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Patterns that Grow (in a dish)

William J. Bruno

Abstract

Chemotactic bacteria have been observed to congregate into highly regular patterns.
When the bacteria are placed in the center of a dish, a wave of bacteria can travel
outward, leaving a regular pattern of spots or stripes in its wake. Although chemotaxis
and excretion of an attractant can readily cause a pattern forming instability from a
uniform state, they are not capable of generating patterns starting from a single spot.
These patterns are apparently formed with the help of bacterial growth and depletion
of nutrients in the growth medium.



Recent experiments have found that
under certain special conditions, bacte-
ria will form very regular patterns in
a Petri dish [Budrene & Berg, 1991].
These patterns include equally spaced
radial stripes, radial columns of spots,
sunflower-like arrays of spots, and spots
with radial tails arranged in chevrons.
Bacteria were initially added to the
center of the dish, which contained
a growth medium suspended in semi-
solid agar. The patterns formed in
the wake of a circular “wave” radiating
from the center of the dish. Less reg-
ular patterns could be obtained start-
ing from bacteria spread uniformly in a
thin layer of liquid. It was shown that
the bacteria are capable of excreting as-
partate, to which bacteria are strongly
attracted.

It is obvious that if cells swim to-
wards an attractant that they them-
selves excrete, the cells will tend to
form clusters, since once cells become
over abundant in one region, nearby
cells will be attracted to that same re-
gion. In fact, this may be the most in-
tuitive example of a uniform state that
is unstable to perturbations that break
the spatial symmetry. Yet we shall see
that getting patterns of the type ob-
served is not as easy as one might think.
This will lead to ideas about why the
bacteria are behaving in such a pecu-
liar way.

A simple model

As is typical in pattern formation prob-
lems, determining exactly what pattern
will form depends on nonlinearities in
the problem, but a lot can be learned
from a linear analysis as well. So, let us
begin with the linear stability analysis
of the simplest possible model for such
an instability:

Ḃ = DB∇2B −R∇ · (B∇A)

Ȧ = DA∇2A + KB − µA (1)

Here B is the concentration of bacte-
ria, A the concentration of attractant,
DB and DA are diffusion coefficients, R
measures the attractiveness of the at-
tractant, K is the rate at which bac-
teria excrete the attractant, and µ de-
termines the lifetime of A. Equations
of this type have been considered in
the context of embryonic bone forma-
tion [Oster & Murray, 1989]. In what
follows, µ will be assumed to be negli-
gibly small.

The only nonlinearity in equation (1)
is the quadratic B∇A term. By lin-
earizing about a uniform steady state
with a concentration B0 of bacteria,
one finds that the system is neutrally
stable to uniform perturbations and
unstable to long wavelength perturba-
tions, i.e., those with wavenumber k

such that 0 < k <
√

RKB0/DBDA.
The maximally unstable mode is near
the middle of the unstable band and
grows with a rate proportional to (DB+



DA)RKB0/DBDA. That R and K
appear together in the numerator of
these expressions was to be expected,
since they determine the rates of the
two processes which are intuitively re-
sponsible for the instability. We can
conclude that our intuition was cor-
rect, and that as long as the physi-
cal dimensions of the system (e.g., the
size of the Petri dish) is larger that√

DBDA/RKB0 then bacteria in an ini-
tially uniform state will form a pattern,
consistent with the experiments done in
the liquid medium.

The fact that R and K appear in the
above expressions only as the product
RK has an interesting interpretation
which may be of some biological rele-
vance. Because only the product ap-
pears, the linear analysis will give ex-
actly the same results if each constant is
multiplied by −1. If R is negative, then
A is a repellent, not an attractant. If K
is negative, then A is destroyed by the
bacteria, not created. Thus, at least
at the linearized level, being repelled
by something you destroy is equivalent
to be attracted to something you make.
Either situation results in congregation.

Indeed, being repelled by something
the bacteria destroy has been proposed
as the underlying reason for these pat-
terns [Budrene & Berg]. Since the car-
bon source used in the experiments is
one of the more oxidized intermediates
of the Krebs cycle, it is possible that

the bacteria are in a state of oxidative
stress. Since the bacteria use up oxy-
gen, it makes sense that by clustering
together the bacteria could lower the
local oxygen concentration and thereby
relieve their stress. The intuition for
pattern formation is the same as before,
but vice versa: fluctuations that lower
the concentration of bacteria in a region
result in fewer bacteria in that region
and hence more repellent, and so forth.
If the oxidative stress idea is correct, it
means that bacteria are making use of
this symmetry. Rather than swimming
away from the oxygen they consume,
they simply generate an attractant and
swim towards it. The effect is the same.

Patterns from a point

Understanding the patterns that form
from a single initial spot is a bit more
difficult; for one thing, we cannot per-
turb about a uniform steady state. Let
us begin by carrying out a dimensional-
type argument. For a spot to be at a
steady state, the flux outward due to
diffusion must be offset by the flux in-
ward due to the attractant:

DB∇B = RB∇A. (2)

At steady state, the outward flux of A
must be balanced by excretion:

DA∇A = DBBT /rd−1, (3)

(ignoring multiples of π) where r repre-
sents the radius of the spot, BT is the



total amount of bacteria in the spot,
and d is the number of spatial dimen-
sions in the problem. Putting these two
equations together and estimating ∇B
as B/r we find that

rd−2 =
RKBT

DBDA

. (4)

In one dimension (d = 1) this says
r = DBDA/RKBT , and we can put this
equation to the test because the equa-
tion for a steady state is exactly soluble.
Substituting B = −DA∇2A/k yields:

−DB∇4A−R∇(∇2A∇A) = 0 (5)

which can be repeatedly integrated,
and the solution for B is

B(x) =
RKB2

T

8DBDA

sech2(
RKBT x

4DBDA

). (6)

We see that our estimate for the size
of the spot was quite good. Also, we
have learned that in one dimension, a
steady state can have at most one spot.
However, since the spots decay expo-
nentially we can assume that a state
with several spots very far apart will
take a very long time to relax to a sin-
gle spot.

Peculiarities of 2D

In two dimensions, the situation is dif-
ferent. First of all, the equation for
a steady state does not readily yield

exact solutions. Secondly, our equa-
tion for the radius of the spot is obvi-
ously meaningless. If we carry out the
same argument again, taking into ac-
count that all the rs cancel, we realize
that a steady state should occur only
when BT , the total amount of bacteria,
equals a certain value, proportional to

BT =
DBDA

KR
. (7)

If there are more than this many bac-
teria in a spot, it should collapse to a
singularity. If there are fewer, the spot
will spread.

If the spot spreads, we might hope
that it will spread into a fairly uniform
state, which would then be ripe for un-
dergoing pattern formation as discussed
above. How far does it have to spread
for this to happen? The size of the spot
must be bigger than the critical wave-

length of
√

DBDA/RKB0, and in fact
should be much bigger if we are to get
any kind of non-trivial pattern. Natu-
rally B0 will go as BT /r2, so we find

r �
√

DBDA

RKBT

r (8)

or,
RKBT

DBDA

� 1. (9)

Thus, there is no r at which pat-
terns begin to form! If the quantity
RKBT /DBDA is bigger than one, we
already found that the single initial



spot will collapse, not spread. If it
is less than one, the initial spot will
spread and keep on spreading. This
has been confirmed by numerical simu-
lations, starting with a Gaussian spot.
Depending on the initial shape, it is
possible to get pattern formation within
the original spot, but it is not possible
for the spot to spread and leave a pat-
tern in its wake, as seen in the experi-
ments.

What makes the wave?

We see that the formation of patterns
of isolated spots starting from a sin-
gle central spot requires more than
just changing the initial conditions of
a system whose uniform state is un-
stable. Thus it appears likely that
the experiments with bacteria involve
more than just attraction towards an
excreted molecule.

More evidence that this process can-
not be described by the equations (1)
alone comes from the observation that
the circular wave that travels outward
from the center of the dish moves at
a constant velocity. Such wave-like so-
lutions in diffusive media are typically
fronts at the boundary between two
quasi-steady states. In this case the
steady state ahead of the wave front is
obviously the absence of any bacteria.
The steady state behind the front prob-
ably consists of bacteria whose growth
has stalled due to depletion of some nu-

trient in the growth medium.
This is consistent with the fact that

the patterns seem to have the same fun-
damental wavelength everywhere; the
spacing of spots or stripes is the same
at the outer edge of the dish as it is
near the center. From our experience
with equation (1), this hints that the
concentration of bacteria in the wake
of the wave is unchanged as the wave
travels outward, since the critical wave-
length depends on the concentration of
bacteria. The concentration of bacteria
in the wake would indeed be constant
if the wave represents a transition from
no bacteria to bacteria whose growth
using the more readily metabolized nu-
trients has saturated.

This idea makes sense in terms of the
biochemistry of the Krebs cycle as well.
In the experiments, the bacteria ex-
crete large amounts of aspartate; an in-
tracellular concentration of 0.2M would
be necessary if the bacteria are simply
excreting aspartate they have stored.
Thus, it is likely they are making it
from the Krebs cycle intermediates that
are abundant in the growth medium
that was used. When the leucine and
threonine in the growth medium are
used up, the bacteria will be unable to
catabolize the remaining amino acids
according to the normal Krebs cycle.
Under these conditions, one would ex-
pect oxaloacetate to accumulate in the
cell, and this would tend to cause
creation of aspartate through the ac-



tion of aspartate-glutamate transami-
nase [Lehninger, 1970]. On the other
hand, when leucine or threonine is
abundant, one expects bacteria to con-
sume any available aspartate.

Presumably, the bacteria grow much
faster when leucine or threonine is
available than when not, and while
growing they will consume these amino
acids rapidly. Considering these two
processes plus diffusion leads us to con-
sider the equations:

Ḃ = DB∇2B + KgrowBL

L̇ = DL∇2L−KeatBL (10)

where L is the concentration of leucine
or threonine (or their sum). This set
of equations does admit wave-like solu-
tions such as those seen in the experi-
ments. Ahead of the wave, B is zero;
behind it, L is (nearly) zero. In fact,
in the special case where KgrowDL =
KeatDB then L = L0−KeatB/Kgrow and
one has

Ḃ = DB∇2B + KgrowBL0 −KeatB
2,

(11)
with L0 the initial concentration of
leucine. This is known as Fisher’s equa-
tion, and has propagating wave solu-
tions with a constant speed equal to√

4DBKgrowL0 [Fisher, 1937].
The value of DB was estimated

by the experimenters to be 4.8 ×
10−6 cm2/sec, and since the medium is
designed to saturate the rate of growth,

KgrowL0 should be in the range of the
maximal growth rate for bacteria. Tak-
ing a doubling time of 30 minutes, we
get an estimated wave speed of 8.6 ×
10−5 cm/sec. This estimate is only
a factor of four larger than the wave
speed of 2.1×10−5 cm/sec quoted in the
experimental paper. Thus it is plausi-
ble that bacterial growth and nutrient
depletion are the main factors respon-
sible for the observed wave.

The experiments done with a pre-
stirred bacteria/growth medium mix-
ture showed that patterns could form
in less than a generation time, and that
therefore growth was not necessary for
pattern formation. This is consistent
with the ideas presented here. Getting
patterns to form from a uniform state is
“easier” than getting them from a sin-
gle initial spot. It is likely that the trav-
eling wave, which depends on growth,
sets up conditions in its wake that are
similar to those in the stirred medium.
Once these conditions are established,
the attractive instability takes over and
patterns form.

The figures show some results of nu-
merical simulations of model equations.
Many models were tried; the most con-
vincing patterns formed in those that
had bacteria, aspartate, and “leucine”
(which could really be any nutrient in
short supply) as the main variables. In
all of the models that produced a wave,
bacteria grew and ate leucine as in the
above equation, and produced aspar-



tate in the presence of succinate, which
maintained a nearly constant concen-
tration. Models where the bacteria
were chemotactically attracted to both
aspartate and leucine gave waves where
the bacteria concentration was higher
near the wave front than in the wake,
as was also seen in the experiments.

In no model has the striking geomet-
ric regularity of the bacterial patterns
been seen. This could be due to a ten-
dency to use parameter values that will
allow the wave to be followed an ap-
preciable distance without using vast
amounts of computer time. Forcing
the patterns to form quickly probably
makes them more random. Of course,
pattern selection depends very much on
nonlinearities. Some of the nonlineari-
ties in this problem—such as receptor
saturation—can be (and were) readily
modeled at a qualitative level, but there
are likely to be nonlinear effects in the
chemistry (think of many enzymes, es-
pecially the allosteric ones, in the Krebs
cycle) and elsewhere in the system that
even the most ambitious model would
fail to capture. Still, the simple anal-
ysis that was presented here leads to
some suggestive possibilities in terms of
why the bacteria are doing what they
do. The question of whether the bacte-
ria are being smart and avoiding stress
or just making patterns for no useful
reason at all remains unanswered.
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Figure 1.: A simulation of a pattern forming from a small spot. The lighter,
circular region denotes higher bacteria concentration. The region gets larger as
time progresses. This image was converted from color; the small dark spots in
the bright region actually contain more bacteria than the surroundings, while the
black outer region contains almost no bacteria. This figure and the others were
made by pasting together four copies of a simulation of a quarter circle wedge.



Figure 2.: With these parameters, the spots are more localized, as in the real
experiments, but the arrangement of the spots seems fairly irregular compared
with what the real bacteria did.



Figure 3.: In this simulation, the bacteria were chemotactically attracted to the
leucine as well as the aspartate. The predominant wavelength shorter because a
different scale was used.


