Apart from modeling considerations, sometimes the relevance of data in 

the distant past for forecasting is questioned. However, forecasts from time 
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series models depend most heavily on recent data, with diminishing weight 

given to data distant from the forecast origin. (See Table 1.) In fact, 

forecasts from an AR(p) or ARIMA(p,d,O) model are determined entirely from the 

last p or last p+d data points, respectively. Thus the question of whether 

all available data should be used is really a consideration for modeling, not 

directly for forecasting. 

3.2 Period or Cohort Basis 

. 

A fundamental question when analyzing age-specific fertility time series 

is whether the data should be analyzed on a period (indexed by calendar year) 

or cohort (indexed by year of mother's birth) basis. Demographic theories 

about fertility may be formulated on a cohort basis (e.g. the Easterlin 

hypothesis), while economic theories may emphasize the simultaneous effects of 

economic conditions on fertility at all ages, suggesting a period basis. Data 

from birth expectations surveys may fit naturally into a cohort analysis, but 

might also be thought of as reflecting current attitudes that may chang; over 

time and thus be useful in a period-based analysis. 

We have not attempted to directly resolve the period-cohort controversy, 

but have done our analysis on a period basis for two essentially practical 

reasons. First, use of age-specific data on a cohort basis creates massive 

incomplete data problems for time series analysis since a cohort fertility 

record is not complete for some 30 years after its first births are observed. 

Second, in our data cohort fertility rates do not follow smooth patterns 

across age as do period fertility rates. 
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Both of these problems are illustrated in Figure 1. Figure la shows the 

U.S. period age-specific fertility rates for 1927, 1957, and 1977. Although 

total fertility was markedly different in these years, the three sets of rates 

have a similar smocth shape over age. Figure lb shows U.S. fertility rates 

for the 1902, 1932. and 1952 birth cohorts, which reach age 25 in 1927, 1957, 

and 1977 respectively. This shows the incomplete data problems when analyzing 

data on a cohort basis, and shows rates for different cohorts do not follow 

the same smooth shape across age. The irregular shape of the rates is most 
. 
pronounced in recent cohorts (for exampie, the 1952 cohort), which are most 

important for forecasting. The deviations of period fertility rates from a 

common shape are most pronounced in early years (e.g. 1927) which are the 

least important for forecasting. These problems would make it difficult to 

use the approaches to dimensionality reduction discussed in section 4 with the 

data on a cohort basis. Figures 2a and 2b show the corresponding period and 

cohort fertility rates for The Netherlands. (We did not have data for the 

year 1927 or for the 1902 cohort.) The same basic conclusions hold, though to 

a lesser degree; in particular, the 1952 cohort rates are smoother than in the 

U.S. data. 

3.3 Transformation of the Data: Use of the 

Total Fertilitv Rate (TFR) and Relative Fertilitv Rates 

If Fit is the fertility rate for mothers of age i in year t, the total 

fertility rate (TFR) in year t is 

TFRt = E Fit 
i 



18 

where the sum extends over the range of childbearing ages. Now define the 

relative fertility rate for age i, year t by 

R. 1t 
= Fit / TFRt (3.1) 

which is the proportion of births in year t that occur to mothers of age i. 

TFR measures the overall level of fertility in year t, while the 

the distribution across age of fertility in year t (the shape of 
. 
curve>. The transformation from the Fit to TFRt and the Rit can 

usef$ for modeling and forecasting. 

R i+, describe 

the fertility 

be quite 

An interesting question is what relation is there, if any, between the 

level of fertility and the shape of the fertility curve, i.e. between TFRt and 

the Rit. The analyses of Miller (19861, Bell et al. (19881, and Bozik and 

Bell (1988) all indicate at most a weak relationship in the U.S. data, 

suggesting the shape of the fertility curve depends little on the level of 

fertility. All at least suggest TFR can be modeled and forecast separately 

first, then the Ri can be forecast, quite possibly without allowing any 

dependence of their forecasts on those for TFR. This evidence is in sharp 

contrast to the approach suggested by Rogers (1986) which involves regression 

on TFR of the parameters of a curve fit to the Ri, to develop forecasts of the 

Ri from those of TFR. 

The above discussion suggests an easy first step into using time series 

models for projecting fertility is to model and forecast TFR, and then develop 

Ri forecasts separately. The Ri could be projected to remain constant at 

their most recent values, or other forecasts could be developed judgmentally. 

(Note that since X Rit 
i 

= 1 we can determine forecasts for R4g, say, from those 
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of the other Ri's.) Using time series models to forecast the Ri leads us to 

consider the dimensionality problem discussed later. 

Along with transforming to TFR and the Ri, we should consider other 

transformation of these series. The logarithm is a particularly useful 

transformation for any time series that is always positive. Forecasts and 

forecast interval limits for a log-transformed series may be exponentiated to 

yield forecasts and interval limits for the original series. The use of the 

logarithmic transformation has several important benefits: 

* 

(I) Taking logarithms often makes the model assumptions of normality and 
* 

stable variance much more tenable. If a series shows more variability 

when it is at high levels than when it is at low levels, then taking 

logarithms may correct this and also make model residuals look more 

nearly normally distributed. Figure 3 shows TFR and log(TFR) for the 

U.S.) and Figure 4 for The Netherlands. Taking logarithms appears 

beneficial, since it pulls down the baby boom peak in the data and 

relatively enhances the variability when TFR is at lower levels, as in 

recent years. Further modeling analysis has confirmed the benefits of 

taking log(TFR), though it has also indicated outliers that need to be 

dealt with whether or not logs are taken (Bell et al. 1988). 

(2) Taking logarithms prevents forecasts and forecast interval limits for the 

original series from going below zero. This is attractive for both TFR 

and the Ri since they can never be negative. Figure 3 shows the results 

for TFR in the U.S. using a multivariate model given in Bell et al. 

(1988) for log(TFR). Figure 4 shows results for The Netherlands using an 

ARIM.A(l,l,O) model for log(TFR). The forecast intervals for log(TFR) are 
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symmetric about the point forecast; when exponentiated the resulting 

intervals are asymmetric, with the lower limit asymptotically approaching 

zero. If untransformed TFR were modeled and forecast, the lower forecast 

limit would quickly go below zero, which does not make sense. It is 

possible to enforce a different lower limit than zero if it is believed a 

series will never fall below some other level. In the most recent set of 

U.S. Census Bureau fertility projections the transformation log(TFR-1) 

was used to prevent TFR forecasts and limits from going below 1. 

- (3) Additive relationships between logged series are interpretable as 

multiplicative relationships between the original series. In particular, 
* 
corresponding to (3.1) we have 

log (Fit) = log(TFR$ + log(Rit) 

Thus forecasts of log(TFRt) and the log(Rit)'s are easily translated into 

forecasts of the log(Fit)'s, ar ey can then be exponentiated into 

forecasts of the Fit's' Also, use a regression model with time 

series errors (section 2) where both the dependent and independent 

variables are logged, the resulting regression equation implies 

multiplicative relations between the original variables. 

(4) The first difference of a logged series is approximately a growth rate. 

That is 
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VlogU,) = log(Yt) - log(Yt-l) = log(Yt/Yt-lI 

= log I1 + ‘ty;-J 

% yt - Yt-l 

Y 
t-1 

x2 3 
ignoring all but the first term in log (1+x) = x - ; + f - ,.. , which .5 

* 
is approximately correct as long as (Y, - Y, lj/Yt-l is small. Since .a 5- 

first differencing seems advised for most series, if we have also taken 
e 

logarithms we often will effectively be modeling growth rates. Of course 

we could actually use the growth rate transformation, (Y 
t 
- Y t-1) /yt-1 if 

this is preferred. The results should be close to those for Vlog(Yt) in 

most cases. 

Other transformations than the logarithm are possible. Since the Rit's 

are bounded below by zero a.@ above by I, another possible transformation for 

them is the logistic, defined by 

R. 
Z. 

1t = l"git('it) = log It = 10g(Rit) - log(I-Rit) 
I-Rit 

with inverse Rit = eXp(Zit)/(l + eXp(Zi,>) - This vi11 constrain forecasts and 

intervals for Rit to the interval (0,l). Bell et al. (1986) used the logistic 

transformation in projecting household headship proportions. However, in 
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projecting relative fertility rates the logistic should yield results quite 

close to the logarithm, since the Rit are all rather small and not near I, so 

that the log(l-Rit) term is approximately linear in Rit and does not affect 

the analysis. Even upper forecast interval limits for Rit using log(Rit) 

would usually not approach 1 for many years into the forecast horizon. 

Box and Cox (1964) discuss the general family of power transformations, 

of which the logarithm is a limiting case. Ansley, Spivey, and Wrobleski 

(1977) discuss their use with time series models. Miller and Hickman (1981) 

use a square-root transformation of birth rates for five year age groups. 
. 
However, it is not clear how to handle forecast- J or limits that go below zero 

with,this transformation, since simply squaring them reflects them back away 

from zero, which makes little sense. Thompson (1987) considers use of the 

logistic transformation on an interval whose endpoints are estimated from the 

data. This can be used with any series (he considers U.S. TFR) to produce 

forecasts and limits bounded both above and below. 

3.4 Forecast Intervals and Alternative Projection 

The Census Bureau has traditionally provided alternative sets of 

population projections derived from alternative assumed future courses of 

fertility, mortality, and migration. The most recent set of projections (U.S. 

Bureau of the Census 1988) includes 30 such projections. The alternative 

fertility projections were developed from upper and lover 67% forecast 

interval limits for TFR from a time series model for log(TFR-1) used through 

1990, and interpolated to assumed ultimate high and low TFR values of 1.5 and 
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2.2 in 2020. Figure 5 shows the results. The most striking thing is how wide 

the forecast intervals of Figure 3a are relative to the alternative 

projections of Figure 5 beyond about 1994. 

Forecast intervals from time series models attempt to reflect the 

uncertainty about the future course of the time seri.es in the context of the 

model and data used in forecasting. As noted in section 2, in models with 

differencing the forecast error variance tends to infinity as the forecast 

lead time increases, resulting in ever widening forecast intervals. This 

- basically says that the past data on the time series has little to say about 

the distant future. . In the case of TFR, the wide movements in the historical 

data over relatively short spans of time (e.g. the post-war baby boom) suggest 

this conclusion without use of a time series model. 

There are two ways of viewing this difference between forecast intervals 

from time series models and alternative demographic projections. One 

viewpoint is that long term judgmental projections incorporate demographic 

knowledge that is not used in the time series model forecasts, i.e. the long 

term future is not as uncertain as an analysis based solely on historical time 

series data would lead us to believe. Another view-point is that alternative 

demographic projections are not meant to reflect uncertainty in the same sense 

that forecast intervals do (giving an interval in which the value of the 

series at some future time point can be expected to fall with a certain 

probability). Forecast interval limits reflect the limits of what can be 

expected (based on the model) with a given probability, whereas users of 

alternative projections may not wish to plan for such extremes, at least not 

in the long term. (Short-term intervals, up to 5 or so years ahead, are not 

so wide.) More discussion between statisticians and demographers is warranted 
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on this point, and should consider how alternative projections are actually 

used. Otherwise, people may be led to adopt more cynical versions of these 

viewpoints, such as that time series forecast intervals are ridiculously wide 

or the limits described by alternative demographic projections are 

ridiculously narrow. 

4. The Dimensionalitv and Consistencv Problems and 

rime Series Methods 

. 

The dimensionality aud consistency problems in Lorecasting age-specific 

fertrlity were alluded to earlier. The dimensionality problem is the large 

number of time series to be forecast - 30 or more if data for single years of 

age are being used. A common means of addressing this problem is simply to 

use data grouped into broader age intervals, such as 5-year intervals. 

However, if there are benefits to be gained from using the cohort-component 

approach over simply forecasting births directly, then use of broader age 

intervals should lessen these benefits. Also, we shall see in section 4.4 

that use of broader age intervals can be viewed as a non-optimal choice among 

linear transformations to reduce dimensionality. 

The consistency problem refers to the possibility that if age-specific 

fertility rates are forecast or projected by a model or procedure that does 

not take into account their strong relationships, then the long-term 

projections may show a distribution across age that does not make intuitive 

sense in terms of the fertility curve not having the same sort of smooth shape 

as historical data. This does not mean that such forecasts are necessarily 

bad. Any long-term forecasts are likely to be substantially in error, and 
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errors in forecasting TFR long-term are likely to be more important than 

errors in forecasting the age-distribution of fertility (the Ri's). The 

concern may be more over the intuitive appeal of the forecasts when looked at 

from either a period or cohort perspective. Even though recent U.S. cohorts 

have not shown a smooth distribution of fertility across age, this may be 

desired in long-term forecasts. 

The dimensionality and consistency problems are connected. If the 

dimension is low (as when broad age intervals are used) it is not difficult to 
. 
achieve consistency, nor is consistency of much concern. If historical data 

did got show such strong consistency (smooth shape of fertility rates over 

age) then dimensionality would be easier to address; in the extreme case where 

the time series are all unrelated they can all be forecast separately and we 

need not worry about reducing the dimensionality of the problem. 

In the first two sections of this chapter we consider how two direct 

attempts at applying time series methods run up against the consistency and 

dimensionality problems. In the second two sections we present two approaches 

that have been investigated recently at the U.S. Census Bureau for dealing 

with these problems. In what follows we shall use the U.S. data for 1921-84 

transformed to log(TFR) and the log(Ri)'s as discussed in section 3.3 (except 

for direct use of the Ri's in section 4.3). The problems and approaches 

illustrated here apply as well to use of data without the logarithm or 

relative fertility rate transformations. 

4.1 Univariate Time Series Models for Each Age Separately 

Section 3.3 suggested a simple time series approach to forecasting 
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age-specific fertility is to transform to TFR and the Ri, model and forecast 

log(TFR), and forecast the Ri to remain constant at their values in the last 

year of data. This corresponds to using separate univariate random walk 

models for the Ri (or log(Ri)). This is not necessarily a bad approach. 

There is no consistency problem since the forecasted shape of the fertility 

curve each year is the same as in the last year of data, and no dimensionality 

problem since only TFR is being modeled. However, this approach will not 

forecast any change in the shape of the fertility curve. In recent years in 

- the U.S. TFR has remained relatively stable (see Figure 3). while there have 

been changes in the distribution of fertility over age (reflected in Figures 8 
* 

and 9). We wished to consider methods that might forecast changes in the 

fertility distribution over age, at least in the short-term. 

The next step up in generality is to use univariate time series models to 

forecast log(TFR,) and each log(RJ series separately. However, this 

approach runs into the consistency problem since the changes forecast by the 

univariate models for the log(Rit)'s may result in long-term forecasted 

fertility distributions that lack intuitive appeal. Figure 6 shows the 

results of fitting and forecasting each log(Rit) with a model with regression 

indicator variables for the years 1942-47 (to handle the effects of 

World War II on the data) and ARIMA(l,l,O) errors. Since the indicator 

variables are all zero after 1947 they affect only the model fitting, not 

directly the forecasting. The (l,l,O) model forecasts head towards an 

ultimate level and the forecast error variance grows unboundedly with the 

forecast lead. (See Table I.) Figure 6 shows the forecasts and 67% intervals 

for the year 2020 using data through 1984. The forecasts at all ages in fact 

stabilized considerably before 2020, so the forecasts in Figure 6 can be 
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viewed as ultimate values. (This will also be the ultimate forecast fertility 

distribution looked at on a cohort basis if we use TFR forecasts that 

stabilize.) Notice that this ultimate fertility distribution does not exhibit 

the same smooth shape across age observed in historical data (period basis). 

These forecasts are not necessarily "bad". The 67% intervals shown reflect 

considerably uncertainty in the future data (here for 20201, and it would be 

easy to draw a smooth curve within the band described by the interval limits 

over age. Also, the uncertainty in forecasting TFR2020 (see Figure 3a) seems 

more important. 
. 

Still, one might prefer long-term forecasts that do capture 

the smooth shape of historical data. 

*If different univariate models were used for different log(R&'s, 

instead of the common (l,l,O) model, then we would be using different types of 

forecast functions at each age. (See Table I>. The inconsistency of the 

resulting long-term forecasts would then likely be worse. Use of a different 

common model than the (l,l,O) might yield more consistent results, but we are 

merely trying to illustrate the problem here. Also, the (l,l,O) model is not 

an arbitrary choice - examination of autocorrelation and partial 

autocorrelation functions (as discussed in Box and Jenkins 1970) suggests it 

is a reasonable model choice for log(Rit) for most if not all ages. 

There is another possible drawback to the use of separate univariate 

models. While the forecast intervals from the univariate models such as those 

shown in Figure 6 do reflect uncertainty in the individual age specific rates, 

if one wishes to eventually produce forecast intervals for total births, then 

separate univariate models vi11 not work - one needs a multivariate model that 

accounts for the strong relationships between the series. However, if only 

point forecasts are desired, and one is either not concerned with the 
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consistency problem or is willing to forecast the Rit to remain constant at 

current values (random walk model), then the use of separate univariate 

forecasts for the log(Rit) may not be a bad approach. 

4.2 Multivariate Models for All Ages Jointlv 

An appropriate multivariate model for all the series, log(TFR$, 

WR1qt) ,...,log(R45t) say, would not have a consistency problem, since it 

would capture the relationships between the series and this would be reflected 
. 

in the forecasts. Also, it could produce forecast intervals for functions of 

the series such as total births. (At least this could be done short-term, 

taking projections of the number of women at each childbearing age as given.) 

Unfortunately, the dimensionality problem posed in modeling this many time 

series is severe. For example, an unrestricted multivariate (l,l,O) model 

would have 33 parameters in each equation for a total of 33x33 = 1089 elements 

in its i parameter matrix. 
1 

This is far too many with only 64 years of data. 

One approach to the dimensionality problem is to use a multivariate model 

of a very restricted form. The CARIMA model of deBeer (1985) can be viewed 

this way. Perhaps the simplest restricted multivariate model results from 

using univariate models for each series, but fitting them jointly rather than 

separately (minimizing the determinant rather than the trace of the residual 

covariance matrix). To illustrate, Table 2 shows the results of fitting 

univariate (l,l,O) models to log(Rit) for i = 20'21'22 both separately and 

jointly, with regression adjustments for the years 1942-47. The models fit 

separately imply a moderate positive correlation in the year-to-year changes, 

which has some intuitive appeal (if relative fertility at age i increased last 
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year, it is more likely to increase than decrease this year). The dramatic 

changes when the parameters are estimated jointly are disturbing and not very 

appealing. This occurs because the strong contemporaneous relationships 

between the series reflected in the residual correlation matrix cause the two 

fitting criteria to be very different. The joint fit is best in an aggregate 

sense, and so is not necessarily "bad", though it lacks intuitive appeal. Use 

of other restricted multivariate models are unlikely to alleviate this 

problem. Interestingly, deBeer (1985) apparently used a trace rather than a 

. determinental fitting criterion with his CARIMA model. 

Fitting a restricted multivariate model to the entire set of 30+ time 

serLs might also lead to numerical problems (along with the problem of 

finding computer software to do this.) The strong contemporaneous 

relationships could make the joint estimation problem ill-conditioned. Rather 

than pursue this sort of modeling further, we consider other approaches to 

addressing the dimensionality and consistency problems. 

4.3 Curve Fitting to Reduce Dimensionalitv 

We shall briefly describe an approach to forecasting fertility using 

fitted gamma curves that is discussed in detail in Bell et al. (1988). A 

variant of this approach was used in the latest set of national population 

projections done by the U.S. Census Bureau. 

The shifted ganuna probability densisty is defined by 

?i = 
1 

(i-Ao)'-' exp{-(i-Ao)/@) i>A 

r (a)p* 
0 (4.1) 
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where A 
0 
is the starting point of the curve, a and p are the gamma 

distribution parameters, and l'(a) = /: u Q-l exp(-u)du is the gamma function. 

This was fitted to the relative fertility rates Rit (i=l4,...,45) in each year 

2 t by minimizing the weighted sum of squares, E wi(Rit - yjmt)l , where w. is 
i 1 

the weight for age i. Weights of 4 for ages 18 through 32 and 1 for all other 

ages were used to give more emphasis in the fit to ages with high fertility. 

Parameters Aot, at, and b+, were determined for each year by nonlinear least 

squares, constraining Aot to the interval 0 ( A0 5 14. The resulting fits for 

- two years are shown in Figure 7. The gamma cuve provides a good overall 

approximation to the relative fertility rates, especially in recent years. 
* 

The basic idea is to forecast the gamma curve parameters to produce 

forecasted gamma curves to use in forecasting the relative fertility rates 

R. 
1t - 

This reduces the dimensionality of the forecasting problem to 4 - the 

number of gamma curve parameters plus TFR. It also addresses the consistency 

problem directly since even long-term forecasts vi11 follow the smooth shape 

of the gamma curve. 

Before modeling, the parameters were transformed to the mean and standard 

deviation of the gamma curve: 

MB, = Aot + at& SDACBt = ,!3, . (Q$'~ 

These are the gamma curve analogues of the mean and standard deviation of age 

at childbearing. They are more interpretable and have more stable traces over 

time than at and pt. Aot took the value 0 or 14 for most years, and so was 

not modeled but was projected to remain at its most recent value of zero. 
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A restricted multivariate ARIMA(3,1,0) model was developed for log(TFRt), 

log(MACBt), and log(SDACB,) adjusted for war year effects. (See Bell et al. 

1988 for details.) The resulting forecasts are shown in Figure 3a for TFR, 

and Figures 8 and 9 for MACB and SDACB. These forecasts can be used to 

produce forecasted gamma curves. 

In its basic form this approach forecasts not the relative fertility 

rates themselves, but the gamma curves that uill eventually be fit to them as 

the future data become available. For medium- tc long-term forecasting this 

- distinction is mostly unimportant since the error in forecasting TFR vi11 

swamp the curve fitting error at most ages. However, for short-term 

(5 Gyears ahead) forecasting it is also important to forecast the deviations 

of the fitted curves from the actual rates at each age (the age-specific 

biases). Examination of the historical time series of biases at each age 

suggested a random walk model for each bias series was not unreasonable. 

Thus, the biases are forecast to remain constant at their values in the 

forecast origin year. Figure 10 shows the results for forecasting 1982 and 

1984 fertility rates from 1980. Notice that adding the bias forecasts to the 

forecasted gamma curves produces a big improvement in the forecasts for 1982, 

and a lesser improvement for 1984. 

The gamma curve approach effectively addresses the dimensionality problem 

since most of the attention in modeling can be focused on TFR, MACB, and 

SDACB; the biases can be forecast by simple means. It also addresses the 

consistency problem, though in the Census Bureau projections adjustments were 

made in the forecasts for women aged 40 and over (where fertility was 

forecasted by the model to rise rapidly in percentage terms, though the 

resulting forecasted rates were still very low.) The behavior of Aot, which 
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is not suited to modeling, is a slight drawback. Another drawback is that 

because the biases are not modeled jointly with TFR, MACB, and SCACB (which 

would put us right back at the dimensionality problem), we cannot produce 

forecast intervals for individual age-specific rates or functions of these 

with this approach. 

The general approach can be used with curves other than the gamma. 

Rogers (1986) suggests fitting "double exponential" curves; we found these to 

yield comparable fits to the gamma. The choice between well-fitting curves 

- that depend on only a few parameters is not critical, since no curve is likely 

to be immune from the bias problem. 
* 

4.4 Linear Repression ADproximations and the Principal Components Annroach 

We can obtain useful, dimension reducing approximations to the 

age-specific fertility rates from the gamma and other curves that are 

nonlinear in their parameters. It is also useful to consider approximating 

fertility rates with functions of age that are linear in their parameters, 

that is, by linear regression on some variables that are functions of age. 

The goal would be to find a reasonably small set of variables that, when 

regressed upon, would provide a good approximation to the fertility rates in 

each year of the data set. We could then model and forecast the time series 

of regression parameters, and use the forecasted regression approximations in 

forecasting the fertility rates, analogous to what was done with the gawuna 

curve. 

More specifically, let Rt = (log(R14 t),...,log(R46 t))' and let A be a 
J J 

33x5 full column rank matrix of J regression variables that we shall use to 
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approximate each FIt. The approximation is A &, where it is chosen for each t 

by least squares regression, i.e. et = (AfA)-lht~,. We could also use 

weighted least squares to give more emphasis to certain ages in the fit. 

Having determined tt for each year t in the data, we model and forecast & to 

L 
get &CO say, and use A &[I as a forecast of %+e, assuming the 

approximation error to be negligible for forecasting purposes. 

Two obvious candidates frequently used to approximate smooth functions 

are Fourier series (where the variables would be sine and cosine functions of 

- age at various frequencies) and polynomials (where the variables would be age, 

age2 , age3 ,...I. While we shall not present the results here, we found a 

Fouler series required a large number of terms for a good approximation. 

Polynomials worked better; a polynomial of degree 6 providing perhaps a better 

approximation than the gamma curve, though with 2 additional parameters. We 

can also ask in general what set of J variables, or what A, can provide the 

best approximation in terms of lowest total sum of squares of the 

approximation errors over all the years of the data set. The answer turns out 

to be that the columns of A should be the first J principal component vectors 

(i.e. the J eigenvectors corresponding to the J largest eigenvalues) of the 

sum of squares and cross products matrix of the data IIl,...,FIn. We can also 

define weighted principal components corresponding to a weighted least squares 

criterion. Details are given in Bozik and Bell (1987). Figure 11 shows 

approximations to the 1980 relative fertility rates using 4 or 8 principal 

components. Four components gives a much better approximation than the gamma 

curve, and still better fits result as more components are added. 

There are two ways to view the use of linear regression approximations. 

The first viewpoint is that taken above, that the goal is to use the 
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regression approximation to reduce the dimensionality of the forecasting 

problem. This is the view taken in Bozik and Bell (1987) in developing the 

principal components approach, where consideration is given to how many 

principal components are needed to provide approximations with errors that are 

negligible for forecast purposes. (This question was not resolved.) The 

,. 
second viewpoint is as follows. Notice that the approximation, A & = 

A(ArA)-‘A$ is a linear transformation of the data. If J < 33 this 

transformation is of reduced rank and some information is lost, though 

. principal components minimizes this for any J. If J = 33 the transformation 

is nonsingular and no information is lost <h Gt = R,), though dimensionality 

is n% reduced either. Why consider using J = 33, then? Because & may have 

a simpler structure for time series modeling than I&. (Recall the problems 

noted in section 4.2 in modeling Rt directly.) This second view is taken in 

Bozik and Bell (19881, where a model for the full set of 33 principal 

component series and log(TFR) is developed. While we shall not go into 

details here, the principal component series turn out to be much simpler to 

model than the original data: only log(TFR) .and the first 4 principal 

components were modeled multivariately, the remaining principal components 

followed univariate models with all those after the eighth following 

independent univariate models that could be fit separately. The resulting 

model can be used to develop forecasts and intervals for any linear functions 

of the fertility rates. Figures 12 and 13 show forecasts and 67% forecast 

intervals for Fit from 1984 through the year 2000 for a few select ages, and 

for all ages for a few select years. 

The principal components approach is appealing because for any given 

reduction in dimension (any J> it provides the linear transformation of the 
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data that can be used to best approximate the original data. Any other linear 

transformation of the data of rank J must lose some information relative to 

principal components. The use of birth rates for 5-year age intervals is a 

weighted average of the single-year-of-age rates if the age-specific female 

population figures are taken as fixed. Hence, use of birth rates for 5-year 

age intervals must lose information relative to use of the same number of 

principal components. 

- 5. Conclusions 

In this paper we have tried to provide some guidance on how time series 

methods can be applied in forecasting age-specific fertility. The way this is 

done vi11 depend heavily on how much time series data is available. Extensive 

modeling, such as multivariate modeling of gamma curve parameters or of 

principal component series, requires substantial time series data. With less 

data more simple models are dictated. With very limited data the modeling may 

require a substantial amount of judgmental input. 

We shall s ummarize the main points of the paper. (I) Time series models 

work better the longer are the series they have to work with, though some 

consideration should be given to the comparability of the data over time, 

i.e., does it make sense to assume a single model applies over the entire 

series? Use of regression terms to account for unusual events and other 

variables hewn to affect the series in question can help in this regard. 

(2) Time series models are most conveniently applied on a period basis. 

(3) Transformation of fertility rates to TFR and the relative fertility rates, 

and then to logarithms of these is generally recommended. (4) Forecast 
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intervals from time series models can be used in developing alternative 

demographic projections, at least short-term. (5) Forecasting fertility rates 

separately for each age (using univariate time series models or other means) 

can run into consistency problems in long-term forecasts, while direct 

multivariate modeling of rates at all ages is difficul.t due to the high 

dimension of the system. (6) The dimensionality and consistency problems can 

be addressed by two techniques presented: approximating the age-specific 

fertility rates with fitted curves (e.g. gamma curves), or use of principal 

. components approximations to the data. 
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Table 1. Behavior of the Forecast Function, ?n(e9, and Forecast 

Error Variance Function, V(L), for Some Simple ARIMA Models 

Model Y,U9 vce> Y,ce, -F V(l) -' 

Cl-#B9Ut-~9 = a+, $+ on-P9 f12c1q2+...+4 2u-19, ~ 

"AR(l)" 
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Cl-B9Yt = at 

"R&dom Walk" 
'n lr2c 

(I-B9Yt = Bo+at yn+eo* L 

"Random Walk with Drift" 

a21 

(I-B9Yt = (I-6B9at (l-89 CYn+BYnm1+d2Ynm2+* l l ] 
"Exponential 
Smoothing" V(L) = ~2~l+(&19(l-0>2] 

(I-#B)(l-B9Yt = at b(pl d 
e lr2 [1+(1+#92+. l l 

“(1’1’09” 
+(I+#+ . . .+p,2, 

Note: For the (1,1,09 model 

bO 
=Yn+- 4 ‘Yn - Y,-i> 

1-d 
bl = - 4 ‘Yn - Yn-i9 

1-d 

L12 WY,> = - 

l-42 

'n +a, 

+m (eo’09 

-00 (eo’09 +m 

constant 

for all L 
+a, 

bO +m 
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Table 2. Fitting Univariate ARIMA(l,l,O) Models Separately and 
Jointly to U.S. Data on log(Rit) for Ages i = 20, 21, 22 

(The Models Used Regression Terms to Adjust for the Effects 
of World War II on Fertility.) 

Age (9 

Separate (Univariate) Joint (Xultivariate) 
Estimation Estimation 

Residual Residual 

ii Variance 3i Variance 

. 20 .29 1.88 x 1o-4 -.22 2.42 x 10 
-4 

* 21 .54 1.56 x lO-4 .oo 2.14 
-4 x 10 

22 .45 1.69 -4 x 10 .09 1.96 x 10 -4 

Note: ii is the estimated AR(l) parameter in the model for age i: 

(l-~iB)VlOg(Rit) = ait. The residual correlation matrix for 

the joint fit is 

1.00 
.91 1.00 
.76 .86 1.00 1 
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PERIOD AGE-SPECIFIC FERTILITY RATES 

x 1927 rates 

0 1957 rates 

+ 1977 rates 
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Figure la. Period age-specific fertility rates for three years/ U.S. 
white women. Total fertility differs in these years/ and the age- 
specific pattern shifts, but the rates for all three years have a 
similar smooth shape across age that is well-approximated by a scaled 
and shifted ganrna density. The largest deviations from this shape 
occur in the early years of data (1927, for example), which are the 
least important for forecasting. The rates are plotted at the mother's 
age at last birthday plus .5. 
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COHORT AGE-SPECIFIC FERTILITY RATES 
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Figure lb. Cohort age-specific fertility rates for three cohorts, 
U.S. white women. Since we are only using data for 1921-1984, the 1902 
cohort is incomplete at ages 14-19, and the 1952 cohort is incomplete at 
ages 33-45. In contrast to period rates, cohort rates do not follow such 
similar smooth shapes across age. Large deviations from a corrunon smooth 
shape occur in recent cohorts I which are the most important for forecast- 
ing. The fertility rates for recent cohorts are relatively flat from 
ages 19-30, as illustrated by the 1952 cohort. 
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Figure 2a. Period age-specific fertility rates for two years, The Netherlands. 
The rates have a smooth shape across age similar to that for the U.S. data. 
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NETHERLANDS COHORT FERTILITY 
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figure 2b. Cohort age-specific fertility rates for two cohorts, The Netherlands. 
Since we are only using data for 1950-1986, the 1932 cohort is incomplete at 
ages 15-17, and the 1952 cohort is incomplete at ages 35-49. The cohort rates 
are not quite as smooth functions of age as the period rates, though this 
difference is not as pronounced as in the U.S. data. 
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TOTAL FERTILITY RATE -- U.S. 
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Figure 3a. 
(1985-2020). 

U.S. Total Fertility Rate (TFR), observed (1921-84) and forecast 
Forecasts and interval limits are obtained by exponentiating 

those in Figure 3b, which prevents point forecasts and interval limits from 
going below zero. Notice the asymmetry of the resulting forecast intervals. 
Notice also the unusual behavior in the years 1942-47 reflecting the effect 
of World War II on fertility. 
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LOG(TFR) -- U.S. 
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Figure 3b. U.S. log (TFR), observed (1921-84) and forecast (1985-2020). 
Forecasting was done with a multivariate ARIMA (3,1,0) model that also 
included log (MACB,) and log(SDACBt) developed in Bell, et.al. (1988). 
The forecast intervals for log (TFR) are symmetric about the point forecasts. 
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TOTAL FERTILITY RATE -- THE NETHERLANDS 
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Figure 4a. Netherlands Total Fertility Rate (TFR), observed (1950-86) and 
forecast (1987-2020). Forecasts and interval limits are obtained by 
exponentiating those in Figure 4b., resulting in asymmetric forecast intervals. 
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Figure 4b. Netherlands log (TFR), observed (1950-86) and 
Forecasting was done with a univariate ARIMA (l,l,O) mode 
intervals are symmetric about the point, forecasts. 

2000 2010 2020 

forecast (1987-2020). 
1. The forecast 
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TOTAL FERTILITY RATE -- U.S. CENSUS BUREAU PROJECTIONS 
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Figure 5. U.S. Census Bureau Total Fertility Rate projections (1985-2020). 
The projections used results from a time series model through 1990 
interpolated to ultimate low, middle, and high values of 1.5, 1.8, and 
2.2 which were determined judgmentally. Preliminary information on total 
births was used to modify the model forecasts for 1985 and 1986. These 
were then treated like actual data, so there are no high and low 
alternatives for these years. Notice how narrow are the intervals defined 
by the high and low alternatives in the long-term, compared to the forecast 
intervals in Figure 3a. 
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2020 FERTILITY DISTRIBUTION -- UNIVARIAT-E (1,l ,O) FORECASTS 
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Figure 6. Ultimate U.S. fertility distribution forecast from 
univariate time series models. Forecasts were developed from 
univariate ARIMA(l,l,O) models for log(Rit) fit separately for 

each age. These converged quickly to the ultimate values shown. 
The models were used to produce separate forecast intervals for 
each age in the year 2020. 
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RELATIVE FERTILITY AND FITTED GAMMA CURVES, 1927 AND 1977 
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Figure 7. Two fitted relative fertility curves, U.S. data. He show the 
fitted curves from 1927 and 1977, which have, respectively, the smallest 
and largest alpha values. The three adjustable gamma curve parameters 
allow the curves to approximate a variety of age-specific fertility 
patterns. The observed fertilities in these years are also shown; in 
general, the fitted curves provide good overall approximations to the data. 
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REAN AGE OF CHILDBEARING 

Y 28 

E 
A 
R 
S 27 

26 

2s I I I I I I I I I I I I I I I I I 
I 

I 

1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 2020 

WI 

YEAR 

Figure 8. U.S. MACB data with point forecasts from 1980 and point and 
67% interval forecasts from 1984. MACB is calculated from a gamma curve 
fitted to the relative fertility rates, and is analogous to the (empirical) 
mean age of childbearing. Forecasting was done with a multivariate 
ARIMA(3,1,0) model for log(TFR), log(MACB), and log(SDACB) developed in 
Bell et. al. (1988). 
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Figure 9. U.S. SDACB data with point forecasts from 1980 a 
67% interval forecasts from 1984. SDACB is calculated from 
fitted to the relative fertility rates, and is analogous to 
standard deviation of age at childbearing. Forecasting was 
multivariate ARIMA (3, 1, 0) model for log (TFR), log (MACB) 
log (SDACB) developed in Bell et al. (1988). 
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Figure 10a. Actual and forecasted fertility rates; fitted and forecasted 
gamma curves, U.S. data, (a) 1982 and (b) 1984. The gamma curve parameters 
are forecasted from 1980 using a multivariate ARIMA model estimated with 
data through 1980 (see Bell et al. 1988). The forecasted parameters produce 
forecasted gamma curves ( --) which may be compared to the fitted gamma 
curves i-1, obtained when the data for a given year become available. 
The forecasted curves are then adjusted with "bias forecasts" (see text) 
to produce forecasts of age-specific fertility rates (0) which may be 
compared to the actual fertility rates (x). The bias adjustment produces 
a large improvement in the 1982 forecasts, less of an improvement in 
1984, showing the importance of forecasting the biases in the short-term. 
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Figure lob. 
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Figure 11. Principal components approximations'(-) to 1980 U.S. logged 
relative fertility rates (x1. (a) Using 4 principal components. 
(b) Usinq 8 DrinciDal comoonents. 
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FORECASTS & 67% INTERVALS 
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Figure 12a. U.S. age-specific fertility rates (+&I, point (X) and 67% 
interval forecasts (--I for 1985-2000 from 1984, for selected ages: 
(a) 18; (b) 25; (c) 30. The point and interval forecasts are from a 
multivariate ARIMA model for the principal component series developed 
in Bozik and Bell (1988). 
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Figure 12b. 
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Figure 12X. 
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FORECASTS & 67% INTERVALS 
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Figure 13a. Point (XI and 67% interval forecasts (--) from 1984 of U.S. 
age-specific fertility rates for all ages and selected years: (a) 1985; 
(b) 1988; (c) 1995. The point and interval forecasts are from a multi- 
variate ARIMA model for the principal component series developed in 
Bozik and Bell (1988). 
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