

Comparison of RF-heated with NBI-heated ELMy H-mode plasmas in JET

R.V. Budny¹, M. de Baar², C.S. Chang⁷, D.R. Ernst¹, A. Gondhalekar³, C. Gowers³, K. Gunther³, P. Lamalle⁴, G. Maddison³, D. McDonald³, F. Nave³, J. Ongena⁴, R. Perkins¹, E. Righi⁵, G. Saibene⁵, R. Sartori⁵, M. Stamp³, J.D. Strachan¹, W. Suttrop⁶, R. White¹, K.-D. Zastrov³, and staff involved in the EFDA-JET work program

¹Princeton Plasma Physcis Laboratory, Princeton University, Princeton, NJ, USA ²FOM Institute for Plasma Physics Rijnhuizen, Nieuwegein, NL ³UKAEA-Cullam, Abingdom, England ⁴Ecole Royale Militaire, Brussels, Belgium ⁵EFDA, Garching, Germany ⁶IPP, Garching, Germany ⁷Courant Institute, New York University, NY, NY, USA

Outline

Motivation

Experiment

Modeling and Results

Discussion and Future Plans

JET

Motivation

ICRH – heated ELMy plasmas are suggested for reactor startup

But NB-heated ELMy plasmas have better diagnostics and better performance in presentday experiments

To what extent are NB and ICRH ELMy's comparable?

Goals

Compare global and local parameters for ICRH and NBI ELMy's

Compare results with Ion Temperature Gradient theory

Results from experiment

Matched pair of ICRH and NBI heated ELMy plasmas

Heating power lower than desired (close to L-mode)

 V_{Tor} for RF in Co-I_p direction, similar in shape to that of NBI, but 15% magnitude Power deposition in ICRH more central, similar to that expected by alpha heating Higher central Z_{eff} with ICRH

Results from theory

Near the mid-radius, R/L_{Ti} close to R/L_{crit} for ICRH and NBI

Peak γ_{lin} similar for ICRH and NBI

Peak ω_{ExB} and ω_{ExB} / γ_{lin} smaller for ICRH

Matched pair of plasmas:

Pulse No: 50502 with ICRH

Pulse No: 50632 with NBI

Measured toroidal rotation rate from CX

Rotation factor of 6 lower with ICRF

Toroidal rotation rate measurements of Ni27 consistent with CX measurements

2D contours from TRANSP using SPRUCE ICRH model

Well focused heating on resonance rear axis

Distribution function of hydrogen minority in Pulse No: 50502

 $n_{H}/n_{e} \approx 1-2\%$ in approximate agreement with measurements

H Concentration in the edge increases in time

ICRH Heating power deposition to thermal plasma can simulate alpha heating

JET

Ion temperature gradient near the critical value at mid radius

JET

Microturbulence growth rate, frequency and flow rate

Turbulence suppression ratio ω_{ExB} / γ_{lin} small for ICRH, large for NBI

Discussion

The turbulence suppression ratio ω_{ExB} / γ_{lin} appears to be paradoxically small for ICRH plasmas

Candidate explanations:

 ω_{ExB} / γ_{lin} is not a good indicator of microturbulence and transport suppression V_{Pol} is larger than $V_{\text{neoclassical}}$ and thus ω_{ExB} is larger γ_{lin} is not a good indicator of the amount of microturbulence and transport

Future plans

Improve the ITG analysis to include non-linear effects, TEM branch, etc

Continue the experiment at higher heating power to produce plasmas with more reactor relevant conditions and lower torque from the diagnostic NBI

Apply theories of ICRH-induced rotation

42nd APS DPP Meeting, Quebec City Canada