Relaxation of flux ropes and magnetic reconnection in RSX

I. Furno

T. Intrator, E. Hemsing, S. Hsu, S. Abbate

P-24 Division, Los Alamos National Laboratory Los Alamos, NM 87545

> US-Japan Compact Toroids workshop September 14-17, 2004 Santa Fe, New Mexico

Outline

- 1. Motivations
- 2. The RSX device and diagnostics
- 3. Experimental measurements
 - Single flux rope
 - Two flux ropes
- 4. Conclusions and discussion

Flux ropes are ubiquitous in Nature

Early stage of spheromak formation P.M. Bellan, this workshop

Formation of spheromak through kink instability S. Hsu and P.M. Bellan, PRL **90**, 2003

RSX device

Reconnection Scaling Experiment: a new device for three-dimensional magnetic reconnection studies, I. Furno, et al., *Review of Scientific Instruments*, **74**, 2324 (2003)

The plasma source: the plasma gun

V_{bias}~300V, I_{bias}~600kA, V_{arc}~100V, I_{arc}~1kA.

Schematics of RSX

- linear vacuum vessel \Rightarrow easy of diagnostics, 3D experiment
- 12 magnet coils: $B_z = 0-1000$ Gauss \Rightarrow can be varied independently
- 4 movable plasma guns \Rightarrow single and multiple flux rope interaction

Discharge sequence

Plasma parameters and diagnostics

Density	n _e ~10 ¹²⁻ 10 ¹⁴ cm ⁻³
El. Temperature	T _e ~3-15eV
Poloidal field	B _{pol} < 50 Gauss
Scale size	d~ 10 cm L~ 30-300 cm
Ion skin depth	δ _i =c/ω _{pi} ~2 cm
electron skin depth	δ _i =c/ω _{pi} ~1.7 mm
Ion gyro radius	r _{Gi} ~0.35-1.4 cm
electron gyro radius	r _{Ge} ~1-4 mm

- Gun parameters (current, voltage)
- Multi-2D magnetic probe (2.5mm space resolution, 20MHz acq. Freq.) \Rightarrow B field
- Triple electrostatic probe (2 mm space resolution, 20MHz acq. Freq.) \Rightarrow T_e, n_e
- Poloidal and axial arrays of magnetic probes (8 mm diameter,time response 100 ns) ⇒ mode number (m, n)

Cook Dicam, fast gated CCD camera

- visible light emission
- global dynamics

2 frames per shot 1280×1024 pixels, 12bit 40 ns min. exposure (<t_{Alf}=0.5-1micro-sec)

Physics questions we want to address and critical features of RSX

- How does the plasma relaxed state depend on β ? In RSX, β can be scaled ($\beta << 1$ to $\beta \sim 1$) by varying plasma density, external magnetic field, and total plasma current.
- How does relaxation depend on the external drive? In RSX, the rate of change of V_{bias} can be controlled externally $(dV_{bias}/dt > 0, dV_{bias}/dt = 0, ...)$
- How is the relaxed state influenced by boundary conditions (see for example D.D. Ryutov, ICC-2004) ? In RSX, it is easy to implement different boundary conditions (i.e. shaped anode, flux conserver).

Preliminary studies of single flux rope relaxation

Density	n _e ~0.6-3e ¹³ cm ⁻³
El. Temperature	T _e ~3-15eV
Scale length	L~100 cm r~2 cm
Guide field	B _Z =200 Gauss
lon skin depth	δ_i =c/ ω_{pi} ~2 cm
electron skin depth	δ _i =c/ω _{pi} ~1.7 mm
lon gyro radius	r _{Gi} ~0.35-1.4cm
electron gyro radius	r _{Ge} ∼1-4mm

Single and multiple helicity states are observed during current ramp up (dV_{bias}/dt >0)

• Onset of m/n=1/1 consistent with KS limit $q_{edge} = 1$

• $q_{edge} = 2$ at onset of n=2 ?

t = 57

• Saturated state for n=1 and n=2 is observed, no disruption

• Plasma increases its inductance at n=2 onset

- Identify the saturation mechanism (field line bending, wall).
- Non linear mode coupling.
- Influence of external drive on the relaxed state.
- How does relaxation change with β ?

Relaxation of two flux ropes and magnetic reconnection

Density	n _e ~0.6-3e ¹³ cm ⁻³
Guide field	B _z =100-400Gauss
Reconnection field	B _{rec} ~10 Gauss
El. Temperature	T _e ~3-15eV
Scale size	d~8 cm
	L~100 cm

- High guide field ($B_z / B_{rec} = 20-60$)
- 2 plasma guns at z = 0, spaced by 8 cm
- External anode at z = 1 m
- Measurements in the reconnection plane at z = 0.5m

Coalescence of the flux ropes is observed during current ramp-up

Magnetic reconnection is observed

Current sheet shrinks to a size between δ_i and δ_e

3D effect :observation of zipper effect and density wave in the current sheet

• **Zipper effect**: coalescence and twisting start at the external anode and propagates towards the guns

• A **pressure rarefaction wave** is observed in the current sheet that propagates in the **direction of the electron drift velocity** (from external anode to plasma gun)

Guide magnetic field scan

- 3 magnetic fields: B_z=100, 200,400 Gauss
- Gun pressure adjusted to have same n_e
- No strong dependence of the current sheet thickness on B_z is observed
- J_0 in the current sheet increases and saturates with B_z
- This observation may be interpreted in terms of increased electron mobility in the *z* direction due to a reduced Larmor radius [Ricci P. et al, *Physics of Plasmas* 10, p.3554 (2003)].

Summary

- On RSX, relaxation of single and double flux rope is studied in the presence of a high guide magnetic field.
- Single and multiple helicity relaxed state are identified in single flux rope relaxation.
- Magnetic reconnection play an important role in two flux rope relaxation.
- A current sheet is observed on a scale length intermediate between δ_i and δ_e . No strong dependence of the current sheet thickness on B_{z} .
- The peak current density in the current sheet increases and saturates with B_z .
- 3D effects:propagation of density wave and zipper effect

