# Heavy Bosons Other Than Higgs Bosons, Searches for

We list here various limits on charged and neutral heavy vector bosons (other than W's and Z's), heavy scalar bosons (other than Higgs bosons), vector or scalar leptoquarks, and axigluons.

### W<sub>R</sub> (Right-Handed W Boson) MASS LIMITS

Assuming a light right-handed neutrino, except for BEALL 82, LANGACKER 89B, and COLANGELO 91.  $g_R = g_L$  assumed. [Limits in the section MASS LIMITS for W' below are also valid for  $W_R$  if  $m_{\nu_R} \ll m_{W_R}$ .] Some limits assume manifest left-right symmetry, *i.e.*, the equality of left- and right Cabibbo-Kobayashi-Maskawa matrices. For a comprehensive review, see LANGACKER 89B. Limits on the  $W_L-W_R$ mixing angle  $\zeta$  are found in the next section. Values in brackets are from cosmological and astrophysical considerations and assume a light right-handed neutrino.

| VALUE (GeV)                                 | <u>CL%</u> | DOCUMENT ID             |             | TECN       | COMMENT                                        |
|---------------------------------------------|------------|-------------------------|-------------|------------|------------------------------------------------|
| > 715 (CL = 90%)                            |            |                         |             |            |                                                |
| > 715                                       | 90         | <sup>1</sup> CZAKON     | 99          | RVUE       | Electroweak                                    |
| $\bullet$ $\bullet$ $\bullet$ We do not use | the follow | wing data for avera     | ges,        | fits, limi | ts, etc. ● ● ●                                 |
| > 137                                       | 95         | <sup>2</sup> ACKERSTAFF |             | OPAL       | au decay                                       |
| >1400                                       | 68         | <sup>3</sup> BARENBOIM  |             |            | Electroweak, $Z$ - $Z'$ mixing                 |
| > 549                                       | 68         | <sup>4</sup> BARENBOIM  | 97          | RVUE       | $\mu$ decay                                    |
| > 220                                       | 95         | <sup>5</sup> STAHL      | 97          | RVUE       | au decay                                       |
| > 220                                       | 90         | <sup>6</sup> ALLET      |             | CNTR       | $eta^+$ decay                                  |
| > 281                                       | 90         | <sup>7</sup> KUZNETSOV  | 95          |            | Polarized neutron decay                        |
| > 282                                       | 90         | <sup>8</sup> KUZNETSOV  | <b>94</b> B | CNTR       | Polarized neutron decay                        |
| > 439                                       | 90         | <sup>9</sup> BHATTACH   | 93          | RVUE       | Z-Z' mixing                                    |
| > 250                                       | 90         | <sup>10</sup> SEVERIJNS | 93          | CNTR       | $\beta^+$ decay                                |
|                                             |            | <sup>11</sup> IMAZATO   | 92          | CNTR       | $\kappa^+$ decay                               |
| > 475                                       | 90         | <sup>12</sup> POLAK     | <b>92</b> B | RVUE       | $\mu$ decay                                    |
| > 240                                       | 90         | <sup>13</sup> AQUINO    | 91          | RVUE       | Neutron decay                                  |
| > 496                                       | 90         | <sup>13</sup> AQUINO    | 91          | RVUE       | Neutron and muon decay                         |
| > 700                                       |            | <sup>14</sup> COLANGELO | 91          | THEO       | ${}^{m}\kappa_{L}^{0}$ $ {}^{m}\kappa_{S}^{0}$ |
| > 477                                       | 90         | <sup>15</sup> POLAK     | 91          | RVUE       | $\mu$ decay                                    |
| [none 540–23000]                            |            | <sup>16</sup> BARBIERI  |             | ASTR       | SN 1987A; light $\nu_R$                        |
| > 300                                       | 90         | <sup>17</sup> LANGACKER | <b>89</b> B | RVUE       | General                                        |
| > 160                                       | 90         | <sup>18</sup> BALKE     | 88          | CNTR       | $\mu  ightarrow$ e $ u \overline{ u}$          |
| > 406                                       | 90         | <sup>19</sup> JODIDIO   | 86          | ELEC       | Any $\zeta$                                    |
| > 482                                       | 90         | <sup>19</sup> JODIDIO   | 86          | ELEC       | $\zeta = 0$                                    |
| > 800                                       |            | MOHAPATRA               | 86          | RVUE       | $SU(2)_L \times SU(2)_R \times U(1)$           |
| > 400                                       | 95         | <sup>20</sup> STOKER    | 85          | ELEC       | Any $\zeta$                                    |
| > 475                                       | 95         | <sup>20</sup> STOKER    | 85          | ELEC       | $\zeta$ <0.041                                 |
|                                             |            | <sup>21</sup> BERGSMA   | 83          | CHRM       | $ u_{\mu} e \rightarrow \mu \nu_{e}$           |
| > 380                                       | 90         | <sup>22</sup> CARR      | 83          | ELEC       | $\mu^+$ decay                                  |
| >1600                                       |            | <sup>23</sup> BEALL     | 82          |            | $m_{\kappa_{L}^{0}} - m_{\kappa_{S}^{0}}$      |
| [> 4000]                                    |            | STEIGMAN                | 79          |            | Nucleosynthesis; light $\nu_R$                 |

<sup>1</sup>CZAKON 99 perform a simultaneous fit to charged and neutral sectors.

- <sup>2</sup> ACKERSTAFF 99D limit is from  $\tau$  decay parameters. Limit increase to 145 GeV for zero mixing.
- <sup>3</sup>BARENBOIM 98 assumes minimal left-right model with Higgs of SU(2)<sub>R</sub> in SU(2)<sub>L</sub> doublet. For Higgs in SU(2)<sub>L</sub> triplet,  $m_{W_R} > 1100$  GeV. Bound calculated from effect of corresponding  $Z_{LR}$  on electroweak data through  $Z = Z_{LR}$  mixing.
- <sup>4</sup> The quoted limit is from  $\mu$  decay parameters. BARENBOIM 97 also evaluate limit from  $K_I$ - $K_S$  mass difference.
- <sup>5</sup>STAHL 97 limit is from fit to  $\tau$ -decay parameters.
- <sup>6</sup>ALLET 96 measured polarization-asymmetry correlaton in  ${}^{12}N\beta^+$  decay. The listed limit assumes zero *L*-*R* mixing.
- <sup>7</sup> KUZNETSOV 95 limit is from measurements of the asymmetry  $\langle \vec{p}_{\nu} \cdot \sigma_{n} \rangle$  in the  $\beta$  decay of polarized neutrons. Zero mixing assumed. See also KUZNETSOV 94B.
- <sup>8</sup> KUZNETSOV 94B limit is from measurements of the asymmetry  $\langle \vec{p}_{\nu} \cdot \sigma_n \rangle$  in the  $\beta$  decay of polarized neutrons. Zero mixing assumed.
- <sup>9</sup> BHATTACHARYYA 93 uses Z-Z' mixing limit from LEP '90 data, assuming a specific Higgs sector of  $SU(2)_L \times SU(2)_R \times U(1)$  gauge model. The limit is for  $m_t$ =200 GeV and slightly improves for smaller  $m_t$ .
- $^{10}\,\text{SEVERIJNS}$  93 measured polarization-asymmetry correlation in  $^{107}\text{In}\,\beta^+$  decay. The listed limit assumes zero *L-R* mixing. Value quoted here is from SEVERIJNS 94 erratum.
- <sup>11</sup>IMAZATO 92 measure positron asymmetry in  ${\cal K}^+ o \mu^+ 
  u_\mu$  decay and obtain

 $\xi P_{\mu} > 0.990$  (90%CL). If  $W_R$  couples to  $u\overline{s}$  with full weak strength ( $V_{us}^R = 1$ ), the result corresponds to  $m_{W_R} > 653$  GeV. See their Fig. 4 for  $m_{W_R}$  limits for general  $|V_{us}^R|^2 = 1 - |V_{ud}^R|^2$ .

- <sup>12</sup> POLAK 92B limit is from fit to muon decay parameters and is essentially determined by JODIDIO 86 data assuming  $\zeta$ =0. Supersedes POLAK 91.
- <sup>13</sup> AQUINO 91 limits obtained from neutron lifetime and asymmetries together with unitarity of the CKM matrix. Manifest left-right symmetry assumed. Stronger of the two limits also includes muon decay results.
- <sup>14</sup> COLANGELO 91 limit uses hadronic matrix elements evaluated by QCD sum rule and is less restrictive than BEALL 82 limit which uses vacuum saturation approximation. Manifest left-right symmetry assumed.
- <sup>15</sup> POLAK 91 limit is from fit to muon decay parameters and is essentially determined by JODIDIO 86 data assuming  $\zeta$ =0. Superseded by POLAK 92B.
- $^{16}\,{\rm BARBIERI}$  89B limit holds for  $m_{\nu_R} \leq$  10 MeV.
- <sup>17</sup> LANGACKER 89B limit is for any  $\nu_R$  mass (either Dirac or Majorana) and for a general class of right-handed quark mixing matrices.
- <sup>18</sup> BALKE 88 limit is for  $m_{\nu_{eR}} = 0$  and  $m_{\nu_{\mu R}} \leq 50$  MeV. Limits come from precise measurements of the muon decay asymmetry as a function of the positron energy.
- <sup>19</sup> JODIDIO 86 is the same TRIUMF experiment as STOKER 85 (and CARR 83); however, it uses a different technique. The results given here are combined results of the two techniques. The technique here involves precise measurement of the end-point  $e^+$ spectrum in the decay of the highly polarized  $\mu^+$ .
- <sup>20</sup> STOKER 85 is same TRIUMF experiment as CARR 83. Here they measure the decay  $e^+$  spectrum asymmetry above 46 MeV/*c* using a muon-spin-rotation technique. Assumed a light right-handed neutrino. Quoted limits are from combining with CARR 83.
- <sup>21</sup> BERGSMA 83 set limit  $m_{W_2}/m_{W_1}$  >1.9 at CL = 90%.
- <sup>22</sup> CARR 83 is TRIUMF experiment with a highly polarized  $\mu^+$  beam. Looked for deviation from V-A at the high momentum end of the decay  $e^+$  energy spectrum. Limit from previous world-average muon polarization parameter is  $m_{W_R}$  >240 GeV. Assumes a light right-handed neutrino.

Citation: D.E. Groom et al. (Particle Data Group), Eur. Phys. Jour. C15, 1 (2000) (URL: http://pdg.lbl.gov)

<sup>23</sup> BEALL 82 limit is obtained assuming that  $W_R$  contribution to  $K_L^0 - K_S^0$  mass difference is smaller than the standard one, neglecting the top quark contributions. Manifest left-right symmetry assumed.

### Limit on $W_L$ - $W_R$ Mixing Angle $\zeta$

|                                                                                                                                           |            | $U_1 = W_L \cos\zeta - W_F$<br>cosmological and a |             |             | $\nu_R$ assumed unless noted. |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------------------------------------|-------------|-------------|-------------------------------|--|--|
| Values III brackets                                                                                                                       | <u>CL%</u> | DOCUMENT ID                                       |             | <u>TECN</u> | <u>COMMENT</u>                |  |  |
| $\bullet \bullet \bullet$ We do not use the                                                                                               | e followin | g data for averages                               | , fits      | , limits,   | etc. • • •                    |  |  |
| < 0.12                                                                                                                                    | 95         | <sup>24</sup> ACKERSTAFF                          | <b>99</b> D | OPAL        | au decay                      |  |  |
| < 0.013                                                                                                                                   | 90         | <sup>25</sup> CZAKON                              |             |             | Electroweak                   |  |  |
| < 0.0333                                                                                                                                  |            | <sup>26</sup> BARENBOIM                           | 97          | RVUE        | $\mu$ decay                   |  |  |
| < 0.04                                                                                                                                    | 90         | <sup>27</sup> MISHRA                              | 92          | CCFR        | u N scattering                |  |  |
| -0.0006 to $0.0028$                                                                                                                       | 90         | <sup>28</sup> AQUINO                              | 91          | RVUE        |                               |  |  |
| [none 0.00001–0.02]                                                                                                                       |            | <sup>29</sup> BARBIERI                            | <b>89</b> B | ASTR        | SN 1987A                      |  |  |
| < 0.040                                                                                                                                   | 90         | <sup>30</sup> JODIDIO                             | 86          | ELEC        | $\mu$ decay                   |  |  |
| -0.056 to 0.040                                                                                                                           | 90         | <sup>30</sup> JODIDIO                             | 86          | ELEC        | $\mu$ decay                   |  |  |
| $^{24}$ ACKERSTAFF 99D limit is from $	au$ decay parameters. $^{25}$ CZAKON 99 perform a simultaneous fit to charged and neutral sectors. |            |                                                   |             |             |                               |  |  |

 $^{26}$  The quoted limit is from  $\mu$  decay parameters. BARENBOIM 97 also evaluate limit from  $K_I - K_S$  mass difference.

<sup>27</sup> MISHRA 92 limit is from the absence of extra large-x, large-y  $\overline{\nu}_{\mu} N \rightarrow \overline{\nu}_{\mu} X$  events at Tevatron, assuming left-handed  $\nu$  and right-handed  $\overline{\nu}$  in the neutrino beam. The result gives  $\zeta^2(1-2m_{W_1}^2/m_{W_2}^2) < 0.0015$ . The limit is independent of  $\nu_R$  mass.

<sup>28</sup> AQUINO 91 limits obtained from neutron lifetime and asymmetries together with unitarity of the CKM matrix. Manifest left-right asymmetry is assumed.
<sup>29</sup> BARBIERI 89B limit holds for  $m_{\nu_R} \leq 10$  MeV.

<sup>30</sup> First JODIDIO 86 result assumes  $m_{W_R} = \infty$ , second is for unconstrained  $m_{W_R}$ .

# THE W' SEARCHES

Written October 1997 by K.S. Babu, C. Kolda, and J. March-Russell (IAS/Princeton).

Any electrically charged gauge boson outside of the Standard Model is generically denoted W'. A W' always couples to two different flavors of fermions, similar to the W boson. In particular, if a W' couples quarks to leptons it is a leptoquark gauge boson.

The most attractive candidate for W' is the  $W_R$  gauge boson associated with the left-right symmetric models [1]. These models seek to provide a spontaneous origin for parity violation in weak interactions. Here the gauge group is extended to

Created: 12/18/2000 15:07 HTTP://PDG.LBL.GOV Page 3

 $\mathrm{SU}(3)_C \times \mathrm{SU}(2)_L \times \mathrm{SU}(2)_R \times \mathrm{U}(1)_{B-L}$  with the Standard Model hypercharge identified as  $Y = T_{3R} + (B-L)/2$ ,  $T_{3R}$  being the third component of  $\mathrm{SU}(2)_R$ . The fermions transform under the gauge group in a left-right symmetric fashion:  $q_L(3, 2, 1, 1/3) +$  $q_R(3, 1, 2, 1/3)$  for quarks and  $\ell_L(1, 2, 1, -1) + \ell_R(1, 1, 2, -1)$ for leptons. Note that the model requires the introduction of right-handed neutrinos, which can facilitate the see-saw mechanism for explaining the smallness of the ordinary neutrino masses. A Higgs bidoublet  $\Phi(1, 2, 2, 0)$  is usually employed to generate quark and lepton masses and to participate in the electroweak symmetry breaking. Under left-right (or parity) symmetry,  $q_L \leftrightarrow q_R$ ,  $\ell_L \leftrightarrow \ell_R$ ,  $W_L \leftrightarrow W_R$  and  $\Phi \leftrightarrow \Phi^{\dagger}$ .

After spontaneous symmetry breaking, the two W bosons of the model,  $W_L$  and  $W_R$ , will mix. The physical mass eigenstates are denoted as

$$W_1 = \cos \zeta W_L + \sin \zeta W_R, \qquad W_2 = -\sin \zeta W_L + \cos \zeta W_R \quad (1)$$

with  $W_1$  identified as the observed W boson. The most general Lagrangian that describes the interactions of the  $W_{1,2}$  with the quarks can be written as [2]

$$\mathcal{L} = -\frac{1}{\sqrt{2}} \overline{u} \gamma_{\mu} \left[ \left( g_L \cos \zeta \, V^L P_L - g_R e^{i\omega} \sin \zeta \, V^R P_R \right) W_1^{\mu} + \left( g_L \sin \zeta \, V^L P_L + g_R e^{i\omega} \cos \zeta \, V^R P_R \right) W_2^{\mu} \right] d + h.c.(2)$$

where  $g_{L,R}$  are the SU(2)<sub>L,R</sub> gauge couplings,  $P_{L,R} = (1 \mp \gamma_5)/2$ and  $V^{L,R}$  are the left- and right-handed CKM matrices in the quark sector. The phase  $\omega$  reflects a possible complex mixing parameter in the  $W_L-W_R$  mass-squared matrix. Note that there is CP violation in the model arising from the right-handed currents even with only two generations. The Lagrangian for leptons is identical to that for quarks, with the replacements

HTTP://PDG.LBL.GOV Page 4 Created: 12/18/2000 15:07

 $u\to\nu,\;d\to e$  and the identification of  $V^{L,R}$  with the CKM matrices in the leptonic sector.

If parity invariance is imposed on the Lagrangian, then  $g_L = g_R$ . Furthermore, the Yukawa coupling matrices that arise from coupling to the Higgs bidoublet  $\Phi$  will be Hermitian. If in addition the vacuum expectation values of  $\Phi$  are assumed to be real, the quark and lepton mass matrices will also be Hermitian, leading to the relation  $V^L = V^R$ . Such models are called manifest left-right symmetric models and are approximately realized with a minimal Higgs sector [3]. If instead parity and CP are both imposed on the Lagrangian, then the Yukawa coupling matrices will be real symmetric and, after spontaneous CP violation, the mass matrices will be complex symmetric. In this case, which is known in the literature as pseudo-manifest left-right symmetry,  $V^L = (V^R)^*$ .

Indirect constraints: In minimal version of manifest or pseudo-manifest left-right symmetric models with  $\omega = 0$  or  $\pi$ , there are only two free parameters,  $\zeta$  and  $M_{W_2}$ , and they can be constrained from low energy processes. In the large  $M_{W_2}$  limit, stringent bounds on the angle  $\zeta$  arise from three processes. (i) Nonleptonic K decays: The decays  $K \to 3\pi$  and  $K \rightarrow 2\pi$  are sensitive to small admixtures of right-handed currents. Assuming the validity of PCAC relations in the Standard Model it has been argued in Ref. 4 that the success in the  $K \to 3\pi$  prediction will be spoiled unless  $|\zeta| \le 4 \times 10^{-3}$ . (ii)  $b \to s\gamma$ : The amplitude for this process has an enhancement factor  $m_t/m_b$  relative to the Standard Model and thus can be used to constrain  $\zeta$  yielding the limit  $-0.01 \leq \zeta \leq 0.003$  [5]. (iii) Universality in weak decays: If the right-handed neutrinos are heavy, the right-handed admixture in the charged current will contribute to  $\beta$  decay and K decay, but not to the  $\mu$ 

decay. This will modify the extracted values of  $V_{ud}^L$  and  $V_{us}^L$ . Demanding that the difference not upset the three generation unitarity of the CKM matrix, a bound  $|\zeta| \leq 10^{-3}$  has been derived [6].

If the  $\nu_R$  are heavy, leptonic and semileptonic processes do not constrain  $\zeta$  since the emission of  $\nu_R$  will not be kinematically allowed. However, if the  $\nu_R$  is light enough to be emitted in  $\mu$  decay and  $\beta$  decay, stringent limits on  $\zeta$  do arise. For example,  $|\zeta| \leq 0.039$  can be obtained from polarized  $\mu$  decay [7] in the large  $M_{W_2}$  limit of the manifest left-right model. Alternatively, in the  $\zeta = 0$  limit, there is a constraint  $M_{W_2} \geq 484$  GeV from direct  $W_2$  exchange. For the constraint on the case in which  $M_{W_2}$  is not taken to be heavy, see Ref. 2. There are also cosmological and astrophysical constraints on  $M_{W_2}$  and  $\zeta$  in scenarios with a light  $\nu_R$ . During nucleosynthesis the process  $e^+e^- \rightarrow \nu_R \overline{\nu}_R$ , proceeding via  $W_2$  exchange, will keep the  $\nu_R$  in equilibrium leading to an overproduction of <sup>4</sup>He unless  $M_{W_2}$  is greater than about 1 TeV [8]. Likewise the  $\nu_{eR}$ produced via  $e_R^- p \rightarrow n \nu_R$  inside a supernova must not drain too much of its energy, leading to limits  $M_{W_2} > 16$  TeV and  $|\zeta| \leq 3 \times 10^{-5}$  [9]. Note that models with light  $\nu_R$  do not have a see-saw mechanism for explaining the smallness of the neutrino masses, though other mechanisms may arise in variant models |10|.

The mass of  $W_2$  is severely constrained (independent of the value of  $\zeta$ ) from  $K_L$ - $K_S$  mass-splitting. The box diagram with exchange of one  $W_L$  and one  $W_R$  has an anomalous enhancement and yields the bound  $M_{W_2} \geq 1.6$  TeV [11] for the case of manifest or pseudo-manifest left-right symmetry. If the  $\nu_R$  have Majorana masses, another constraint arises from neutrinoless double  $\beta$  decay. Combining the experimental limit

from <sup>76</sup>Ge decay with arguments of vacuum stability, a limit of  $M_{W_2} \ge 1.1$  TeV has been obtained [12].

**Direct search limits:** Limits on  $M_{W_2}$  from direct searches depend on the available decay channels of  $W_2$ . If  $\nu_R$  is heavier than  $W_2$ , the decay  $W_2^+ \to \ell_R^+ \nu_R$  will be forbidden kinematically. Assuming that  $\zeta$  is small, the dominant decay of  $W_2$ will be into dijets. UA2 [13] has excluded a  $W_2$  in the mass range of 100 to 251 GeV in this channel. D $\emptyset$  excludes the mass range of 340 to 680 GeV [14], while CDF excludes the mass range of 300 to 420 GeV for such a  $W_2$  [15]. If  $\nu_R$  is lighter than  $W_2$ , the decay  $W_2^+ \to e_R^+ \nu_R$  is allowed. The  $\nu_R$ can then decay into  $e_R W_R^*$ , leading to an *eejj* signature. DØ has a limit of  $M_{W_2} > 720$  GeV if  $m_{\nu_R} \ll M_{W_2}$ ; the bound weakens, for example, to 650 GeV for  $m_{\nu_R} = M_{W_2}/2$  [16]. CDF finds  $M_{W_2} > 652$  GeV if  $\nu_R$  is stable and much lighter than  $W_2$  [17]. All of these limits assume manifest or pseudo-manifest left-right symmetry. See [16] for some variations in the limits if the assumption of left-right symmetry is relaxed.

Alternative models: W' gauge bosons can also arise in other models. We shall briefly mention some such popular models, but for details we refer the reader to the original literature. The alternate left-right model [18] is based on the same gauge group as the left-right model, but arises in the following way: In  $E_6$  unification, there is an option to identify the righthanded down quarks as  $SU(2)_R$  singlets or doublets. If they are  $SU(2)_R$  doublets, one recovers the conventional left-right model; if they are singlets it leads to the alternate left-right model. A similar ambiguity exists in the assignment of lefthanded leptons; the alternate left-right model assigns them to a (1, 2, 2, 0) multiplet. As a consequence, the ordinary neutrino remains exactly massless in the model. One important difference

from the usual left-right model is that the limit from the  $K_L-K_S$ mass difference is no longer applicable, since the  $d_R$  do not couple to the  $W_R$ . There is also no limit from polarized  $\mu$  decay, since the SU(2)<sub>R</sub> partner of  $e_R$  can receive a large Majorana mass. Other W' models include the un-unified Standard Model of Ref. 19 where there are two different SU(2) gauge groups, one each for the quarks and leptons; models with separate SU(2) gauge factors for each generation [20]; and the SU(3)<sub>C</sub> × SU(3)<sub>L</sub> × U(1) model of Ref. 21.

Leptoquark gauge bosons: The  $SU(3)_C \times U(1)_{B-L}$  part of the gauge symmetry discussed above can be embedded into a simple  $SU(4)_C$  gauge group [22]. The model then will contain leptoquark gauge boson as well, with couplings of the type  $\{(\overline{e}_L \gamma_\mu d_L + \overline{\nu}_L \gamma_\mu u_L)W'^\mu + (L \to R)\}$ . The best limit on such leptoquark W' comes from nonobservation of  $K_L \to \mu e$ , which requires  $M_{W'} \geq 1400$  TeV; for the corresponding limits on less conventional leptoquark flavor structures, see Ref. 23. Thus such a W' is inaccessible to direct searches with present machines which are sensitive to vector leptoquark masses of order 300 GeV only.

# References

- J.C. Pati and A. Salam, Phys. Rev. D10, 275 (1974);
   R.N. Mohapatra and J.C. Pati, Phys. Rev. D11, 566 (1975); *ibid.* Phys. Rev. D11, 2558 (1975);
   G. Senjanovic and R.N. Mohapatra, Phys. Rev. D12, 1502 (1975).
- P. Langacker and S. Uma Sankar, Phys. Rev. D40, 1569 (1989).
- A. Masiero, R.N. Mohapatra, and R. Peccei, Nucl. Phys. B192, 66 (1981);
   J. Basecq, et al., Nucl. Phys. B272, 145 (1986).

- 4. J. Donoghue and B. Holstein, Phys. Lett. **113B**, 383 (1982).
- 5. K.S. Babu, K. Fujikawa, and A. Yamada, Phys. Lett. B333, 196 (1994);
  P. Cho and M. Misiak, Phys. Rev. D49, 5894 (1994);
  T.G. Rizzo, Phys. Rev. D50, 3303 (1994).
- 6. L. Wolfenstein, Phys. Rev. **D29**, 2130 (1984).
- 7. P. Herczeg, Phys. Rev. **D34**, 3449 (1986).
- G. Steigman, K.A. Olive, and D. Schramm, Nucl. Phys. B180, 497 (1981).
- 9. R. Barbieri and R.N. Mohapatra, Phys. Rev. D39, 1229 (1989);
  G. Raffelt and D. Seckel, Phys. Rev. Lett. 60, 1793 (1988).
- 10. D. Chang and R.N. Mohapatra, Phys. Rev. Lett. 58, 1600 (1987);
  K.S. Babu and X.G. He, Mod. Phys. Lett. A4, 61 (1989).
- 11. G. Beall, M. Bender, and A. Soni, Phys. Rev. Lett. 48, 848 (1982).
- 12. R.N. Mohapatra, Phys. Rev. **D34**, 909 (1986).
- J. Alitti, et al. (UA2 Collaboration), Nucl. Phys. B400, 3 (1993).
- 14. B. Abbott, *et al.* (DØ Collaboration), International Europhysics Conference on High Energy Physics, August 19-26, 1997, Jerusalem, Israel.
- F. Abe, *et al.* (CDF Collaboration), Phys. Rev. **D55**, R5263 (1997).
- S. Abachi, *et al.* (DØ Collaboration), Phys. Rev. Lett. **76**, 3271 (1996).
- F. Abe, et al. (CDF Collaboration), Phys. Rev. Lett. 74, 2900 (1995).
- 18. E. Ma, Phys. Rev. D36, 274 (1987);
  K.S. Babu, X-G. He and E. Ma, Phys. Rev. D36, 878 (1987).
- H. Georgi and E. Jenkins, Phys. Rev. Lett. 62, 2789 (1989);

```
HTTP://PDG.LBL.GOV
```

Nucl. Phys. **B331**, 541 (1990).

- X. Li and E. Ma, Phys. Rev. Lett. 47, 1788 (1981); 20.R.S. Chivukula, E.H. Simmons, and J. Terning, Phys. Lett. **B331**, 383 (1994); D.J. Muller and S. Nandi, Phys. Lett. **B383**, 345 (1996).
- F. Pisano, V. Pleitez, Phys. Rev. **D46**, 410 (1992); 21.P. Frampton, Phys. Rev. Lett. 69, 2889 (1992).
- J.C. Pati and A. Salam, Phys. Rev. **D10**, 275 (1974). 22.
- A. Kuznetsov and N. Mikheev, Phys. Lett. B329, 295 23. (1994);

G. Valencia and S. Willenbrock, Phys. Rev. D50, 6843 (1994).

### MASS LIMITS for W' (A Heavy-Charged Vector Boson Other Than W) in Hadron Collider Experiments

Couplings of W' to quarks and leptons are taken to be identical with those of W. The following limits are obtained from  $p\overline{p} \rightarrow W' X$  with W' decaying to the mode indicated in the comments. New decay channels (e.g.,  $W' \rightarrow WZ$ ) are assumed to be suppressed. UA1 and UA2 experiments assume that the  $t \overline{b}$  channel is not open. TECN

| VALUE (GeV)                                 | <u>CL%</u> | DOCUMENT ID           |             | TECN    | COMMENT                                               |
|---------------------------------------------|------------|-----------------------|-------------|---------|-------------------------------------------------------|
| >720                                        | 95         | <sup>31</sup> ABACHI  | <b>96</b> C | D0      | $W' \rightarrow e \nu_e$                              |
| $\bullet \bullet \bullet$ We do not use the | followin   | g data for averages,  | , fits,     | limits, | etc. • • •                                            |
| none 300–420                                | 95         | <sup>32</sup> ABE     | <b>97</b> G | CDF     | $W' \rightarrow q \overline{q}$                       |
| >610                                        | 95         | <sup>33</sup> ABACHI  | 95e         | D0      | $W' \rightarrow e \nu_e$ and $W' \rightarrow$         |
|                                             |            |                       |             |         | $\tau \nu_{	au} \rightarrow e \nu \nu \overline{\nu}$ |
| >652                                        | 95         | <sup>34</sup> ABE     | 95M         | CDF     | $W' \rightarrow e \nu_e$                              |
| >251                                        | 90         | <sup>35</sup> ALITTI  | 93          | UA2     | $W' \rightarrow q \overline{q}$                       |
| none 260–600                                | 95         | <sup>36</sup> RIZZO   | 93          | RVUE    | $W' \rightarrow q \overline{q}$                       |
| >520                                        | 95         | <sup>37</sup> ABE     | 91F         | CDF     | $W'  ightarrow$ e $ u$ , $\mu u$                      |
| none 101–158                                | 90         | <sup>38</sup> ALITTI  | 91          | UA2     | $W' \rightarrow q \overline{q}$                       |
| >220                                        | 90         | <sup>39</sup> ALBAJAR | 89          | UA1     | W'  ightarrow e $ u$                                  |
| >209                                        | 90         | <sup>40</sup> ANSARI  | <b>87</b> D | UA2     | W'  ightarrow e $ u$                                  |
| >210                                        | 90         | <sup>41</sup> ARNISON | <b>86</b> B | UA1     | W'  ightarrow e  u                                    |
| >170                                        | 90         | <sup>42</sup> ARNISON | <b>83</b> D | UA1     | W'  ightarrow e  u                                    |
| 01                                          |            |                       |             |         |                                                       |

 $^{31}$  For bounds on  $W_R$  with nonzero right-handed mass, see Fig. 5 from ABACHI 96C.

 $^{32}$ ABE 97G search for new particle decaying to dijets.

- $^{33}$  ABACHI 95E assume that the decay  $W' \rightarrow WZ$  is suppressed and that the neutrino from W' decay is stable and has a mass significantly less  $m_{W'}$ .
- $^{34}$  ABE 95M assume that the decay  $W' \rightarrow WZ$  is suppressed and the (right-handed) neutrino is light, noninteracting, and stable. If  $m_{12}$ =60 GeV, for example, the effect on the mass limit is neglibible.
- $^{35}$  ALITTI 93 search for resonances in the two-jet invariant mass. The limit assumes  $\Gamma(W')/m_{W'} = \Gamma(W)/m_W$  and  $B(W' \rightarrow jj) = 2/3$ . This corresponds to  $W_R$  with  $m_{
  u_R} > m_{W_R}$  (no leptonic decay) and  $W_R 
  ightarrow t \, \overline{b}$  allowed. See their Fig. 4 for limits in the  $m_{W'} - B(q \overline{q})$  plane.

<sup>36</sup> RIZZO 93 analyses CDF limit on possible two-jet resonances. The limit is sensitive to  $_{27}$  the inclusion of the assumed K factor.

- <sup>37</sup> ABE 91F assume leptonic branching ratio of 1/12 for each lepton flavor. The limit from the  $e\nu$  ( $\mu\nu$ ) mode alone is 490 (435) GeV. These limits apply to  $W_R$  if  $m_{\nu_R} \lesssim 15$  GeV and  $\nu_R$  does not decay in the detector. Cross section limit  $\sigma \cdot B < (1-10)$  pb is given for  $m_{W'} = 100-550$  GeV; see Fig. 2.
- <sup>38</sup> ALITTI 91 search is based on two-jet invariant mass spectrum, assuming  $B(W' \rightarrow q \overline{q}) = 67.6\%$ . Limit on  $\sigma \cdot B$  as a function of two-jet mass is given in Fig. 7.
- $^{39}$  ALBAJAR 89 cross section limit at 630 GeV is  $\sigma(W')$  B(eu) < 4.1 pb (90% CL).
- <sup>40</sup>See Fig. 5 of ANSARI 87D for the excluded region in the  $m_{W'}^{-}[(g_{W'q}^{-})^2 B(W' \rightarrow W)]$
- $(e\overline{\nu})$ ] plane. Note that the quantity  $(g_{W'q})^2 B(W' \rightarrow e\overline{\nu})$  is normalized to unity for the standard W couplings.
- <sup>41</sup> ARNISON 86B find no excess at large  $p_T$  in 148  $W \rightarrow e\nu$  events. Set limit  $\sigma \times B(e\nu)$ <10 pb at CL = 90% at  $E_{cm}$  = 546 and 630 GeV.
- <sup>42</sup> ARNISON 83D find among 47  $W \rightarrow e\nu$  candidates no event with excess  $p_T$ . Also set  $\sigma \times B(e\nu) < 30$  pb with CL = 90% at  $E_{\rm cm} = 540$  GeV.

### THE Z' SEARCHES

Written October 1997 by K.S. Babu, C. Kolda, and J. March-Russell (IAS/Princeton).

If the Standard Model is enhanced by additional gauge symmetries or embedded into a larger gauge group, there will arise new heavy gauge bosons, some of which generically are electrically neutral. Such a gauge boson is called a Z'. Consider the most general renormalizable Lagrangian describing the complete set of interactions of the neutral gauge bosons among themselves and with fermions, which is that of the Standard Model plus the following new pieces [1,2,3]:

$$\mathcal{L}_{Z'} = -\frac{1}{4}\widehat{F}'_{\mu\nu}\widehat{F}'^{\mu\nu} - \frac{\sin\chi}{2}\widehat{F}'_{\mu\nu}\widehat{F}^{\mu\nu} + \frac{1}{2}\widehat{M}^2_{Z'}\widehat{Z}'_{\mu}\widehat{Z}'^{\mu} + \delta\widehat{M}^2\,\widehat{Z}'_{\mu}\widehat{Z}^{\mu} - \frac{\widehat{g}'}{2}\sum_i\overline{\psi}_i\gamma^{\mu}(f^i_V - f^i_A\gamma^5)\psi_i\widehat{Z}'_{\mu}$$
(1)

where  $\widehat{F}_{\mu\nu}, \widehat{F}'_{\mu\nu}$  are the field strength tensors for the hypercharge  $\widehat{B}_{\mu}$  gauge boson and the Z' respectively before any diagonalizations are performed,  $\psi_i$  are the matter fields with Z' vector and axial charges  $f_V^i$  and  $f_A^i$ , and  $\widehat{Z}_{\mu}$  is the electroweak

Z boson in this basis. (See the Review on "Electroweak Model and Constraints on New Physics" for the Standard Model pieces of the Lagrangian.) The mass terms are assumed to come from spontaneous symmetry breaking via scalar expectation values. The above Lagrangian is general to all abelian and non-abelian extensions, except that  $\chi = 0$  for the non-abelian case since then  $\hat{F}'_{\mu\nu}$  is not gauge invariant. Most analyses take  $\chi = 0$  even for the abelian case.

Going to the physical eigenbasis requires diagonalizing both the gauge kinetic and mass terms, with mass eigenstates denoted  $Z_1$  and  $Z_2$ , where we choose  $Z_1$  to be the observed Z boson. The interaction Lagrangian for  $Z_1$  has the form, to leading order in the mixing angle  $\xi$  ( $s_W \equiv \sin \theta_W$ , etc.):

$$\mathcal{L}_{Z_1} = -\frac{e}{2s_W c_W} \left(1 + \frac{\alpha T}{2}\right) \overline{\psi}_i \gamma^\mu \left\{ \left(g_V^i + \xi \tilde{f}_V^i\right) - \left(g_A^i + \xi \tilde{f}_A^i\right) \gamma^5 \right\} \psi_i Z_{1\mu}$$

$$(2)$$

where

$$\xi \simeq \frac{-\cos\chi(\delta\widehat{M}^2 + \widehat{M}_Z^2 s_W \sin\chi)}{\widehat{M}_{Z'}^2 - \widehat{M}_Z^2 \cos^2\chi + \widehat{M}_Z^2 s_W^2 \sin^2\chi + 2\,\delta\widehat{M}^2 s_W \sin\chi} \quad (3)$$

We have made the identifications  $g_A^i = T_3^i$ ,  $g_V^i = T_3^i - 2Q^i s_*^2$ ,  $\tilde{f}_{V,A}^i = (\hat{g}' s_W c_W / e \cos \chi) f_{V,A}^i$ , and  $s_W^2$  is identified to be the  $s_{M_Z}^2$  defined in the "Electroweak Model and Constraints on New Physics" review. Note that the value of the weak angle that appears in the vector coupling is shifted by the S and T oblique parameters:

$$s_*^2 = s_W^2 + \frac{1}{s_W^2 - c_W^2} \left(\frac{1}{4}\alpha S - c_W^2 s_W^2 \alpha T\right) \quad . \tag{4}$$

HTTP://PDG.LBL.GOV

Page 12

Created: 12/18/2000 15:07

Recall that  $\rho = 1 + \alpha T$  defines the usual  $\rho$  parameter. In the presence of Z-Z' mixing, the oblique parameters receive contributions [4]:

$$\alpha S = 4\xi c_W^2 s_W \tan \chi$$
  

$$\alpha T = \xi^2 \left( \frac{M_{Z_2}^2}{M_{Z_1}^2} - 1 \right) + 2\xi s_W \tan \chi$$
(5)  

$$\alpha U = 0$$

to leading order in small  $\xi$ . These contributions are in addition to those coming from top quark and Higgs boson loops in the Standard Model. (This is in contrast to the "Electroweak Model and Constraints on New Physics" Review in which oblique parameters are defined to be zero for reference values of  $m_t$  and  $M_{H}$ .) Note that nonzero Z-Z' contributions to S arise only in the presence of kinetic mixing.

The corresponding  $Z_2 \overline{\psi} \psi$  interaction Lagrangian is:

$$\mathcal{L}_{Z_2} = -\frac{e}{2s_W c_W} \overline{\psi}_i \gamma^\mu \left\{ \left( h_V^i - g_V^i \xi \right) - \left( h_A^i - g_A^i \xi \right) \gamma^5 \right\} \psi_i Z_{2\mu}$$
(6)

with the following definitions:

$$h_V^i = \tilde{f}_V^i + \tilde{s}(T_3^i - 2Q^i) \tan \chi$$
  

$$h_A^i = \tilde{f}_A^i + \tilde{s}T_3^i \tan \chi$$
  

$$\tilde{s} = s_W + \frac{s_W^3}{c_W^2 - s_W^2} \left(\frac{1}{4c_W^2} \alpha S - \frac{1}{2} \alpha T\right)$$
(7)

where the last equation defines a weak angle appropriate for the  $Z_2$  interactions.

If the Z' charges are generation-dependent, there exist severe constraints in the first two generations coming from precision measurements such as the  $K_L$ - $K_S$  mass splitting HTTP://PDG.LBL.GOV Page 13 Created: 12/18/2000 15:07 and  $B(\mu \to 3e)$  owing to the lack of GIM suppression in the Z' interactions; however, constraints on a Z' which couples differently only to the third generation are somewhat weaker. (It will be assumed in the Z-pole constraint section that the Z' couples identically to all three generations of matter; all other results are general.) If the new Z' interactions commute with the Standard Model gauge group, then per generation, there are only five independent  $Z'\overline{\psi}\psi$  couplings; we can choose them to be  $\tilde{f}_V^u$ ,  $\tilde{f}_A^u$ ,  $\tilde{f}_V^d$ ,  $\tilde{f}_V^e$ , and  $\tilde{f}_A^e$ . All other couplings can be determined in terms of these, e.g.,  $\tilde{f}_V^\nu = (\tilde{f}_V^e + \tilde{f}_A^e)/2$ .

**Canonical models:** One of the prime motivations for an additional Z' has come from string theory in which certain compactifications lead naturally to an  $E_6$  gauge group, or one of its subgroups.  $E_6$  contains two U(1) factors beyond the Standard Model, a basis for which is formed by the two groups U(1)<sub> $\chi$ </sub> and U(1)<sub> $\psi$ </sub>, defined via the decompositions  $E_6 \rightarrow$  SO(10) × U(1)<sub> $\psi$ </sub> and SO(10)  $\rightarrow$  SU(5) × U(1)<sub> $\chi$ </sub>; one special case often encountered is U(1)<sub> $\eta$ </sub> where  $Z_{\eta} = \sqrt{\frac{3}{8}Z_{\chi}} + \sqrt{\frac{5}{8}Z_{\psi}}$ . The charges of the SM fermions under these U(1)'s, and a discussion of their experimental signals, can be found in Ref. 5.

It is also common to express experimental bounds in terms of a toy Z' usually denoted  $Z_{\rm SM}$ . This  $Z_{\rm SM}$ , of arbitrary mass, couples to the SM fermions identically to the usual Z.

Almost all analyses of Z' physics have worked with one of these canonical models and have assumed zero kinetic mixing at the weak scale.

**Experimental constraints:** There are three primary sets of constraints on the existence of a Z' which will be considered here: precision measurements of neutral-current processes at low energies, Z-pole constraints on Z-Z' mixing, and direct search constraints from production at very high energies. In

HTTP://PDG.LBL.GOV Page 14 Created: 12/18/2000 15:07

principle, one usually expects other new states to appear at the same scale as the Z', including its symmetry-breaking sector and any additional fermions necessary for anomaly cancellation. However, because these states are highly model-dependent, we will not include searches for them, or Z' decays to them, in the bounds that follow.

Low-energy constraints: After the breaking of the new gauge group and the usual electroweak breaking, the Z of the Standard Model can mix with the Z', with mixing angle  $\xi$  defined above. As already discussed, this Z-Z' mixing implies a shift in the usual oblique parameters [S, T, U defined in Eq. (5)]. Current bounds on S and T translate into stringent constraints on the mixing angle,  $\xi$ , requiring  $\xi \ll 1$ ; similar constraints on  $\xi$  arise from the LEP Z-pole data. Thus we will only consider the small- $\xi$  limit henceforth.

Whether or not the new gauge interactions are parity violating, stringent constraints can arise from atomic parity violation (APV) and polarized electron-nucleon scattering experiments [6]. At low energies, the effective neutral-current Lagrangian is conventionally written:

$$\mathcal{L}_{\rm NC} = \frac{G_F}{\sqrt{2}} \sum_{q=u,d} \left\{ C_{1q}(\overline{e}\gamma_{\mu}\gamma^5 e)(\overline{q}\gamma^{\mu}q) + C_{2q}(\overline{e}\gamma_{\mu}e)(\overline{q}\gamma^{\mu}\gamma^5 q) \right\}$$
(8)

APV experiments are sensitive only to  $C_{1u}$  and  $C_{1d}$  (see the "Electroweak Model and Constraints on New Physics" Review for the nuclear weak charge,  $Q_W$ , in terms of the  $C_{1q}$ ) where in the presence of the Z and Z':

$$C_{1q} = 2(1+\alpha T)(g_A^e + \xi \tilde{f}_A^e)(g_V^q + \xi \tilde{f}_V^q) + 2r(h_A^e - \xi g_A^e)(h_V^q - \xi g_V^q)$$
(9)

HTTP://PDG.LBL.GOV Page 15 Created: 12/18/2000 15:07

where  $r = (M_{Z_1}/M_{Z_2})^2$ . The *r*-dependent terms arise from  $Z_2$ exchange and can interfere constructively or destructively with the  $Z_1$  contribution. In the limit  $\xi = r = 0$ , this reduces to the Standard Model expression. Polarized electron scattering is sensitive to both the  $C_{1q}$  and  $C_{2q}$  couplings, again as discussed in the "Electroweak Model and Constraints on New Physics" Review. The  $C_{2q}$  can be derived from the expression for  $C_{1q}$ with the complete interchange  $V \leftrightarrow A$ .

Stringent limits also arise from neutrino-hadron scattering. One usually expresses experimental results in terms of the effective 4-fermion operators  $(\overline{\nu}\gamma_{\mu}\nu)(\overline{q}_{L,R}\gamma^{\mu}q_{L,R})$  with coefficients  $(2\sqrt{2}G_F)\epsilon_{L,R}(q)$ . (Again, see the "Electroweak Model and Constraints on New Physics" Review.) In the presence of the Z and Z', the  $\epsilon_{L,R}(q)$  are given by:

$$\epsilon_{L,R}(q) = \frac{1 + \alpha T}{2} \left\{ (g_V^q \pm g_A^q) [1 + \xi (\tilde{f}_V^\nu \pm \tilde{f}_A^\nu)] + \xi (\tilde{f}_V^q \pm \tilde{f}_A^q) \right\} + \frac{r}{2} \left\{ (h_V^q \pm h_A^q) (h_V^\nu \pm h_A^\nu) - \xi (g_V^q \pm g_A^q) (h_V^\nu \pm h_A^\nu) - \xi (h_V^q \pm h_A^q) \right\} .$$
(10)

Again, the r-dependent terms arise from  $Z_2$ -exchange.

**Z-pole constraints:** Electroweak measurements made at LEP and SLC while sitting on the Z resonance are generally sensitive to Z' physics only through the mixing with the Z unless the Z and Z' are very nearly degenerate, a possibility we ignore. Constraints on the allowed mixing angle and Z couplings arise by fitting all data simultaneously to the *ansatz* of Z-Z' mixing. For any observable,  $\mathcal{O}$ , the shift in that observable,  $\Delta \mathcal{O}$ , can be expressed (following the procedure of Ref. 7) as:

$$\frac{\Delta \mathcal{O}}{\mathcal{O}} = \mathcal{A}_{\mathcal{O}}^{S} \alpha S + \mathcal{A}_{\mathcal{O}}^{T} \alpha T + \xi \sum_{i} \mathcal{B}_{\mathcal{O}}^{(i)} \tilde{f}^{i}$$
(11)

HTTP://PDG.LBL.GOV Page 16 Created: 12/18/2000 15:07

where *i* runs over the 5 independent  $Z'\overline{\psi}\psi$  couplings listed earlier (assuming a Z' couplings commute with the generation and gauge symmetries of the Standard Model; this is the only place where we enforce such a restriction). The coefficients  $\mathcal{A}_{\mathcal{O}}^{S,T}$  and  $\mathcal{B}_{\mathcal{O}}^{(i)}$ , which are functions only of the Standard Model parameters, are given in Table 1. The first 5 observables are directly measured at LEP and SLC, while  $\overline{A}_e$ ,  $\overline{A}_b$  and  $\overline{A}_c$  are measured via the asymmetries  $\overline{A}_{FB}^{(0,f)} = \frac{3}{4}\overline{A}_e\overline{A}_f$  and  $A_{LR}^0 = \overline{A}_e$ as defined in the "Electroweak Model and Constraints on New Physics" Review. As an example, the shift in  $\overline{A}_e$  due to Z'physics is given by

$$\frac{\Delta \overline{A}_e}{\overline{A}_e} = -24.9 \,\alpha S + 17.7 \,\alpha T - 26.7 \,\xi \,\tilde{f}_V^e + 2.0 \,\xi \,\tilde{f}_A^e \quad . \tag{12}$$

Table 1: Expansion coefficients for shifts in Z-pole observables normalized to the Standard Model value of the observable [7,3].

|                  |                             |                                 |                                |                                  |                                |                                  | <u> </u>                         |
|------------------|-----------------------------|---------------------------------|--------------------------------|----------------------------------|--------------------------------|----------------------------------|----------------------------------|
| $\mathcal{O}$    | $\mathcal{A}^S_\mathcal{O}$ | $\mathcal{A}_{\mathcal{O}}^{T}$ | $\mathcal{B}^{Vu}_\mathcal{O}$ | $\mathcal{B}^{Au}_{\mathcal{O}}$ | $\mathcal{B}^{Vd}_\mathcal{O}$ | $\mathcal{B}^{Ve}_{\mathcal{O}}$ | $\mathcal{B}^{Ae}_{\mathcal{O}}$ |
| $\Gamma_Z$       | -0.49                       | 1.35                            | -0.89                          | -0.40                            | 0.37                           | 0.37                             | 0                                |
| $R_\ell$         | -0.39                       | 0.28                            | -1.3                           | -0.56                            | 0.52                           | 0.30                             | 4.0                              |
| $\sigma_h$       | 0.046                       | -0.033                          | 0.50                           | 0.22                             | -0.21                          | -1.0                             | -4.0                             |
| $R_b$            | 0.085                       | -0.061                          | -1.4                           | -2.1                             | 0.29                           | 0                                | 0                                |
| $R_c$            | -0.16                       | 0.12                            | 2.7                            | 4.1                              | -0.59                          | 0                                | 0                                |
| $\overline{A}_e$ | -24.9                       | 17.7                            | 0                              | 0                                | 0                              | -26.7                            | 2.0                              |
| $\overline{A}_b$ | -0.32                       | 0.23                            | 0.71                           | 0.71                             | -1.73                          | 0                                | 0                                |
| $\overline{A}_c$ | -2.42                       | 1.72                            | 3.89                           | -1.49                            | 0                              | 0                                | 0                                |
| $M_W^2$          | -0.93                       | 1.43                            | 0                              | 0                                | 0                              | 0                                | 0                                |

High-energy indirect constraints: At  $\sqrt{s} < M_{Z_2}$ , but off the  $Z_1$  pole, strong constraints on new Z' physics arise from measurements of deviations of asymmetries and leptonic and hadronic cross sections from their Standard Model predictions. These processes are sensitive not only to Z-Z' mixing but also to direct  $Z_2$  exchange primarily through  $\gamma-Z_2$  and  $Z_1-Z_2$ interference; therefore information on the  $Z_2$  couplings and mass can be extracted that is not accessible via Z-Z' mixing alone.

Far below the  $Z_2$  mass scale, experiment is only sensitive to the scaled  $Z_2$  couplings  $(\sqrt{s}/M_{Z_2}) \cdot h_{V,A}^i$  so the  $Z_2$  mass and overall magnitude of the couplings cannot both be extracted. However as  $\sqrt{s}$  approaches  $M_{Z_2}$  the  $Z_2$  exchange can no longer be approximated by a contact interaction and the mass and couplings can be simultaneously extracted.

Z' studies done before LEP relied heavily on this approach; see, *e.g.*, Ref. 8. LEP has also done similar work using data collected above the Z peak; see, *e.g.*, Ref. 9. For indirect Z'searches at future facilities, see, *e.g.* Refs. 10 and 11.

**Direct-search constraints:** Finally, high-energy experiments have searched for on-shell Z' (here  $Z_2$ ) production and decay. Searches can be classified by the initial state off of which the Z' is produced, and the final state into which the Z' decays; we will not include here exotic decays of a Z'. Experiments to date have been sensitive to Z' production via their coupling to quarks ( $p\bar{p}$  colliders), to electrons ( $e^+e^-$ ) or to both (ep).

For a heavy Z'  $(M_{Z_2} \gg M_{Z_1})$ , the best limits come from  $p\overline{p}$  machines via Drell-Yan production and subsequent decay to charged leptons. For  $M_{Z_2} > 600 \,\text{GeV}$ , CDF [12] quotes limits on  $\sigma(p\overline{p} \to Z_2X) \cdot B(Z_2 \to \ell^+\ell^-) < 0.04 \,\text{pb}$  at 95% C.L. for  $\ell = e + \mu$  combined; DØ [13] quotes  $\sigma \cdot B < 0.025 \,\text{pb}$  for  $\ell = e$ .

HTTP://PDG.LBL.GOV Page 18 Created: 12/18/2000 15:07

For  $M_{Z_2} < 600 \,\text{GeV}$ , the mass dependence is complicated and one should refer to the original literature. For studies of the search capabilities of future facilities, see *e.g.* Ref. 10.

If the Z' has suppressed, or no, couplings to leptons (*i.e.*, it is leptophobic) then experimental sensitivities are much weaker. In particular, searches for a Z' via hadronic decays at DØ [14] are able to rule out a Z' with quark couplings identical to those of the Z only in the mass range 365 GeV  $< M_{Z_2} < 615$  GeV; CDF [15] cannot exclude even this range. Additionally, UA2 [16] finds  $\sigma \cdot B(Z' \rightarrow jj) < 11.7$  pb at 90% C.L. for  $M_{Z'} > 200$  GeV and more complicated bounds in the range 130 GeV  $< M_{Z'} < 200$  GeV.

For a light Z'  $(M_{Z'} < M_Z)$  direct searches in  $e^+e^-$  colliders have ruled out any Z' unless it has extremely weak couplings to leptons. For a combined analysis of the various pre-LEP experiments see Ref. 8.

# References

- 1. B. Holdom, Phys. Lett. 166B, 196 (1986).
- F. del Aguila, Acta Phys. Polon. **B25**, 1317 (1994);
   F. del Aguila, M. Cvetič and P. Langacker, Phys. Rev. **D52**, 37 (1995).
- K.S. Babu, C. Kolda and J. March-Russell, Phys. Rev. D54, 4635 (1996);
   K.S. Babu, C. Kolda, and J. March-Russell, Phys. Rev. D57, 6788 (1998).
- 4. B. Holdom, Phys. Lett. **B259**, 329 (1991).
- 5. J. Hewett and T. Rizzo, Phys. Rept. 183, 193 (1989).
- 6. J. Kim, et al., Rev. Mod. Phys. 53, 211 (1981);
  U. Amaldi, et al., Phys. Rev. D36, 1385 (1987);
  W. Marciano and J. Rosner, Phys. Rev. Lett. 65, 2963 (1990) (Erratum: 68 898 (1992));
  K. Mahanthappa and P. Mohapatra, Phys. Rev. D43, 3093 (1991) (Erratum: D44 1616 (1991));

```
HTTP://PDG.LBL.GOV
```

P. Langacker and M. Luo, Phys. Rev. D45, 278 (1992);
P. Langacker, M. Luo and A. Mann, Rev. Mod. Phys. 64, 87 (1992).

- G. Altarelli, et al., Mod. Phys. Lett. A5, 495 (1990); ibid., Phys. Lett. B263, 459 (1991).
- 8. L. Durkin and P. Langacker, Phys. Lett. **166B**, 436 (1986).
- 9. P. Abreu *et al.*, (DELPHI Collaboration), Eur. Phys. J. C11, 383 (1999);
  R. Barate *et al.*, (ALEPH Collaboration), Eur. Phys. J. C12, 183 (1999).
- M. Cvetiĉ and S. Godfrey, hep-ph/9504216, in *Electroweak Symmetry Breaking and Beyond the Standard Model*, Eds. T. Barklow, *et al.* (World Scientific 1995).
- 11. T. Rizzo, Phys. Rev. **D55**, 5483 (1997).
- 12. F. Abe *et al.*, (CDF Collaboration), Phys. Rev. Lett. **79**, 2191 (1997).
- DØ Collab., XVIII International Conf. on Lepton Photon Interactions (June 1997), http://www-d0.fnal.gov/ public/new/conferences/lp97.html.
- 14. DØ Collaboration, XVIII International Conference on Lepton Photon Interactions (June 1997), see URL above.
- F. Abe *et al.*, (CDF Collaboration), Phys. Rev. **D55**, 5263R (1997).
- J. Alitti, et al., (UA2 Collaboration), Nucl. Phys. B400, 3 (1993).

### MASS LIMITS for Z' (Heavy Neutral Vector Boson Other Than Z)

# Limits for $Z'_{SM}$

 $Z'_{SM}$  is assumed to have couplings with quarks and leptons which are identical to those of Z, and decays only to known fermions.

| VALUE (GeV)     | CL% | DOCUMENT ID          | TECN     | COMMENT                                      | _ |
|-----------------|-----|----------------------|----------|----------------------------------------------|---|
| >898 (CL = 95%) |     |                      |          |                                              |   |
| >898            | 95  | <sup>43</sup> BARATE | 001 ALEP | $e^+e^-$                                     |   |
| >690            | 95  | <sup>44</sup> ABE    | 97s CDF  | $p\overline{p}; Z'_{SM} \rightarrow e^+e^-,$ |   |
|                 |     |                      |          | $\mu^+\mu^-$                                 |   |

• • • We do not use the following data for averages, fits, limits, etc. • • •

| >809         | 95 | <sup>45</sup> ERLER  | 99          | RVUE | Electroweak                                                 |
|--------------|----|----------------------|-------------|------|-------------------------------------------------------------|
| >490         | 95 | ABACHI               | <b>96</b> D |      | $p\overline{p}; Z'_{SM} \rightarrow e^+e^-$                 |
| >505         |    | <sup>46</sup> ABE    | 95          | CDF  | $p\overline{p}; Z_{SM}^{pm} \rightarrow e^+e^-$             |
| >398         | 95 | <sup>47</sup> VILAIN | <b>94</b> B | CHM2 | $ u_{\mu} e  ightarrow  u_{\mu} e$ and                      |
|              |    |                      |             |      | $\overline{\nu}_{\mu} e \rightarrow \overline{\nu}_{\mu} e$ |
| >237         | 90 | <sup>48</sup> ALITTI | 93          | UA2  | $p\overline{p}; Z'_{\text{SM}} \rightarrow q\overline{q}$   |
| none 260–600 | 95 | <sup>49</sup> RIZZO  | 93          | RVUE | $p\overline{p}; Z'_{SM} \rightarrow q\overline{q}$          |
| >426         | 90 |                      |             | VNS  | $e^+e^-$                                                    |
|              |    |                      |             |      |                                                             |

<sup>43</sup> BARATE 00I search for deviations in cross section and asymmetries in  $e^+e^- \rightarrow$  fermions at  $\sqrt{s}=90$  to 183 GeV. Assume  $\theta=0$ . Bounds in the mass-mixing plane are shown in their Figure 18.

<sup>44</sup> ABE 97S find  $\sigma(Z') \times B(e^+e^-, \mu^+\mu^-) <$  40 fb for  $m_{Z'} > 600$  GeV at  $\sqrt{s} = 1.8$  TeV.

 $^{45}$  ERLER 99 give 90%CL limit on the Z-Z' mixing -0.0041 <  $\theta$  < 0.0003.  $\rho_{0}{=}1$  is assumed. 46 ABE 975 find  $\sigma(Z') \times B(e^+e^-) < 350$  fb for  $m_{Z'} > 350$  GeV at  $\sqrt{s} = 1.8$  TeV.

 $^{47}$  VILAIN 94B assume  $m_t = 150$  GeV.

<sup>48</sup> ALITTI 93 search for resonances in the two-jet invariant mass. The limit assumes  $B(Z' \rightarrow q\overline{q})=0.7$ . See their Fig. 5 for limits in the  $m_{Z'}-B(q\overline{q})$  plane.

<sup>49</sup> RIZZO 93 analyses CDF limit on possible two-jet resonances.

 $^{50}$  ABE 90F use data for R,  $R_{\ell\ell}$  , and  $A_{\ell\ell}$  . They fix  $m_W=$  80.49  $\pm$  0.43  $\pm$  0.24 GeV and  $m_{7} = 91.13 \pm 0.03$  GeV.

#### Limits for $Z_{LR}$

 $Z_{LR}$  is the extra neutral boson in left-right symmetric models.  $g_L = g_R$  is assumed unless noted. Values in parentheses assume stronger constraint on the Higgs sector, usually motivated by specific left-right symmetric models (see the Note on the W'). Values in brackets are from cosmological and astrophysical considerations and assume a light right-handed neutrino. Direct search bounds assume decays to Standard Model fermions only, unless noted.

| VALUE (GeV)         | CL%       | DOCUMENT ID              |      | TECN       | COMMENT                                        |
|---------------------|-----------|--------------------------|------|------------|------------------------------------------------|
| >564 (CL = 95%)     |           |                          |      |            |                                                |
| >564                | 95        | <sup>51</sup> ERLER      | 99   | RVUE       |                                                |
| >630                | 95        | <sup>52</sup> ABE        | 97s  | CDF        | $p \overline{p}; Z'_{LR} \rightarrow e^+ e^-,$ |
|                     |           |                          |      |            | $\mu^+\mu^-$                                   |
| • • • We do not use | the follo | wing data for avera      | ges, | fits, limi | ts, etc. ● ● ●                                 |
| >436                | 95        | <sup>53</sup> BARATE     | 001  | ALEP       | e <sup>+</sup> e <sup>-</sup>                  |
| >550                | 95        | <sup>54</sup> CHAY       | 00   | RVUE       | Electroweak                                    |
|                     |           | <sup>55</sup> ERLER      |      | RVUE       |                                                |
| >230                | 95        |                          |      | DLPH       | e <sup>+</sup> e <sup>-</sup>                  |
|                     |           | <sup>57</sup> CASALBUONI | 99   | RVUE       | Cs                                             |
| (> 1205)            | 90        | <sup>58</sup> CZAKON     | 99   | RVUE       | Electroweak                                    |
| (> 1673)            | 95        | <sup>59</sup> ERLER      | 99   | RVUE       | Electroweak                                    |
| (> 1700)            | 68        | <sup>60</sup> BARENBOIM  | 98   | RVUE       | Electroweak                                    |

| >244          | 95 | <sup>61</sup> CONRAD    | 98 RVUE  | $ u_{\mu}$ N scattering                                                   |
|---------------|----|-------------------------|----------|---------------------------------------------------------------------------|
| >190          | 95 | <sup>62</sup> BARATE    | 97b ALEP | $e^+e^-  ightarrow \ \mu^+\mu^-$ and                                      |
| >445          | 95 | <sup>63</sup> ABE       | 95 CDF   | hadronic cross section<br>$p\overline{p}; Z'_{LR} \rightarrow e^+ e^-$    |
| >253          | 95 | <sup>64</sup> VILAIN    |          | $ u_{\mu} e  ightarrow  u_{\mu} e$ and $\overline{ u}_{\mu} e  ightarrow$ |
|               |    |                         |          | $\overline{ u}_{\mu}$ e                                                   |
| >130          | 95 | <sup>65</sup> ADRIANI   | 93d L3   | Z parameters                                                              |
| (> 1500)      | 90 | <sup>66</sup> ALTARELLI | 93b RVUE | Z parameters                                                              |
| none 200–600  | 95 | <sup>67</sup> RIZZO     | 93 RVUE  | $p\overline{p}; Z_{IR} \rightarrow q\overline{q}$                         |
| [> 2000]      |    | WALKER                  |          | Nucleosynthesis; light $\nu_R$                                            |
| none 200–500  |    | <sup>68</sup> GRIFOLS   |          | SN 1987A; light $\nu_R$                                                   |
| none 350–2400 |    | <sup>69</sup> BARBIERI  |          | SN 1987A; light $\nu_R$                                                   |
|               |    |                         |          |                                                                           |

<sup>51</sup> ERLER 99 give 90%CL limit on the Z-Z' mixing  $-0.0009 < \theta < 0.0017$ .

<sup>52</sup>ABE 97S find  $\sigma(Z') \times B(e^+e^-, \mu^+\mu^-) < 40$  fb for  $m_{Z'} > 600$  GeV at  $\sqrt{s} = 1.8$  TeV.

<sup>53</sup>BARATE 00I search for deviations in cross section and asymmetries in  $e^+e^- \rightarrow$  fermions at  $\sqrt{s}=90$  to 183 GeV. Assume  $\theta=0$ . Bounds in the mass-mixing plane are shown in their Figure 18.

<sup>54</sup> CHAY 00 also find  $-0.0003 < \theta < 0.0019$ . For  $g_R$  free,  $m_{Z'} >$  430 GeV.

<sup>55</sup> ERLER 00 discuss the possibility that a discrepancy between the observed and predicted values of  $Q_W(Cs)$  is due to the exchange of Z'. The data are better described in a certain class of the Z' models including  $Z_{LR}$  and  $Z_{\chi}$ .

<sup>56</sup> ABREU 99A give 95%CL limit on the Z-Z' mixing  $|\theta| < 0.0031$ . For the limit contour in the mass-mixing plane, see their Fig. 16. Data taken at  $\sqrt{s}$ = 130–172 GeV.

<sup>57</sup> CASALBUONI 99 discuss the discrepancy between the observed and predicted values of  $Q_W(Cs)$ . It is shown that the data are better described in a class of models including the  $Z_{LR}$  model.

<sup>58</sup> CZAKON 99 perform a simultaneous fit to charged and neutral sectors. Assumes manifest left-right symmetric model. Finds  $|\theta| < 0.0042$ .

<sup>59</sup> ERLER 99 assumes 2 Higgs doublets, tranforming as 10 of SO(10), embedded in  $E_6$ .

<sup>60</sup> BARENBOIM 98 also gives 68% CL limits on the Z-Z' mixing  $-0.0005 < \theta < 0.0033$ . Assumes Higgs sector of minimal left-right model.

<sup>61</sup>CONRAD 98 limit is from measurements at CCFR, assuming no Z-Z' mixing.

<sup>62</sup> BARATE 97B gives 95% CL limits on Z-Z' mixing  $-0.0017 < \theta < 0.0035$ . The bounds are computed with  $\alpha_s = 0.120 \pm 0.003$ ,  $m_t = 175 \pm 6$  GeV, and  $M_H = 150^{+150}_{-90}$  GeV. Data taken at  $\sqrt{s}=20-136$  GeV.

<sup>63</sup> ABE 97S find  $\sigma(Z') \times B(e^+e^-) < 350$  fb for  $m_{Z'} > 350$  GeV at  $\sqrt{s} = 1.8$  TeV. See their Fig. 3 for the mass bound of Z' decaying to all allowed fermions and supersymmetric  $c_{s}$  fermions.

- <sup>64</sup> VILAIN 94B assume  $m_t = 150$  GeV and  $\theta = 0$ . See Fig. 2 for limit contours in the mass-mixing plane.
- <sup>65</sup> ADRIANI 93D give limits on the Z-Z' mixing  $-0.002 < \theta < 0.015$  assuming  $m_{T'} > 310$  GeV.
- <sup>66</sup> ALTARELLI 93B limit is from LEP data available in summer '93 and is for  $m_t = 110$  GeV.  $m_H = 100$  GeV and  $\alpha_s = 0.118$  assumed. The limit improves for larger  $m_t$  (see their Fig. 5). The 90%CL limit on the Z-Z' mixing angle is in Table 4.
- <sup>67</sup> RIZZO 93 analyses CDF limit on possible two-jet resonances.
- $^{68}\,{\rm GRIFOLS}$  90 limit holds for  $m_{\nu_R}\lesssim 1$  MeV. A specific Higgs sector is assumed. See also GRIFOLS 90D, RIZZO 91.
- $^{69}\,{\rm BARBIERI}$  89B limit holds for  $m_{\nu_R} \leq$  10 MeV. Bounds depend on assumed supernova core temperature.

### Limits for $Z_{\chi}$

 $Z_{\chi}$  is the extra neutral boson in SO(10)  $\rightarrow$  SU(5)  $\times$  U(1) $_{\chi}$ .  $g_{\chi} = e/\cos\theta_W$  is assumed unless otherwise stated. We list limits with the assumption  $\rho = 1$  but with no further constraints on the Higgs sector. Values in parentheses assume stronger constraint on the Higgs sector motivated by superstring models. Values in brackets are from cosmological and astrophysical considerations and assume a light right-handed neutrino.

| VALUE (GeV)                             | CL%        | DOCUMENT ID             |             | TECN       | COMMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------------------------|------------|-------------------------|-------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| >545 (CL = 95%)                         |            |                         |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| >545                                    | 95         | <sup>70</sup> ERLER     | 99          | RVUE       | Electroweak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| > <b>595</b>                            | 95         | <sup>71</sup> ABE       | <b>97</b> S | CDF        | $p \overline{p}; Z'_{\gamma} \rightarrow e^+ e^-, \mu^+ \mu^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\bullet \bullet \bullet$ We do not use | the follow | wing data for avera     | ges,        | fits, limi | ts, etc. • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| >533                                    | 95         | <sup>72</sup> BARATE    | 001         | ALEP       | e <sup>+</sup> e <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                         |            | <sup>73</sup> ERLER     | 00          | RVUE       | Cs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                         |            | <sup>74</sup> ROSNER    | 00          | RVUE       | Cs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| >250                                    | 95         | <sup>75</sup> ABREU     | 99A         | DLPH       | e <sup>+</sup> e <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (> 1368)                                | 95         | <sup>76</sup> ERLER     | 99          | RVUE       | Electroweak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| >470                                    | 95         | <sup>77</sup> CHO       | 98          | RVUE       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| >451                                    | 95         | <sup>78</sup> CHO       | <b>98</b> B | RVUE       | Electroweak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| >215                                    | 95         | <sup>79</sup> CONRAD    | 98          | RVUE       | $ u_{\mu}$ N scattering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| >190                                    | 95         | <sup>80</sup> ARIMA     | 97          | VNS        | Bhabha scattering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| >236                                    | 95         | <sup>81</sup> BARATE    | <b>97</b> B | ALEP       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| >425                                    | 95         | <sup>82</sup> ABE       | 95          | CDF        | hadronic cross section $p\overline{p}; Z'_{\chi} \rightarrow e^+e^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| >147                                    | 95         | <sup>83</sup> ABREU     | 95M         | DLPH       | Z parameters and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                         | ~-         | 81                      |             | <u></u>    | $e^+e^- \rightarrow \mu^+\mu^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| >262                                    | 95         | <sup>84</sup> VILAIN    | <b>9</b> 4B | CHM2       | $egin{array}{ll}  u_{\mu} e  ightarrow  u_{\mu} e \ { m and} \ \overline{ u}_{\mu} e  ightarrow  u_{\mu} e \ { m and} \ \overline{ u}_{\mu} e \ {$ |
| >117                                    | 95         | <sup>85</sup> ADRIANI   | <b>93</b> D | 13         | Z parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (>900)                                  | 90         | <sup>86</sup> ALTARELLI |             | -          | Z parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| [>1470]                                 |            | <sup>87</sup> FARAGGI   |             |            | Nucleosynthesis; light $\nu_R$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| >231                                    | 90         | <sup>88</sup> ABE       |             | VNS        | $e^+e^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| [> 1140]                                | - •        |                         |             |            | Nucleosynthesis; light $\nu_R$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| [> 2100]                                |            | <sup>90</sup> GRIFOLS   | 90          | ASTR       | SN 1987A; light $\nu_R$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 70                                      |            | · ,                     |             |            | , ο η                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

<sup>70</sup> ERLER 99 give 90%CL limit on the Z-Z' mixing  $-0.0020 < \theta < 0.0015$ . <sup>71</sup> ABE 97s find  $\sigma(Z') \times B(e^+e^-, \mu^+\mu^-) <$  40 fb for  $m_{Z'} > 600$  GeV at  $\sqrt{s} = 1.8$  TeV.

- <sup>72</sup> BARATE 001 search for deviations in cross section and asymmetries in  $e^+e^- \rightarrow$  fermions at  $\sqrt{s}$ =90 to 183 GeV. Assume  $\theta$ =0. Bounds in the mass-mixing plane are shown in their Figure 18.
- <sup>73</sup> ERLER 00 discuss the possibility that a discrepancy between the observed and predicted values of  $Q_W(Cs)$  is due to the exchange of Z'. The data are better described in a certain class of the Z' models including  $Z_{LR}$  and  $Z_{\chi}$ .
- <sup>74</sup> ROSNER 00 discusses the possiblitiy that a discrepancy between the observed and predicted values of  $Q_W(Cs)$  is due to the exchange of Z'. The data are better described in a certain class of the Z' models including  $Z_{\gamma}$ .
- $^{75}\,{\sf ABREU}$  99A give 95%CL limit on the Z-Z' mixing  $\left|\theta\right|<$  0.0033. For the limit contour in the mass-mixing plane, see their Fig. 16. Data taken at  $\sqrt{s}$ = 130–172 GeV.

<sup>76</sup> ERLER 99 assumes 2 Higgs doublets, tranforming as 10 of SO(10), embedded in  $E_6$ .

- <sup>77</sup> CHO 98 limit is from constraints on four-Fermi contact interactions obtained from lowenergy electroweak experiments, and assumes no Z-Z' mixing.
- <sup>78</sup> CHO 98B use various electroweak data to constrain Z' models assuming  $m_{H}$ =100 GeV.  $\rho$ =1 is not assumed. See their Eq. (4.8) for their fit in mass-mixing plane, and Table 10 for limits assuming  $E_6$ -motivated Higgs sector.
- <sup>79</sup> CONRAD 98 limit is from measurements at CCFR, assuming no Z-Z' mixing.
- $^{80}$  Z-Z' mixing is assumed to be zero.  $\sqrt{s}$ = 57.77 GeV.
- <sup>81</sup> BARATE 97B gives 95% CL limits on Z-Z' mixing  $-0.0016 < \theta < 0.0036$ . The bounds are computed with  $\alpha_s = 0.120 \pm 0.003$ ,  $m_t = 175 \pm 6$  GeV, and  $M_H = 150 + 150 90$  GeV. Data was taken at  $\sqrt{s} = 20 136$  GeV.
- <sup>82</sup>ABE 95 limit is obtained assuming that Z' decays to known fermions only. See their Fig. 3 for the mass bound of Z' decaying to all allowed fermions and supersymmetric fermions.
- <sup>83</sup>ABREU 95M limit is for  $\alpha_s$ =0.123,  $m_t$ =150 GeV, and  $m_H$ =300 GeV. For the limit contour in the mass-mixing plane, see their Fig. 13.
- $^{84}$  VILAIN 94B assume  $m_t = 150$  GeV and  $\theta = 0$ . See Fig. 2 for limit contours in the mass-mixing plane.
- $^{85}$  ADRIANI 93D give limits on the Z-Z' mixing  $-0.004 < \theta < 0.015$  assuming the \_\_\_\_ ABE 92B mass limit.
- <sup>86</sup> ALTARELLI 93B limit is from LEP data available in summer '93 and is for  $m_t = 110$  GeV.  $m_H = 100$  GeV and  $\alpha_s = 0.118$  assumed. The limit improves for larger  $m_t$  (see their Fig. 5). The 90%CL limit on the Z-Z' mixing angle is in their Fig. 2.
- <sup>87</sup> FARAGGI 91 limit assumes the nucleosynthesis bound on the effective number of neutrinos  $\Delta N_{\nu}$  < 0.5 and is valid for  $m_{\nu_R}$  < 1 MeV.
- <sup>88</sup> ABE 90F use data for R,  $R_{\ell\ell}$ , and  $A_{\ell\ell}$ . ABE 90F fix  $m_W = 80.49 \pm 0.43 \pm 0.24$  GeV and  $m_Z = 91.13 \pm 0.03$  GeV.
- <sup>89</sup> Assumes the nucleosynthesis bound on the effective number of light neutrinos ( $\delta N_{\nu} < 1$ ) and that  $\nu_R$  is light ( $\leq 1$  MeV).

 $^{90}$  GRIFOLS 90 limit holds for  $m_{\nu_P} \lesssim 1$  MeV. See also GRIFOLS 90D, RIZZO 91.

#### Limits for $Z_{\psi}$

 $Z_{\psi}$  is the extra neutral boson in  $E_6 \rightarrow SO(10) \times U(1)_{\psi}$ .  $g_{\psi} = e/\cos\theta_W$  is assumed unless otherwise stated. We list limits with the assumption  $\rho = 1$  but with no further constraints on the Higgs sector. Values in brackets are from cosmological and astrophysical considerations and assume a light right-handed neutrino.

| VALUE (GeV)       | CL%         | DOCUMENT ID          | TECN            | COMMENT                                                                  |  |
|-------------------|-------------|----------------------|-----------------|--------------------------------------------------------------------------|--|
| >294 (CL = 95%)   |             |                      |                 |                                                                          |  |
| >294              | 95          | <sup>91</sup> BARATE | 001 ALEP        | e <sup>+</sup> e <sup>-</sup>                                            |  |
| >590              | 95          | <sup>92</sup> ABE    | 97s CDF         | p $\overline{p};~Z_{\psi}^{\prime} ightarrow~e^{+}e^{-},~\mu^{+}\mu^{-}$ |  |
| • • • We do not u | se the foll | owing data for aver  | ages, fits, lim | its, etc. ໌ ● ● ●                                                        |  |
| >280              | 95          | <sup>93</sup> ABREU  | 99A DLPH        | e <sup>+</sup> e <sup>-</sup>                                            |  |
| >146              | 95          | <sup>94</sup> ERLER  | 99 RVUE         | Electroweak                                                              |  |
| >140              | 95          | <sup>95</sup> CHO    | 98 RVUE         |                                                                          |  |
| >136              | 95          | <sup>96</sup> СНО    | 98b RVUE        | Electroweak                                                              |  |

| > 54     | 95 | <sup>97</sup> CONRAD      | 98 RVUE    | $ u_{\mu}$ N scattering                                                                                            |
|----------|----|---------------------------|------------|--------------------------------------------------------------------------------------------------------------------|
| >160     | 95 | <sup>98</sup> BARATE      | 97b ALEP   | $e^+e^- \rightarrow \mu^+\mu^-$ and hadronic cross section                                                         |
| >415     | 95 | <sup>99</sup> ABE         | 95 CDF     | $p \overline{p}; Z'_{\psi} \rightarrow e^+ e^-$                                                                    |
| >105     | 95 | <sup>100</sup> ABREU      |            | Z parameters and                                                                                                   |
| >135     | 95 | <sup>101</sup> VILAIN     | 94b CHM2   | $e^+e^- \to \mu^+\mu^-$ $\nu_{\mu}e \to \nu_{\mu}e \text{ and } \overline{\nu}_{\mu}e \to$ $\overline{\nu}_{\mu}e$ |
| >118     | 95 | <sup>102</sup> ADRIANI    | 93d L3     | $\overset{\mu}{Z}$ parameters                                                                                      |
| >105     | 90 | <sup>103</sup> ABE        | 90F VNS    |                                                                                                                    |
| [> 160]  |    | <sup>104</sup> GONZALEZ-G | 90D COSM   | Nucleosynthesis; light $ u_R$                                                                                      |
| [> 2000] |    | <sup>105</sup> GRIFOLS    |            | SN 1987A; light $\nu_R$                                                                                            |
| [> 2000] |    |                           | 500 / 15 m |                                                                                                                    |

<sup>91</sup> BARATE 001 search for deviations in cross section and asymmetries in  $e^+e^- \rightarrow$  fermions at  $\sqrt{s}=90$  to 183 GeV. Assume  $\theta=0$ . Bounds in the mass-mixing plane are shown in their Figure 18.

- $^{92}$  ABE 975 find  $\sigma(Z') \times B(e^+e^-, \mu^+\mu^-) < 40$  fb for  $m_{Z'} > 600$  GeV at  $\sqrt{s} = 1.8$  TeV.
- <sup>93</sup> ABREU 99A give 95%CL limit on the Z-Z' mixing  $|\tilde{\theta}| < 0.0021$ . For the limit contour in the mass-mixing plane, see their Fig. 16. Data taken at  $\sqrt{s}$ = 130–172 GeV.
- <sup>94</sup> ERLER 99 give 90%CL limit on the Z-Z' mixing  $-0.0013 < \theta < 0.0024$ .
- $^{95}$  CHO 98 limit is from constraints on four-Fermi contact interactions obtained from lowenergy electroweak experiments and assumes no Z-Z' mixing.
- $^{96}$  CHO 98B use various electroweak data to constrain Z' models. See their Eq. (4.9) for their fit in mass-mixing plane.
- $^{97}$  CONRAD 98 limit is from measurements at CCFR, assuming no Z-Z' mixing.
- <sup>98</sup> BARATE 97B gives 95% CL limits on Z-Z' mixing  $-0.0020 < \theta < 0.0038$ . The bounds are computed with  $\alpha_s = 0.120 \pm 0.003$ ,  $m_t = 175 \pm 6$  GeV, and  $M_H = 150 + 150 90$  GeV. Data taken at  $\sqrt{s} = 20$ -136 GeV.
- <sup>99</sup> See ABE 95 Fig. 3 for the mass bound of Z' decaying to all allowed fermions and supersymmetric fermions.
- <sup>100</sup>ABREU 95M limit is for  $\alpha_s$ =0.123,  $m_t$ =150 GeV, and  $m_H$ =300 GeV. For the limit contour in the mass-mixing plane, see their Fig. 13.
- $^{101}\,\rm VILAIN$  94B assume  $m_t = 150~\rm GeV$  and  $\theta{=}0.$  See Fig. 2 for limit contours in the mass-mixing plane.
- $^{102}$  ADRIANI 93D give limits on the Z-Z' mixing  $-0.003 < \theta < 0.020$  assuming the ABE 92B mass limit.
- 103 ABE 90F use data for R,  $R_{\ell\ell}$ , and  $A_{\ell\ell}$ . ABE 90F fix  $m_W = 80.49 \pm 0.43 \pm 0.24$  GeV and  $m_Z = 91.13 \pm 0.03$  GeV.
- $^{104}$  Assumes the nucleosynthesis bound on the effective number of light neutrinos ( $\delta N_{\nu}~<~1)$  and that  $\nu_R$  is light ( $\lesssim~1$  MeV).

 $^{105}$  GRIFOLS 90D limit holds for  $m_{
u_P} \lesssim$  1 MeV. See also RIZZO 91.

#### Limits for $Z_{\eta}$

 $Z_{\eta}$  is the extra neutral boson in E<sub>6</sub> models, corresponding to  $Q_{\eta} = \sqrt{3/8} Q_{\chi} - \sqrt{5/8} Q_{\psi}$ .  $g_{\eta} = e/\cos\theta_W$  is assumed unless otherwise stated. We list limits with the assumption  $\rho = 1$  but with no further constraints on the Higgs sector. Values in parentheses assume stronger constraint on the Higgs sector motivated by superstring

| assume a light                          | rıght-ha   | nded neutrino.             |               |            |                                                                                                                                            |
|-----------------------------------------|------------|----------------------------|---------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| VALUE (GeV)                             | <u>CL%</u> | DOCUMENT ID                |               | TECN       | COMMENT                                                                                                                                    |
| >365 (CL = 95%)                         |            |                            |               |            |                                                                                                                                            |
| >365                                    | 95         | <sup>106</sup> ERLER       | 99            | RVUE       | Electroweak                                                                                                                                |
| >620                                    | 95         | <sup>107</sup> ABE         | <b>97</b> S   | CDF        | $p \overline{p}; Z'_{\eta} \rightarrow e^+ e^-, \mu^+ \mu^-$                                                                               |
| $\bullet \bullet \bullet$ We do not use | the foll   | owing data for avera       | ges,          | fits, limi | ts, etc. ● ● ●                                                                                                                             |
| >329                                    | 95         | <sup>108</sup> BARATE      | 001           | ALEP       | e <sup>+</sup> e <sup>-</sup>                                                                                                              |
| >200                                    | 95         | <sup>109</sup> ABREU       | 99A           | DLPH       | e <sup>+</sup> e <sup>-</sup>                                                                                                              |
| >340                                    | 95         | <sup>110</sup> CHO         | 98            | RVUE       |                                                                                                                                            |
| >317                                    | 95         | <sup>111</sup> CHO         | <b>98</b> B   | RVUE       | Electroweak                                                                                                                                |
| > 87                                    | 95         | <sup>112</sup> CONRAD      | 98            | RVUE       | $ u_{\mu} N$ scattering                                                                                                                    |
| >173                                    | 95         | <sup>113</sup> BARATE      | <b>97</b> B   | ALEP       | $e^{+}e^{-} ightarrow \ \mu^{+}\mu^{-}$ and                                                                                                |
| >440                                    | 95         | <sup>114</sup> ABE         | 95            | CDF        | hadronic cross section<br>$p\overline{p}; Z'_{\eta} \rightarrow e^+e^-$                                                                    |
| >109                                    | 95         | <sup>115</sup> ABREU       | 95M           | DLPH       | Z parameters and                                                                                                                           |
| >100                                    | 95         | <sup>116</sup> VILAIN      | <b>94</b> B   | CHM2       | $e^+e^- \rightarrow \mu^+\mu^-$ $\nu_{\mu}e \rightarrow \nu_{\mu}e \text{ and } \overline{\nu}_{\mu}e \rightarrow$ $\overline{\nu}_{\mu}e$ |
| >100                                    | 95         | <sup>117</sup> ADRIANI     | <b>93</b> D   | L3         | Z parameters                                                                                                                               |
| (>500)                                  | 90         | <sup>118</sup> ALTARELLI   | <b>93</b> B   |            | Z parameters                                                                                                                               |
| >125                                    | 90         | <sup>119</sup> ABE         |               | VNS        |                                                                                                                                            |
| [> 820]                                 |            | <sup>120</sup> GONZALEZ-G. | . <b>90</b> D | COSM       | Nucleosynthesis; light $ u_R$                                                                                                              |
| [> 3300]                                |            | <sup>121</sup> GRIFOLS     | 90            | ASTR       | SN 1987A; light $\nu_R$                                                                                                                    |
| [> 1040]                                |            | <sup>120</sup> LOPEZ       |               |            | Nucleosynthesis; light $\nu_R$                                                                                                             |
|                                         |            | ·                          |               | 0 0000     | <ul> <li></li></ul>                                                                                                                        |

models. Values in brackets are from cosmological and astrophysical considerations and assume a light right-handed neutrino.

<sup>106</sup> ERLER 99 give 90%CL limit on the Z-Z' mixing  $-0.0062 < \theta < 0.0011$ .

<sup>107</sup> ABE 97S find  $\sigma(Z') \times B(e^+e^-, \mu^+\mu^-) < 40$  fb for  $m_{Z'} > 600$  GeV at  $\sqrt{s} = 1.8$  TeV.

<sup>108</sup> BARATE 00I search for deviations in cross section and asymmetries in  $e^+e^- \rightarrow$  fermions at  $\sqrt{s}=90$  to 183 GeV. Assume  $\theta=0$ . Bounds in the mass-mixing plane are shown in their Figure 18.

<sup>109</sup> ABREU 99A give 95%CL limit on the Z-Z' mixing  $|\theta| < 0.0046$ . For the limit contour in the mass-mixing plane, see their Fig. 16. Data taken at  $\sqrt{s}$ = 130–172 GeV.

<sup>110</sup>CHO 98 limit is from constraints on four-Fermi contact interactions obtained from lowenergy electroweak experiments, and assumes no Z-Z' mixing.

<sup>111</sup> CHO 98B use various electroweak data to constrain Z' models assuming  $m_H$ =100 GeV.  $\rho$ =1 is not assumed. See their Eq. (4.8) for their fit in mass-mixing plane, and Table 10 for limits assuming  $E_6$ -motivated Higgs sector.

<sup>112</sup>CONRAD 98 limit is from measurements at CCFR, assuming no Z-Z' mixing.

<sup>113</sup> BARATE 97B gives 95% CL limits on Z-Z' mixing  $-0.021 < \theta < 0.012$ . The bounds are computed with  $\alpha_s = 0.120 \pm 0.003$ ,  $m_t = 175 \pm 6$  GeV, and  $M_H = 150 \substack{+150 \\ -90}$  GeV. Data was taken at  $\sqrt{s} = 20$ -136 GeV.

- <sup>114</sup> See ABE 95 Fig. 3 for the mass bound of Z' decaying to all allowed fermions and supersymmetric fermions.
- <sup>115</sup> ABREU 95M limit is for  $\alpha_s$ =0.123,  $m_t$ =150 GeV, and  $m_H$ =300 GeV. For the limit contour in the mass-mixing plane, see their Fig. 13.
- <sup>116</sup> VILAIN 94B assume  $m_t = 150$  GeV and  $\theta = 0$ . See Fig. 2 for limit contours in the mass-mixing plane.
- $^{117}$  ADRIANI 93D give limits on the Z-Z' mixing  $-0.029 < \theta < 0.010$  assuming the ABE 92B mass limit.

<sup>118</sup> ALTARELLI 93B limit is from LEP data available in summer '93 and is for  $m_t = 110$  GeV.  $m_H = 100$  GeV and  $\alpha_s = 0.118$  assumed. The 90%CL limit on the Z-Z' mixing angle is in Fig. 2.

<sup>119</sup> ABE 90F use data for R,  $R_{\ell\ell}$ , and  $A_{\ell\ell}$ . ABE 90F fix  $m_W = 80.49 \pm 0.43 \pm 0.24$  GeV and  $m_Z = 91.13 \pm 0.03$  GeV.

<sup>120</sup> These authors claim that the nucleosynthesis bound on the effective number of light neutrinos ( $\delta N_{\nu} < 1$ ) constrains Z' masses if  $\nu_R$  is light ( $\lesssim 1$  MeV).

 $^{121}\,{\rm GRIFOLS}$  90 limit holds for  $m_{\nu_R}\,\lesssim\,1$  MeV. See also GRIFOLS 90D, RIZZO 91.

#### Limits for other Z'

| $Z_eta = Z_\chi  \cos\!eta  +  Z_\psi  \sin\!eta$                                                       |                                           |       |          |                                                        |            |  |  |  |
|---------------------------------------------------------------------------------------------------------|-------------------------------------------|-------|----------|--------------------------------------------------------|------------|--|--|--|
| VALUE (GeV)                                                                                             | DOCUMENT ID                               |       | TECN     | COMMENT                                                |            |  |  |  |
| ullet $ullet$ $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$ |                                           |       |          |                                                        |            |  |  |  |
|                                                                                                         | <sup>.22</sup> СНО<br>. <sup>23</sup> СНО |       |          | E <sub>6</sub> -motivated<br>E <sub>6</sub> -motivated |            |  |  |  |
| $^{122}$ CHO 98 study constraints on                                                                    | four-Fermi contact                        | inter | ractions | obtained from                                          | low-energy |  |  |  |

electroweak experiments, assuming no Z-Z' mixing.

 $^{123}$ CHO 98B use various electroweak data to constrain Z' models.

# LEPTOQUARK QUANTUM NUMBERS

Written December 1997 by M. Tanabashi (Tohoku U.).

Leptoquarks are particles carrying both baryon number (B)and lepton number (L). They are expected to exist in various extensions of the Standard Model (SM). The possible quantum numbers of leptoquark states can be restricted by assuming that their direct interactions with the ordinary SM fermions are dimensionless and invariant under the SM gauge group. Table 1 shows the list of all possible quantum numbers with this assumption [1]. The columns of  $SU(3)_C$ ,  $SU(2)_W$ , and  $U(1)_Y$ in Table 1 indicate the QCD representation, the weak isospin representation, and the weak hypercharge, respectively. Naming conventions of leptoquark states are taken from Ref. 1. The spin of a leptoquark state is taken to be 1 (vector leptoquark) or 0 (scalar leptoquark).

| Leptoquarks      | Spin | 3B + L | $SU(3)_c$      | $\mathrm{SU}(2)_W$ | $\mathrm{U}(1)_Y$ |
|------------------|------|--------|----------------|--------------------|-------------------|
| $\overline{S_1}$ | 0    | -2     | $\bar{3}$      | 1                  | 1/3               |
| $	ilde{S}_1$     | 0    | -2     | $\bar{3}$      | 1                  | 4/3               |
| $S_3$            | 0    | -2     | $\bar{3}$      | 3                  | 1/3               |
| $V_2$            | 1    | -2     | $\bar{3}$      | 2                  | 5/6               |
| $	ilde{V}_2$     | 1    | -2     | $\overline{3}$ | 2                  | -1/6              |
| $R_2$            | 0    | 0      | 3              | 2                  | 7/6               |
| $	ilde{R}_2$     | 0    | 0      | 3              | 2                  | 1/6               |
| $U_1$            | 1    | 0      | 3              | 1                  | 2/3               |
| $	ilde{U}_1$     | 1    | 0      | 3              | 1                  | 5/3               |
| $U_3$            | 1    | 0      | 3              | 3                  | 2/3               |

**Table 1:** Possible leptoquarks and their quantum numbers.

If we do not require leptoquark states to couple directly with SM fermions, different assignments of quantum numbers become possible.

The Pati-Salam model [2] is an example predicting the existence of a leptoquark state. In this model a vector leptoquark appears at the scale where the Pati-Salam SU(4) "color" gauge group breaks into the familiar QCD SU(3)<sub>C</sub> group (or  $SU(3)_C \times U(1)_{B-L}$ ). The Pati-Salam leptoquark is a weak isosinglet and its hypercharge is 2/3 (U<sub>1</sub> leptoquark in Table 1). The coupling strength of the Pati-Salam leptoquark is given by the QCD coupling at the Pati-Salam symmetry breaking scale.

Bounds on leptoquark states are obtained both directly and indirectly. Direct limits are from their production cross sections at colliders, while indirect limits are calculated from the bounds on the leptoquark induced four-fermion interactions which are obtained from low energy experiments.

HTTP://PDG.LBL.GOV Page 28 Created: 12/18/2000 15:07

The pair production cross sections of leptoquarks are evaluated from their interactions with gauge bosons. The gauge couplings of a scalar leptoquark are determined uniquely according to its quantum numbers in Table 1. The magneticdipole-type and the electric-quadrupole-type interactions of a vector leptoquark are, however, not determined even if we fix its gauge quantum numbers as listed in the table [3]. We need extra assumptions about these interactions to evaluate the pair production cross section for a vector leptoquark.

If a leptoquark couples to fermions of more than a single generation in the mass eigenbasis of the SM fermions, it can induce four-fermion interactions causing flavor-changing-neutralcurrents and lepton-family-number violations. Non-chiral leptoquarks, which couple simultaneously to both left- and righthanded quarks, cause four-fermion interactions affecting the  $(\pi \to e\nu)/(\pi \to \mu\nu)$  ratio [4]. Indirect limits provide stringent constraints on these leptoquarks. Since the Pati-Salam leptoquark has non-chiral coupling with both e and  $\mu$ , indirect limits from the bounds on  $K_L \to \mu e$  lead to severe bounds on the Pati-Salam leptoquark mass. For detailed bounds obtained in this way, see the Boson Particle Listings for "Indirect Limits for Leptoquarks" and its references.

It is therefore often assumed that a leptoquark state couples only to a single generation in a chiral interaction, where indirect limits become much weaker. This assumption gives strong constraints on concrete models of leptoquarks, however. Leptoquark states which couple only to left- or right-handed quarks are called chiral leptoquarks. Leptoquark states which couple only to the first (second, third) generation are referred as the first (second, third) generation leptoquarks in this section.

HTTP://PDG.LBL.GOV Page 29 Created: 12/18/2000 15:07

# Reference

- W. Buchmüller, R. Rückl, and D. Wyler, Phys. Lett. B191, 442 (1987).
- 2. J.C. Pati and A. Salam, Phys. Rev. **D10**, 275 (1974).
- J. Blümlein, E. Boos, and A. Kryukov, Z. Phys. C76, 137 (1997).
- 4. O. Shanker, Nucl. Phys. **B204**, 375 (1982).

#### MASS LIMITS for Leptoquarks from Pair Production

| These limit                         | s rely only | on t      | he color or electrowe  | ak c        | harge of | the leptoquark.                |
|-------------------------------------|-------------|-----------|------------------------|-------------|----------|--------------------------------|
| VALUE (GeV)                         | CL% EV      | <u>TS</u> | DOCUMENT ID            |             | TECN     | COMMENT                        |
| >202 (CL = 9!                       | 5%)         |           |                        |             |          |                                |
| >200                                | 95          |           | <sup>124</sup> ABBOTT  | <b>00</b> C | D0       | Second generation              |
| >225                                | 95          |           | <sup>125</sup> АВВОТТ  | 98E         | D0       | First generation               |
| > 94                                | 95          |           | <sup>126</sup> ABBOTT  | <b>9</b> 8J | D0       | Third generation               |
| >202                                | 95          |           | <sup>127</sup> ABE     | 98s         | CDF      | Second generation              |
| > 99                                | 95          |           | <sup>128</sup> ABE     | 97F         | CDF      | Third generation               |
| $\bullet \bullet \bullet$ We do not | use the fol | lowi      | ng data for averages   | , fits      | limits,  | etc. • • •                     |
| >160                                | 95          |           | <sup>129</sup> АВВОТТ  | 99J         | D0       | Second generation              |
| >213                                | 95          |           | <sup>130</sup> ABE     | 97X         | CDF      | First generation               |
| > 45.5                              | 95          | 131       | <sup>,132</sup> ABREU  | <b>93</b> J | DLPH     | First + second genera-<br>tion |
| > 44.4                              | 95          |           | <sup>133</sup> ADRIANI | <b>9</b> 3M | L3       | First generation               |
| > 44.5                              | 95          |           | <sup>133</sup> ADRIANI | <b>9</b> 3M | L3       | Second generation              |
| > 45                                | 95          |           | <sup>133</sup> DECAMP  | 92          | ALEP     | Third generation               |
| none 8.9–22.6                       | 95          |           | <sup>134</sup> KIM     | 90          | AMY      | First generation               |
| none 10.2-23.2                      | 95          |           | <sup>134</sup> KIM     | 90          | AMY      | Second generation              |
| none 5–20.8                         | 95          |           | <sup>135</sup> BARTEL  | <b>87</b> B | JADE     |                                |
| none 7–20.5                         | 95          | 2         | <sup>136</sup> BEHREND | <b>86</b> B | CELL     |                                |
| 124                                 |             |           |                        |             |          |                                |

<sup>124</sup> ABBOTT 00C search for scalar leptoquarks using  $\mu\mu jj$ ,  $\mu\nu jj$ , and  $\nu\nu jj$  events in  $p\overline{p}$  collisions at  $E_{\rm cm}$ =1.8 TeV. The limit above assumes B( $\mu q$ )=1. For B( $\mu q$ )=0.5 and 0, the bound becomes 180 and 79 GeV respectively. Bounds for vector leptoquarks are also given.

- <sup>125</sup> ABBOTT 98E search for scalar leptoquarks using  $e\nu jj$ , eejj, and  $\nu\nu jj$  events in  $p\overline{p}$  collisions at  $E_{\rm cm}$ =1.8 TeV. The limit above assumes B(eq)=1. For B(eq)=0.5 and 0, the bound becomes 204 and 79 GeV, respectively.
- <sup>126</sup> ABBOTT 98J search for charge -1/3 third generation scalar and vector leptoquarks in  $p\overline{p}$  collisions at  $E_{\rm cm} = 1.8$  TeV. The quoted limit is for scalar leptoquark with B( $\nu b$ )=1.
- <sup>127</sup> ABE 985 search for scalar leptoquarks using  $\mu\mu jj$  events in  $p\overline{p}$  collisions at  $E_{cm}$ = 1.8 TeV. The limit is for B( $\mu q$ )= 1. For B( $\mu q$ )=B( $\nu q$ )=0.5, the limit is > 160 GeV.
- <sup>128</sup>ABE 97F search for third generation scalar and vector leptoquarks in  $p\overline{p}$  collisions at  $E_{\rm cm} = 1.8$  TeV. The quoted limit is for scalar leptoquark with  $B(\tau b) = 1$ .
- <sup>129</sup> ABBOTT 99J search for leptoquarks using  $\mu\nu jj$  events in  $p\overline{p}$  collisions at  $E_{\rm cm} = 1.8$  TeV. The quoted limit is for a scalar leptoquark with  $B(\mu q) = B(\nu q) = 0.5$ . Limits on vector leptoquarks range from 240 to 290 GeV.
- <sup>130</sup>ABBOTT 97B, ABE 97X search for scalar leptoquarks using eejj events in  $p\overline{p}$  collisions at  $E_{cm}$ =1.8 TeV. The limit is for B(eq)=1.

<sup>131</sup>Limit is for charge -1/3 isospin-0 leptoquark with  $B(\ell q) = 2/3$ .

HTTP://PDG.LBL.GOV Page 30

<sup>132</sup> First and second generation leptoquarks are assumed to be degenerate. The limit is slightly lower for each generation.

- <sup>133</sup>Limits are for charge -1/3, isospin-0 scalar leptoquarks decaying to  $\ell^- q$  or  $\nu q$  with any branching ratio. See paper for limits for other charge-isospin assignments of leptoquarks.
- <sup>134</sup> KIM 90 assume pair production of charge 2/3 scalar-leptoquark via photon exchange. The decay of the first (second) generation leptoquark is assumed to be any mixture of  $de^+$  and  $u\overline{\nu}$  ( $s\mu^+$  and  $c\overline{\nu}$ ). See paper for limits for specific branching ratios.
- <sup>135</sup> BARTEL 87B limit is valid when a pair of charge 2/3 spinless leptoquarks X is produced with point coupling, and when they decay under the constraint  $B(X \rightarrow c\overline{\nu}_{\mu}) + B(X \rightarrow s\mu^{+}) = 1$ .
- <sup>136</sup> BEHREND 86B assumed that a charge 2/3 spinless leptoquark,  $\chi$ , decays either into  $s\mu^+$  or  $c\overline{\nu}$ : B( $\chi \rightarrow s\mu^+$ ) + B( $\chi \rightarrow c\overline{\nu}$ ) = 1.

#### MASS LIMITS for Leptoquarks from Single Production

These limits depend on the *q*- $\ell$ -leptoquark coupling  $g_{LQ}$ . It is often assumed that

 $g_{LQ}^2/4\pi = 1/137$ . Limits shown are for a scalar, weak isoscalar, charge -1/3 leptoquark.

| VALUE (GeV)             | CL%     | DOCUMENT ID            |             | TECN      | COMMENT                 |
|-------------------------|---------|------------------------|-------------|-----------|-------------------------|
| >200 (CL = 95%)         |         |                        |             |           |                         |
| >200                    | 95      | <sup>137</sup> ADLOFF  | 99          | H1        | First generation        |
| > 73                    | 95      | <sup>138</sup> ABREU   | 93J         | DLPH      | Second generation       |
| • • • We do not use the | followi | ing data for averages  | , fits      | , limits, | etc. • • •              |
| >161                    | 95      | <sup>139</sup> ABREU   | <b>99</b> G | DLPH      | First generation        |
|                         |         | <sup>140</sup> DERRICK | 97          | ZEUS      | Lepton-flavor violation |
| >237                    | 95      | <sup>141</sup> AID     | <b>96</b> B | H1        | First generation        |
| > 65                    | 95      | <sup>138</sup> ABREU   | <b>9</b> 3J | DLPH      | First generation        |
| >168                    | 95      | <sup>142</sup> DERRICK | 93          | ZEUS      | First generation        |

<sup>137</sup> For limits on states with different quantum numbers and the limits in the mass-coupling plane, see their Fig. 13 and Fig. 14. ADLOFF 99 also search for leptoquarks with lepton-flavor violating couplings. ADLOFF 99 supersedes AID 96B.

- <sup>138</sup>Limit from single production in Z decay. The limit is for a leptoquark coupling of electromagnetic strength and assumes  $B(\ell q) = 2/3$ . The limit is 77 GeV if first and second leptoquarks are degenerate.
- <sup>139</sup>ABREU 99G limit obtained from process  $e\gamma \rightarrow LQ+q$ . For limits on vector and scalar states with different quantum numbers and the limits in the coupling-mass plane, see their Fig. 4 and Table 2.

<sup>140</sup> DERRICK 97 search for various leptoquarks with lepton-flavor violating couplings. See their Figs. 5–8 and Table 1 for detailed limits.

<sup>141</sup> AID 96B also search for leptoquarks with lepton-flavor violating couplings. For limits on states with different quantum numbers and the limits in the coupling-mass plane, see their Fig. 2, Fig. 3, and Table 2.

<sup>142</sup> DERRICK 93 search for single leptoquark production in ep collisions with the decay eq and  $\nu q$ . The limit is for leptoquark coupling of electromagnetic strength and assumes  $B(eq) = B(\nu q) = 1/2$ . The limit for B(eq) = 1 is 176 GeV. For limits on states with different quantum numbers, see their Table 3.

| Citation: D.E. Groom et al | (Particle Data Grou | o), Eur. Phys. Jour | . <b>C15</b> , 1 (2000) | (URL: http://pdg.lbl.gov) |
|----------------------------|---------------------|---------------------|-------------------------|---------------------------|
|----------------------------|---------------------|---------------------|-------------------------|---------------------------|

| Inc | lirect Limits for Le | ptoqua     | arks                                             |             |              |                                                                     |
|-----|----------------------|------------|--------------------------------------------------|-------------|--------------|---------------------------------------------------------------------|
| VAL | UE (TeV)             | <u>CL%</u> | DOCUMENT ID                                      |             | TECN         | COMMENT                                                             |
| • • | • We do not use the  | e followi  | ing data for averages                            | , fits      | , limits,    | etc. • • •                                                          |
| >   | 0.2                  | 95         | <sup>143</sup> BARATE<br><sup>144</sup> ABBIENDI | 00i<br>99   | ALEP<br>OPAL | e <sup>+</sup> e <sup>-</sup>                                       |
| >   | 19.3                 | 95         | <sup>145</sup> ABE                               | 98v         | CDF          | $egin{array}{ccc} B_{m{s}} 	o & e^{\pm}\mu^{\mp}$ , Pati-Salam type |
|     |                      |            | <sup>146</sup> ACCIARRI                          | <b>9</b> 8J |              | $e^+e^- \rightarrow q \overline{q}$                                 |
|     |                      |            | <sup>147</sup> ACKERSTAFF                        | 98v         | OPAL         | $e^+e^-  ightarrow q \overline{q}$ ,                                |
| >   | 0.76                 | 95         | <sup>148</sup> DEANDREA                          | 97          | RVUE         | $e^+e^-  ightarrow b\overline{b}$<br>$\widetilde{R}_2$ leptoquark   |
|     |                      |            | <sup>149</sup> DERRICK                           | 97          | ZEUS         | Lepton-flavor violation                                             |
|     |                      |            | <sup>150</sup> GROSSMAN                          | 97          | RVUE         | $B \rightarrow \tau^+ \tau^-(X)$                                    |
|     |                      |            | <sup>151</sup> JADACH                            | 97          | RVUE         | $e^+e^- \rightarrow q \overline{q}$                                 |
| >   | 0.31                 | 95         | <sup>152</sup> AID                               | 95          | H1           | First generation                                                    |
| >1  | .200                 |            | <sup>153</sup> KUZNETSOV                         | <b>95</b> B | RVUE         | Pati-Salam type                                                     |
|     |                      |            | <sup>154</sup> MIZUKOSHI                         | 95          | RVUE         | Third generation scalar<br>leptoquark                               |
| >   | 0.3                  | 95         | <sup>155</sup> BHATTACH                          | 94          | RVUE         | Spin-0 leptoquark cou-<br>pled to $\overline{e}_R t_I$              |
|     |                      |            | <sup>156</sup> DAVIDSON                          | 94          | RVUE         | ·                                                                   |
| >   | 18                   |            | <sup>157</sup> KUZNETSOV                         | 94          | RVUE         | Pati-Salam type                                                     |
| >   | 0.43                 | 95         | <sup>158</sup> LEURER                            | 94          | RVUE         | First generation spin-1<br>leptoquark                               |
| >   | 0.44                 | 95         | <sup>158</sup> LEURER                            | <b>94</b> B | RVUE         | First generation spin-0<br>leptoquark                               |
|     |                      |            | <sup>159</sup> MAHANTA                           | 94          | RVUE         | P and T violation                                                   |
| >   | 350                  |            | <sup>160</sup> DESHPANDE                         | 83          | RVUE         | Sup. by<br>KUZNETSOV 95B                                            |
| >   | 1                    |            | <sup>161</sup> SHANKER                           | 82          | RVUE         | Nonchiral spin-0 lepto-<br>quark                                    |
| >   | 125                  |            | <sup>161</sup> SHANKER                           | 82          | RVUE         | Nonchiral spin-1 lepto-<br>quark                                    |

<sup>143</sup> BARATE 00I search for deviations in cross section and jet-charge asymmetry in  $e^+e^- \rightarrow \overline{q} q$  due to *t*-channel exchange of a leptoquark at  $\sqrt{s}$ =130 to 183 GeV. Limits for other scalar and vector leptoquarks are also given in their Table 22.

<sup>144</sup> ABBIENDI 99 limits are from  $e^+e^- \rightarrow q\bar{q}$  cross section at 130–136, 161–172, 183 GeV. See their Fig. 8 and Fig. 9 for limits in mass-coupling plane. <sup>145</sup> ABE 98V quoted limit is from B( $B_s \rightarrow e^{\pm}\mu^{\mp}$ )< 8.2 × 10<sup>-6</sup>. ABE 98V also obtain

<sup>145</sup> ABE 98V quoted limit is from  $B(B_s \rightarrow e^{\pm}\mu^{+}) < 8.2 \times 10^{-6}$ . ABE 98V also obtain a similar limit on  $M_{LQ} > 20.4$  TeV from  $B(B_d \rightarrow e^{\pm}\mu^{\mp}) < 4.5 \times 10^{-6}$ . Both bounds assume the non-canonical association of the *b* quark with electrons or muons under SU(4).

<sup>146</sup> ACCIARRI 98J limit is from  $e^+e^- \rightarrow q \bar{q}$  cross section at  $\sqrt{s}$ = 130–172 GeV which can be affected by the *t*- and *u*-channel exchanges of leptoquarks. See their Fig. 4 and Fig. 5 for limits in the mass-coupling plane.

<sup>147</sup> ACKERSTAFF 98V limits are from  $e^+e^- \rightarrow q\overline{q}$  and  $e^+e^- \rightarrow b\overline{b}$  cross sections at  $\sqrt{s} = 130-172$  GeV, which can be affected by the *t*- and *u*-channel exchanges of leptoquarks. See their Fig. 21 and Fig. 22 for limits of leptoquarks in mass-coupling plane.

<sup>148</sup> DEANDREA 97 limit is for  $\tilde{R}_2$  leptoquark obtained from atomic parity violation (APV). The coupling of leptoquark is assumed to be electromagnetic strength. See Table 2 for limits of the four-fermion interactions induced by various scalar leptoquark exchange. DEANDREA 97 combines APV limit and limits from Tevatron and HERA. See Fig. 1–4 for combined limits of leptoquark in mass-coupling plane.

- <sup>149</sup> DERRICK 97 search for lepton-flavor violation in *e p* collision. See their Tables 2–5 for limits on lepton-flavor violating four-fermion interactions induced by various leptoquarks.
- <sup>150</sup> GROSSMAN 97 estimate the upper bounds on the branching fraction  $B \rightarrow \tau^+ \tau^-(X)$  from the absence of the *B* decay with large missing energy. These bounds can be used to constrain leptoquark induced four-fermion interactions.
- <sup>151</sup> JADACH 97 limit is from  $e^+e^- \rightarrow q \overline{q}$  cross section at  $\sqrt{s}$ =172.3 GeV which can be affected by the *t* and *u*-channel exchanges of leptoquarks. See their Fig. 1 for limits on vector leptoquarks in mass-coupling plane.
- <sup>152</sup> AID 95 limit is for the weak isotriplet spin-1 leptoquark with the electromagnetic coupling strength. For the limits of leptoquarks with different quantum number, see their Table 2. AID 95 limits are from the measurements of the  $Q^2$  spectrum measurement of  $ep \rightarrow eX$ .
- <sup>153</sup> KUZNETSOV 95B use  $\pi$ , K, B,  $\tau$  decays and  $\mu e$  conversion and give a list of bounds on the leptoquark mass and the fermion mixing matrix in the Pati-Salam model. The quoted limit is from  $K_L \rightarrow \mu e$  decay assuming zero mixing. See also KUZNETSOV 94, DESHPANDE 83, and DIMOPOULOS 81.
- <sup>154</sup> MIZUKOSHI 95 calculate the one-loop radiative correction to the *Z*-physics parameters in various scalar leptoquark models. See their Fig. 4 for the exclusion plot of third generation leptoquark models in mass-coupling plane.
- <sup>155</sup> BHATTACHARYYA 94 limit is from one-loop radiative correction to the leptonic decay width of the Z.  $m_H$ =250 GeV,  $\alpha_s(m_Z)$ =0.12,  $m_t$ =180 GeV, and the electroweak strength of leptoquark coupling are assumed. For leptoquark coupled to  $\overline{e}_L t_R$ ,  $\overline{\mu} t$ , and  $\overline{\tau} t$ , see Fig. 2 in BHATTACHARYYA 94B erratum and Fig. 3.
- <sup>156</sup> DAVIDSON 94 gives an extensive list of the bounds on leptoquark-induced four-fermion insteractions from  $\pi$ , K, D, B,  $\mu$ ,  $\tau$  decays and meson mixings, *etc.* See Table 15 of DAVIDSON 94 for detail.
- <sup>157</sup> KUZNETSOV 94 gives mixing independent bound of the Pati-Salam leptoquark from the cosmological limit on  $\pi^0 \rightarrow \overline{\nu}\nu$ .
- <sup>158</sup> LEURER 94, LEURER 94B limits are obtained from atomic parity violation and apply to any chiral leptoquark which couples to the first generation with electromagnetic strength. For a nonchiral leptoquark, universality in  $\pi_{\ell 2}$  decay provides a much more stringent bound. See also SHANKER 82.
- <sup>159</sup>MAHANTA 94 gives bounds of *P* and *T*-violating scalar-leptoquark couplings from atomic and molecular experiments.
- <sup>160</sup> DESHPANDE 83 used upper limit on  $K_L^0 \rightarrow \mu e$  decay with renormalization-group equations to estimate coupling at the heavy boson mass. See also DIMOPOULOS 81. <sup>161</sup> From  $(\pi \rightarrow e\nu)/(\pi \rightarrow \mu\nu)$  ratio. SHANKER 82 assumes the leptoquark induced
- <sup>101</sup> From  $(\pi \rightarrow e\nu)/(\pi \rightarrow \mu\nu)$  ratio. SHANKER 82 assumes the leptoquark induced four-fermion coupling  $4g^2/M^2$  ( $\overline{\nu}_{eL} \ u_R$ ) ( $\overline{d}_L e_R$ )with g=0.004 for spin-0 leptoquark and  $g^2/M^2$  ( $\overline{\nu}_{eL} \ \gamma_{\mu} u_L$ ) ( $\overline{d}_R \ \gamma^{\mu} e_R$ ) with  $g\simeq 0.6$  for spin-1 leptoquark.

#### MASS LIMITS for Diquarks

| VALUE (GeV)                                                                                                              | CL%      | DOCUMENT ID           | TECN            | COMMENT                       |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------|----------|-----------------------|-----------------|-------------------------------|--|--|--|--|
| $\bullet \bullet \bullet$ We do not use th                                                                               | e follow | ing data for averages | , fits, limits, | etc. • • •                    |  |  |  |  |
| none 290–420                                                                                                             | 95       | <sup>162</sup> ABE    | 97G CDF         | <i>E</i> <sub>6</sub> diquark |  |  |  |  |
| none 15-31.7                                                                                                             | 95       | <sup>163</sup> ABREU  | 940 DLPH        | SŬSY <i>E</i> 6 diquark       |  |  |  |  |
| $^{162}$ ABE 97G search for new particle decaying to dijets.                                                             |          |                       |                 |                               |  |  |  |  |
| <sup>163</sup> ABREU 940 limit is from $e^+e^- \rightarrow \overline{cs}cs$ . Range extends up to 43 GeV if diquarks are |          |                       |                 |                               |  |  |  |  |
| degenerate in mass.                                                                                                      |          |                       |                 |                               |  |  |  |  |

### MASS LIMITS for $g_A$ (axigluon)

Axigluons are massive color-octet gauge bosons in chiral color models and have axialvector coupling to quarks with the same coupling strength as gluons.

| VALUE (GeV)                                 | CL%       | DOCUMENT ID              | 7         | TECN    | COMMENT                                                          |  |
|---------------------------------------------|-----------|--------------------------|-----------|---------|------------------------------------------------------------------|--|
| $\bullet \bullet \bullet$ We do not use the | e followi | ng data for averages     | , fits, l | limits, | etc. • • •                                                       |  |
| >365                                        | 95        | <sup>164</sup> DONCHESKI | 98 F      | RVUE    | $\Gamma(Z \rightarrow hadron)$                                   |  |
| none 200–980                                | 95        | <sup>165</sup> ABE       | 97G (     | CDF     | $p \overline{p} \rightarrow g_A X, X \rightarrow 2 \text{ jets}$ |  |
| none 200–870                                | 95        | <sup>166</sup> ABE       | 95N (     | CDF     | $p\overline{p} \rightarrow g_A X, g_A \rightarrow q\overline{q}$ |  |
| none 240–640                                | 95        | <sup>167</sup> ABE       | 93G (     | CDF     | $p\overline{p} \rightarrow g_A X, g_A \rightarrow$               |  |
| > 50                                        | 95        | <sup>168</sup> CUYPERS   | 91 F      | RVUE    | 2jets $\sigma(e^+e^- \rightarrow hadrons)$                       |  |
| none 120-210                                | 95        | 169 ABE                  | 90H C     | CDF     | $p \overline{p} \rightarrow g_A X, g_A \rightarrow$              |  |
| > 29                                        |           | 170 ROBINETT             | 89 T      | THEO    | 2jets<br>Partial-wave unitarity                                  |  |
| none 150–310                                | 95        | <sup>171</sup> ALBAJAR   | 88B L     | JA1     | $p\overline{p} \rightarrow g_A X, g_A \rightarrow 2iets$         |  |
| > 20                                        |           | BERGSTROM                | 88 F      | RVUE    | $p\overline{p} \rightarrow \Upsilon X$ via $g_A g$               |  |
| > 9                                         |           | <sup>172</sup> CUYPERS   |           |         | $\gamma$ decay                                                   |  |
| > 25                                        |           | <sup>173</sup> DONCHESKI | 88b F     | RVUE    | arphi decay                                                      |  |

<sup>164</sup>DONCHESKI 98 compare  $\alpha_s$  derived from low-energy data and that from  $\Gamma(Z \rightarrow hadrons)/\Gamma(Z \rightarrow leptons)$ .

 $^{165}\,\mathrm{ABE}$  97G search for new particle decaying to dijets.

 $^{166}$  ABE 95N assume axigluons decaying to quarks in the Standard Model only.

 $^{167}$  ABE 93G assume  $\Gamma(g_A) = N \alpha_s m_{g_A}/6$  with N = 10.

 $^{168}\,{\rm CUYPERS}$  91 compare  $\alpha_{\rm S}$  measured in  $\,\Upsilon$  decay and that from R at PEP/PETRA energies.

<sup>169</sup>ABE 90H assumes  $\Gamma(g_A) = N\alpha_s m_{g_A}/6$  with  $N = 5 (\Gamma(g_A) = 0.09 m_{g_A})$ . For N = 10, the excluded region is reduced to 120–150 GeV.

 $^{170}$  ROBINETT 89 result demands partial-wave unitarity of J=0  $t\overline{t} \rightarrow t\overline{t}$  scattering amplitude and derives a limit  $m_{g_A} > 0.5$   $m_t$ . Assumes  $m_t > 56$  GeV.

 $^{171}$  ALBAJAR 88B result is from the nonobservation of a peak in two-jet invariant mass distribution.  $\Gamma(g_A)<~0.4~m_{g_A}$  assumed. See also BAGGER 88.

<sup>172</sup> CUYPERS 88 requires  $\Gamma(\Upsilon \rightarrow gg_A) < \Gamma(\Upsilon \rightarrow ggg)$ . A similar result is obtained by DONCHESKI 88.

<sup>173</sup> DONCHESKI 88B requires  $\Gamma(\Upsilon \rightarrow g q \overline{q})/\Gamma(\Upsilon \rightarrow g g g) < 0.25$ , where the former decay proceeds via axigluon exchange. A more conservative estimate of < 0.5 leads to  $m_{g_A} > 21$  GeV.

# $X^0$ (Heavy Boson) Searches in Z Decays

Searches for radiative transition of Z to a lighter spin-0 state  $X^0$  decaying to hadrons, a lepton pair, a photon pair, or invisible particles as shown in the comments. The limits are for the product of branching ratios.

| VALUE                                                       | <u>CL%</u>                                                                                                                                                                                                                                                                                                                                                         | DOCUMENT ID                                                                                       |                                      | COMMENT                                                                         |  |  |  |
|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------------------------------------------------|--|--|--|
| • • • We do not us                                          | e the follov                                                                                                                                                                                                                                                                                                                                                       | ving data for averag                                                                              | es, fits, limits                     | , etc. ● ● ●                                                                    |  |  |  |
|                                                             |                                                                                                                                                                                                                                                                                                                                                                    | <sup>174</sup> BARATE                                                                             | 98∪ ALEP                             | $X^{0} \rightarrow \ell \overline{\ell},  q \overline{q},  gg,  \gamma \gamma,$ |  |  |  |
|                                                             |                                                                                                                                                                                                                                                                                                                                                                    | <sup>175</sup> ACCIARRI                                                                           | 97Q L3                               | $X^{0} \xrightarrow{\nu \overline{\nu}}$ invisible particle(s)                  |  |  |  |
|                                                             |                                                                                                                                                                                                                                                                                                                                                                    | <sup>176</sup> ACTON<br><sup>177</sup> ABREU                                                      | 93e OPAL<br>92d DLPH                 | $X^0 \rightarrow hadrons$                                                       |  |  |  |
|                                                             |                                                                                                                                                                                                                                                                                                                                                                    | <sup>178</sup> ADRIANI                                                                            | 92F L3                               | $X_{0}^{0} \rightarrow \text{hadrons}$                                          |  |  |  |
|                                                             |                                                                                                                                                                                                                                                                                                                                                                    | <sup>179</sup> ACTON                                                                              | 91 OPAL                              |                                                                                 |  |  |  |
| $<1.1 \times 10^{-4}$                                       | 95                                                                                                                                                                                                                                                                                                                                                                 | <sup>180</sup> ACTON                                                                              | 91B OPAL                             |                                                                                 |  |  |  |
| $<9 \times 10^{-5}$                                         | 95                                                                                                                                                                                                                                                                                                                                                                 | <sup>180</sup> ACTON<br><sup>180</sup> ACTON                                                      | 91B OPAL                             |                                                                                 |  |  |  |
| $< 1.1 	imes 10^{-4} \ < 2.8 	imes 10^{-4}$                 | 95<br>05                                                                                                                                                                                                                                                                                                                                                           | <sup>181</sup> ADEVA                                                                              | 91B OPAL                             | $X^0 \rightarrow \tau + \tau$<br>$X^0 \rightarrow e^+ e^-$                      |  |  |  |
| $< 2.8 \times 10^{-4}$<br>$< 2.3 \times 10^{-4}$            | 95<br>95                                                                                                                                                                                                                                                                                                                                                           | <sup>181</sup> ADEVA                                                                              | 91D L3<br>91d L3                     | $X^{0} \rightarrow e + e$<br>$X^{0} \rightarrow \mu^{+} \mu^{-}$                |  |  |  |
| $< 2.3 \times 10$<br>$< 4.7 \times 10^{-4}$                 | 95<br>95                                                                                                                                                                                                                                                                                                                                                           | <sup>182</sup> ADEVA                                                                              | 910 L3<br>910 L3                     | $X^0 \rightarrow \mu^+ \mu^-$<br>$X^0 \rightarrow hadrons$                      |  |  |  |
| $< 8 \times 10^{-4}$                                        | 95<br>95                                                                                                                                                                                                                                                                                                                                                           | <sup>183</sup> AKRAWY                                                                             | 910 LS<br>90J OPAL                   |                                                                                 |  |  |  |
|                                                             |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                   |                                      | , $q\overline{q}$ , $gg$ , $\gamma\gamma$ , $\nu\overline{\nu}$ ). See          |  |  |  |
|                                                             |                                                                                                                                                                                                                                                                                                                                                                    | 7Q for the upper lir                                                                              | mit on $B(Z -$                       | $\rightarrow~\gamma X^{0};~ {\it E}_{\gamma} > {\it E}_{min})$ as a             |  |  |  |
| <sup>176</sup> ACTON 93E giv<br>2.5 GeV. If the             | e $\sigma(e^+e^-)$ e process                                                                                                                                                                                                                                                                                                                                       | $\rightarrow X^0 \gamma) \cdot B(X^0 - \infty)$<br>occurs via s-chann<br>MeV for $m_{\chi^0} = 0$ | el $\gamma$ exchang                  | b (95%CL) for $m_{old \chi 0}^{}{=}60~\pm$ ;e, the limit translates to          |  |  |  |
|                                                             |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                   |                                      | ns) <(3–10) pb for $m_{oldsymbol{\chi}^0}$ $=$                                  |  |  |  |
| 10–78 GeV. A v                                              | ery similar                                                                                                                                                                                                                                                                                                                                                        | limit is obtained for                                                                             | spin-1 X <sup>0</sup> .              |                                                                                 |  |  |  |
| $^{178}$ ADRIANI 92F se $\cdot \ { m B}(X^0 	o \ { m hadr}$ | arch for iso<br>ons) <(2–1                                                                                                                                                                                                                                                                                                                                         | lated $\gamma$ in hadronic<br>10) pb (95%CL) is g                                                 | Z decays. The given for $m_{\chi 0}$ | e limit $\sigma_Z \cdot B(Z \rightarrow \gamma X^0)$<br>= 25–85 GeV.            |  |  |  |
| <sup>179</sup> ACTON 91 sear                                | · B( $X^0 \rightarrow \text{hadrons}$ ) <(2–10) pb (95%CL) is given for $m_{\chi^0} = 25$ –85 GeV.<br><sup>179</sup> ACTON 91 searches for $Z \rightarrow Z^* X^0$ , $Z^* \rightarrow e^+ e^-$ , $\mu^+ \mu^-$ , or $\nu \overline{\nu}$ . Excludes any<br>new scalar $X^0$ with $m_{\chi^0} < 9.5 \text{ GeV}/c$ if it has the same coupling to $ZZ^*$ as the MSM |                                                                                                   |                                      |                                                                                 |  |  |  |
| <sup>180</sup> ACTON 91B lim                                | its are for                                                                                                                                                                                                                                                                                                                                                        | $m_{\chi 0} = 60-85 \text{ GeV}$                                                                  |                                      |                                                                                 |  |  |  |
| $^{181}$ ADEVA 91D lim                                      | its are for <i>i</i>                                                                                                                                                                                                                                                                                                                                               | $n_{1,0} = 30-89$ GeV.                                                                            |                                      |                                                                                 |  |  |  |
| <sup>182</sup> ADEVA 91D lim                                | its are for <i>i</i>                                                                                                                                                                                                                                                                                                                                               | $X^{\circ} = 30 - 86 \text{ GeV}$                                                                 |                                      |                                                                                 |  |  |  |
|                                                             |                                                                                                                                                                                                                                                                                                                                                                    | $X_0 = 30 00 000$                                                                                 | haduana) < 1                         | .9 MeV (95%CL) for $m_{\chi^0}$                                                 |  |  |  |
| = 32–80 GeV. V                                              | Ne divide l<br>nsitions, th                                                                                                                                                                                                                                                                                                                                        | by $\Gamma(Z) = 2.5 \text{ GeV}$                                                                  | to get produ                         | to f branching ratios. For $m_{\chi^0}$ MeV assuming three-body                 |  |  |  |

| MASS LIMITS f     | or a Hea   | AVY Neutral Boso<br>DOCUMENT ID | n Co        | upling<br>TECN | to e <sup>+</sup> e <sup>-</sup><br>COMMENT                 |
|-------------------|------------|---------------------------------|-------------|----------------|-------------------------------------------------------------|
| • • • We do not u | se the fol | lowing data for aver            | ages,       | fits, lim      | ts, etc. ● ● ●                                              |
| none 55–61        |            | <sup>184</sup> ODAKA            | 89          | VNS            | $\Gamma(X^0 \rightarrow e^+ e^-)$                           |
|                   |            |                                 |             |                | $\cdot B(X^0 \rightarrow \text{hadrons}) \gtrsim$           |
| >45               | 95         | <sup>185</sup> DERRICK          | 86          | HRS            | 0.2  MeV<br>$\Gamma(X^0 \rightarrow e^+ e^-)=6 \text{ MeV}$ |
| >46.6             | 95         | <sup>186</sup> ADEVA            | 85          | MRKJ           | $\Gamma(X^0 \rightarrow e^+ e^-) = 10 \text{ keV}$          |
| >48               | 95         | <sup>186</sup> ADEVA            | 85          | MRKJ           | $\Gamma(X^0 \rightarrow e^+ e^-) = 4 \text{ MeV}$           |
|                   |            | <sup>187</sup> BERGER           | <b>85</b> B | PLUT           |                                                             |
| none 39.8–45.5    |            | <sup>188</sup> ADEVA            | 84          | MRKJ           | $\Gamma(X^0 \rightarrow e^+e^-) = 10 \text{ keV}$           |
| >47.8             | 95         | <sup>188</sup> ADEVA            | 84          | MRKJ           | $\Gamma(X^0 \rightarrow e^+ e^-) = 4 \text{ MeV}$           |
| none 39.8–45.2    |            | <sup>188</sup> BEHREND          | 84C         | CELL           |                                                             |
| >47               | 95         | <sup>188</sup> BEHREND          | 84C         | CELL           | $\Gamma(X^0 \rightarrow e^+e^-)=4 \text{ MeV}$              |
| 184               |            |                                 |             |                | · · · · -                                                   |

<sup>184</sup> ODAKA 89 looked for a narrow or wide scalar resonance in  $e^+e^- \rightarrow$  hadrons at  $E_{cm} = 55.0-60.8$  GeV.

<sup>185</sup> DERRICK 86 found no deviation from the Standard Model Bhabha scattering at  $E_{cm}$ = 29 GeV and set limits on the possible scalar boson  $e^+e^-$  coupling. See their figure 4 for excluded region in the  $\Gamma(X^0 \rightarrow e^+e^-) \cdot m_{X^0}$  plane. Electronic chiral invariance requires a parity doublet of  $X^0$ , in which case the limit applies for  $\Gamma(X^0 \rightarrow e^+e^-) =$ 3 MeV.

<sup>186</sup> ADEVA 85 first limit is from  $2\gamma$ ,  $\mu^+ \mu^-$ , hadrons assuming  $X^0$  is a scalar. Second limit is from  $e^+ e^-$  channel.  $E_{\rm cm} = 40-47$  GeV. Supersedes ADEVA 84.

<sup>187</sup> BERGER 85B looked for effect of spin-0 boson exchange in  $e^+e^- \rightarrow e^+e^-$  and  $\mu^+\mu^-$  at  $E_{\rm cm} = 34.7$  GeV. See Fig. 5 for excluded region in the  $m_{\chi 0} - \Gamma(X^0)$  plane.

<sup>188</sup> ADEVA 84 and BEHREND 84C have  $E_{\rm cm} = 39.8-45.5$  GeV. MARK-J searched  $X^0$  in  $e^+e^- \rightarrow {\rm hadrons}, 2\gamma, \mu^+\mu^-, e^+e^-$  and CELLO in the same channels plus  $\tau$  pair. No narrow or broad  $X^0$  is found in the energy range. They also searched for the effect of  $X^0$  with  $m_X > E_{\rm cm}$ . The second limits are from Bhabha data and for spin-0 singlet. The same limits apply for  $\Gamma(X^0 \rightarrow e^+e^-) = 2$  MeV if  $X^0$  is a spin-0 doublet. The second limit of BEHREND 84C was read off from their figure 2. The original papers also list limits in other channels.

## Search for $X^0$ Resonance in $e^+e^-$ Collisions

The limit is for  $\Gamma(X^0 \rightarrow e^+e^-) \cdot B(X^0 \rightarrow f)$ , where f is the specified final state. Spin 0 is assumed for  $X^0$ .

| VALUE (keV)                           | <u>CL%</u> <u>DOCUMENT ID</u>              | TECN COMMENT                     |
|---------------------------------------|--------------------------------------------|----------------------------------|
| • • • We do not use the               | e following data for average               | s, fits, limits, etc. • • •      |
| $< 10^{3}$                            | 95 <sup>189</sup> ABE                      | 93C VNS Γ( <i>ee</i> )           |
| <(0.4–10)                             | 95 <sup>190</sup> ABE                      | 93C VNS $f = \gamma \gamma$      |
| <(0.3–5)                              | 95 <sup>191,192</sup> ABE                  | 93d TOPZ $f = \gamma \gamma$     |
| <(2–12)                               | 95 <sup>191,192</sup> ABE                  | 93D TOPZ $f = hadrons$           |
| <(4-200)                              | 95 <sup>192,193</sup> ABE                  | 93D TOPZ $f = ee$                |
| <(0.1–6)                              | 95 <sup>192,193</sup> ABE                  | 93d TOPZ $f = \mu \mu$           |
| <(0.5–8)                              | 90 <sup>194</sup> STERNER                  | 93 AMY $f = \gamma \gamma$       |
| 189 Limit is for $\Gamma(\mathbf{V})$ | a <sup>+</sup> a <sup>−</sup> ) == E6 63 E | $C_{1}(f_{1}) = C_{1}(\chi_{0})$ |

<sup>189</sup>Limit is for  $\Gamma(X^0 \rightarrow e^+e^-) m_{X^0} = 56-63.5 \text{ GeV}$  for  $\Gamma(X^0) = 0.5 \text{ GeV}$ .

<sup>190</sup> Limit is for  $m_{\chi^0} = 56-61.5$  GeV and is valid for  $\Gamma(X^0) \ll 100$  MeV. See their Fig. 5 for limits for  $\Gamma = 1,2$  GeV.

<sup>191</sup>Limit is for  $m_{\chi^0} = 57.2-60$  GeV.

<sup>192</sup>Limit is valid for  $\Gamma(X^0) \ll 100$  MeV. See paper for limits for  $\Gamma = 1$  GeV and those for J = 2 resonances.

<sup>193</sup>Limit is for  $m_{\chi^0} = 56.6-60$  GeV.

<sup>194</sup> STERNER 93 limit is for  $m_{\chi^0} = 57-59.6$  GeV and is valid for  $\Gamma(X^0) < 100$  MeV. See their Fig. 2 for limits for  $\Gamma = 1,3$  GeV.

## Search for $X^0$ Resonance in Two-Photon Process

| The limit is for $\Gamma(X^0) \cdot B(X^0 \rightarrow \gamma \gamma)^2$ . Spin 0 is assumed for $X^0$ . |                 |                      |          |                                  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------|-----------------|----------------------|----------|----------------------------------|--|--|--|--|
| VALUE (MeV)                                                                                             | <u>CL%</u>      | DOCUMENT ID          | TECN     | COMMENT                          |  |  |  |  |
| • • We do not use the following data for averages, fits, limits, etc. • •                               |                 |                      |          |                                  |  |  |  |  |
| <2.6                                                                                                    | 95 <sup>1</sup> | <sup>195</sup> ACTON | 93e OPAL | $m_{\chi 0}^{}=$ 60 $\pm$ 1 GeV  |  |  |  |  |
| <2.9                                                                                                    | 95              | BUSKULIC             | 93F ALEP | $m_{\chi^0}^{\prime}\sim$ 60 GeV |  |  |  |  |
| <sup>195</sup> ACTON 93E limit for a $J = 2$ resonance is 0.8 MeV.                                      |                 |                      |          |                                  |  |  |  |  |

| Search for $X^0$ Resonance in $e^+e^- \rightarrow X^0\gamma$ |                          |                 |                             |  |  |
|--------------------------------------------------------------|--------------------------|-----------------|-----------------------------|--|--|
| VALUE (GeV)                                                  | DOCUMENT ID              | TECN            | COMMENT                     |  |  |
| • • • We do not use the follow                               | wing data for averages   | , fits, limits, | etc. • • •                  |  |  |
|                                                              | <sup>196</sup> ADAM      | 96c DLPH        | $X^0$ decaying invisibly    |  |  |
| $^{196}$ ADAM 96C is from the sing                           |                          |                 |                             |  |  |
| have die beer then 2 wheten                                  | $v_0$ measure heteroom 6 | 0 and 120 C     | a)/ Can thair Fin E far the |  |  |

<sup>190</sup> ADAM 96C is from the single photon production cross at  $\sqrt{s}=130$ , 136 GeV. The upper bound is less than 3 pb for  $X^0$  masses between 60 and 130 GeV. See their Fig. 5 for the exact bound on the cross section  $\sigma(e^+e^- \rightarrow \gamma X^0)$ .

# Search for $X^0$ Resonance in $Z \to f \overline{f} X^0$

|                               | •            | $f \overline{f} X^0$ ) · B( $X^0 \rightarrow 0$ is assumed for $X^0$ |              | ere f  | is a fermion and $F$ is the                                                |
|-------------------------------|--------------|----------------------------------------------------------------------|--------------|--------|----------------------------------------------------------------------------|
| VALUE (MeV)                   | <u>CL%</u>   | DOCUMENT ID                                                          | TE           | ECN    | COMMENT                                                                    |
| • • • We do not use           | the follow   |                                                                      | s, fits, lii | mits,  | etc. • • •                                                                 |
|                               |              | <sup>197</sup> ABREU                                                 | 96⊤ DI       | LPH    | $f=e,\mu,\tau; F=\gamma\gamma$                                             |
| $< 3.7 \times 10^{-6}$        | 95           | <sup>198</sup> ABREU                                                 | 96⊤ DI       | LPH    | $f=\nu; F=\gamma\gamma$                                                    |
|                               |              | <sup>199</sup> ABREU                                                 | 96t DI       | LPH    | $f=q; F=\gamma \gamma$                                                     |
| $< 6.8 	imes 10^{-6}$         | 95           | <sup>198</sup> ACTON                                                 | 93E OI       | PAL    | $f = e, \mu, \tau; F = \gamma \gamma$                                      |
| $< 5.5 	imes 10^{-6}$         | 95           | <sup>198</sup> ACTON                                                 | 93E OI       | PAL    | $f = q; F = \gamma \gamma$                                                 |
| $< 3.1 \times 10^{-6}$        | 95           | <sup>198</sup> ACTON                                                 | 93E OI       | PAL    | $f = \nu; F = \gamma \gamma$                                               |
| $< 6.5 	imes 10^{-6}$         | 95           | <sup>198</sup> ACTON                                                 | 93E OI       | PAL    | $f = e, \mu; F = \ell \overline{\ell}, q \overline{q}, \nu \overline{\nu}$ |
| $< 7.1 \times 10^{-6}$        | 95           | <sup>198</sup> BUSKULIC                                              | 93F Al       | LEP    | $f = e, \mu; F = \ell \overline{\ell}, q \overline{q}, \nu \overline{\nu}$ |
|                               |              | <sup>200</sup> ADRIANI                                               | 92F L3       | 3      | $f=q; F=\gamma\gamma$                                                      |
| <sup>197</sup> ABREU 96⊤ obta | ain limit as | a function of $m_{\chi^0}$ .                                         | See the      | ir Fig | . 6.                                                                       |

 $^{198}\,{\rm Limit}$  is for  $m_{\chi^0}$  around 60 GeV.

<sup>199</sup>ABREU 96T obtain limit as a function of  $m_{\chi^0}$ . See their Fig. 15.

<sup>200</sup> ADRIANI 92F give  $\sigma_Z \cdot B(Z \rightarrow q\overline{q}X^0) \cdot B(X^0 \rightarrow \gamma\gamma) < (0.75-1.5) \text{ pb} (95\% \text{CL})$  for  $m_{\chi^0} = 10-70 \text{ GeV}$ . The limit is 1 pb at 60 GeV.

# Search for $X^0$ Resonance in $p\overline{p} \rightarrow WX^0$

| VALUE (MeV)                    | DOCUMENT ID            | TECN            | COMMENT                         |  |
|--------------------------------|------------------------|-----------------|---------------------------------|--|
| • • • We do not use the follow | ving data for averages | , fits, limits, | etc. • • •                      |  |
|                                | <sup>201</sup> ABE     | 97w CDF         | $X^0 \rightarrow b\overline{b}$ |  |

<sup>201</sup>ABE 97W search for  $X^0$  production associated with W in  $p\overline{p}$  collisions at  $E_{\rm cm}$ =1.8 TeV. The 95%CL upper limit on the production cross section times the branching ratio for  $X^0 \rightarrow b \overline{b}$  ranges from 14 to 19 pb for  $X^0$  mass between 70 and 120 GeV. See their Fig. 3 for upper limits of the production cross section as a function of  $m_{\nu 0}$ .

### Search for Resonance X, Y in $e^+e^- \rightarrow XY$

| VALUE (MeV)     | DOCUMENT ID               | TECN     | COMMENT                                                                                                                                                                  |
|-----------------|---------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • • • We do not |                           |          | fits, limits, etc. • • •                                                                                                                                                 |
|                 | <sup>202</sup> ABREU      | 99н DLPH | $\begin{array}{l} X \to 2 \text{ jets, } Y \to 2 \text{ jets} \\ X \to 2 \text{ jets, } Y \to 2 \text{ jets} \\ X \to \gamma \gamma, \ Y \to f \overline{f} \end{array}$ |
|                 | <sup>203</sup> ACKERSTAFF | 98x OPAL | $X \rightarrow 2$ jets, $Y \rightarrow 2$ jets                                                                                                                           |
|                 | <sup>204</sup> ACKERSTAFF | 98y OPAL | $X \rightarrow \gamma \gamma, Y \rightarrow f \overline{f}$                                                                                                              |
|                 | <sup>205</sup> ALEXANDER  | 97b OPAL | X  ightarrow 2 jets, $Y  ightarrow 2$ jets                                                                                                                               |
|                 | <sup>206</sup> BUSKULIC,D | 96 ALEP  | X  ightarrow 2 jets, $Y  ightarrow 2$ jets                                                                                                                               |
| 000             |                           |          |                                                                                                                                                                          |

 $^{202}$  ABREU 99H refutes the hypothesis that the excess reported in BUSKULIC,D 96 is a sign of new physics at over 99%CL.

<sup>203</sup> ACKERSTAFF 98X search for  $e^+e^- \rightarrow XY \rightarrow 4$  jets at  $\sqrt{s}=$  130–184 GeV. The upper limits on  $\sigma(e^+e^- \rightarrow XY)$ , which are well below the excess reported by BUSKULIC, D 96, are shown in their Fig. 5.

<sup>204</sup> ACKERSTAFF 98Y search for  $e^+e^- \rightarrow XY$ , with  $X \rightarrow \gamma\gamma$ ,  $Y \rightarrow f\overline{f}$  where  $f\overline{f}$  may be  $q \overline{q}$ ,  $\ell \overline{\ell}$ , or  $\nu \overline{\nu}$  at  $\sqrt{s} = 183$  GeV. The upper limits on  $\sigma(e^+e^- \rightarrow XY) \times B(X \rightarrow XY) \times B(X \rightarrow XY) + \delta T = 0$  $\gamma\gamma)$  are shown in their Fig. 4. 205 ALEXANDER 97B search for the associated production of two massive particles decay-

ing into quarks in  $e^+e^-$  collisions at  $\sqrt{s}$ =130–136 GeV. The 95%CL upper limits on  $\sigma(e^+e^- \rightarrow XY)$  range from 2.7 to 4.5 pb for  $95 < m_X + m_Y < 120$  GeV.

<sup>206</sup> BUSKULIC,D 96 observed an excess of four-jet production cross section in  $e^+e^-$  collisions at  $\sqrt{s}$ =130–136 GeV and find an enhancement in the sum of two dijet masses around 105 GeV.

#### Heavy Particle Production in Quarkonium Decays

| Limits are for branching ratios to modes shown. |            |                               |            |                                                                                                                               |  |
|-------------------------------------------------|------------|-------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------|--|
| VALUE                                           | <u>CL%</u> | DOCUMENT ID                   | TECN       | COMMENT                                                                                                                       |  |
| • • • We do not use the                         | followi    | ng data for averages, fits    | s, limits, | etc. • • •                                                                                                                    |  |
| $< 1.5 	imes 10^{-5}$                           | 90         | <sup>207</sup> BALEST 95      | CLE2       |                                                                                                                               |  |
| $< 3 	imes 10^{-5}$ -6 $	imes 10^{-3}$          |            | <sup>208</sup> BALEST 95      | CLE2       | $m_{\chi^0} < 5 \text{ GeV}$<br>$\Upsilon(1S)  ightarrow \chi^0 \overline{\chi}^0 \gamma$ ,<br>$m_{\chi^0} < 3.9 \text{ GeV}$ |  |
| $< 5.6 	imes 10^{-5}$                           | 90         | <sup>209</sup> ANTREASYAN 900 | CBAL       | $arphi^{\chi_0}_{(1S)}  ightarrow X^0 \gamma, \ m_{\chi^0} < 7.2 \ { m GeV}$                                                  |  |
|                                                 |            | <sup>210</sup> ALBRECHT 89    | ARG        | X                                                                                                                             |  |

 $^{207}$ BALEST 95 two-body limit is for pseudoscalar  $X^0$ . The limit becomes  $< 10^{-4}$  for  $m_{\chi 0} < 7.7 \,\,{\rm GeV}.$ 

<sup>208</sup> BALEST 95 three-body limit is for phase-space photon energy distribution and angular distribution same as for  $\Upsilon \to gg\gamma$ . <sup>209</sup> ANTREASYAN 90C assume that  $X^0$  does not decay in the detector.

<sup>210</sup>ALBRECHT 89 give limits for B( $\Upsilon(1S), \Upsilon(2S) \rightarrow X^0 \gamma$ )·B( $X^0 \rightarrow \pi^+ \pi^-, K^+ K^-, K^- \chi^0 \gamma$ )·B( $X^0 \rightarrow \pi^+ \pi^-, K^+ K^-, K^- \chi^0 \gamma$ )·B( $X^0 \rightarrow \pi^+ \pi^-, K^+ K^-, K^- \chi^0 \gamma$ )·B( $X^0 \rightarrow \pi^+ \pi^-, K^+ K^-, K^- \chi^0 \gamma$ )·B( $X^0 \rightarrow \pi^+ \pi^-, K^+ K^-, K^- \chi^0 \gamma$ )·B( $X^0 \rightarrow \pi^+ \pi^-, K^+ K^-, K^- \chi^0 \gamma$ )·B( $X^0 \rightarrow \pi^+ \pi^-, K^- \chi^0 \gamma)$  $p\overline{p}$ ) for  $m_{\chi 0}$  < 3.5 GeV.

## REFERENCES FOR Searches for Heavy Bosons Other Than Higgs Bosons

| ABBOTT<br>BARATE        | 00C<br>00I       | PRL 84 2088<br>EPJ C12 183                   | B. Abbott <i>et al.</i><br>R. Barate <i>et al.</i>                 | (D0 Collab.)<br>(ALEPH Collab.)         |
|-------------------------|------------------|----------------------------------------------|--------------------------------------------------------------------|-----------------------------------------|
| CHAY<br>ERLER<br>ROSNER | 00<br>00<br>00   | PR D61 035002<br>PRL 84 212<br>PR D61 016006 | J. Chay, K.Y. Lee, S. Nam<br>J. Erler, P. Langacker<br>J.L. Rosner |                                         |
| ABBIENDI<br>ABBOTT      | 99<br>99<br>99 J | EPJ C6 1<br>PRL 83 2896                      | G. Abbiendi <i>et al.</i><br>B. Abbott <i>et al.</i>               | (OPAL Collab.)<br>(D0 Collab.)          |
| ABREU<br>ABREU          | 99A<br>99G       | EPJ C11 383<br>PL B446 62                    | P. Abreu <i>et al.</i><br>P. Abreu <i>et al.</i>                   | (DELPHI Collab.)<br>(DELPHI Collab.)    |
| ABREU                   | 99H              | PL B448 311                                  | P. Abreu <i>et al.</i>                                             | (DELPHI Collab.)                        |
| ACKERSTAFF<br>ADLOFF    | 99D<br>99        | EPJ C8 3<br>EPJ C11 447                      | K. Ackerstaff <i>et al.</i><br>C. Adloff <i>et al.</i>             | (OPAL Collab.)<br>(H1 Collab.)          |
| CASALBUONI              | 99               | PL B460 135                                  | R. Casalbuoni <i>et al.</i>                                        | ( , , , , , , , , , , , , , , , , , , , |
| CZAKON<br>ERLER         | 99<br>99         | PL B458 355<br>PL B456 68                    | M. Czakon, J. Gluza, M. Zralek<br>J. Erler, P. Langacker           |                                         |
| ABBOTT                  | 98E              | PRL 80 2051                                  | B. Abbott <i>et al.</i>                                            | (D0 Collab.)                            |
| ABBOTT<br>ABE           | 98J<br>98S       | PRL 81 38<br>PRL 81 4806                     | B. Abbott <i>et al.</i><br>F. Abe <i>et al.</i>                    | (D0 Collab.)<br>(CDF Collab.)           |
| ABE                     | 98V              | PRL 81 5742                                  | F. Abe <i>et al.</i>                                               | (CDF Collab.)                           |
| ACCIARRI                | 98J              | PL B433 163                                  | M. Acciarri <i>et al.</i>                                          | (L3 Collab.)                            |
| ACKERSTAFF              | 98V<br>98X       | EPJ C2 441<br>PL B429 399                    | K. Ackerstaff <i>et al.</i><br>K. Ackerstaff <i>et al.</i>         | (OPAL Collab.)<br>(OPAL Collab.)        |
| ACKERSTAFF              | 98Y              | PL B437 218                                  | K. Ackerstaff <i>et al.</i>                                        | (OPAL Collab.)                          |
| BARATE                  | 98U              | EPJ C4 571                                   | R. Barate <i>et al.</i>                                            | (ALEPH Collab.)                         |
| BARENBOIM<br>CHO        | 98<br>98         | EPJ C1 369<br>EPJ C5 155                     | G. Barenboim<br>G. Cho, K. Hagiwara, S. Matsumoto                  |                                         |
| СНО                     | 98B              | NP B531 65                                   | G. Cho, K. Hagiwara, Y. Umeda                                      |                                         |
| CONRAD                  | 98               | RMP 70 1341                                  | J.M. Conrad, M.H. Shaevitz, T. Bolton                              | 1                                       |
| DONCHESKI<br>ABBOTT     | 98<br>97B        | PR D58 097702<br>PRL 79 4321                 | M.A. Doncheski, R.W. Robinett<br>B. Abbott <i>et al.</i>           | (D0 Collab.)                            |
| ABE                     | 97F              | PRL 78 2906                                  | F. Abe <i>et al.</i>                                               | (CDF Collab.)                           |
| ABE<br>ABE              | 97G<br>97S       | PR D55 R5263                                 | F. Abe <i>et al.</i><br>F. Abe <i>et al.</i>                       | (CDF Collab.)                           |
| ABE                     |                  | PRL 79 2192<br>PRL 79 3819                   | F. Abe <i>et al.</i><br>F. Abe <i>et al.</i>                       | (CDF Collab.)<br>(CDF Collab.)          |
| ABE                     | 97X              | PRL 79 4327                                  | F. Abe <i>et al.</i>                                               | (CDF Collab.)                           |
| ACCIARRI                | 97Q              | PL B412 201                                  | M. Acciarri <i>et al.</i><br>G. Alexander <i>et al.</i>            | (L3 Collab.)                            |
| ALEXANDER<br>ARIMA      | 97B<br>97        | ZPHY C73 201<br>PR D55 19                    | G. Alexander <i>et al.</i><br>T. Arima <i>et al.</i>               | (OPAL Collab.)<br>(VENUS Collab.)       |
| BARATE                  | 97B              | PL B399 329                                  | R. Barate <i>et al.</i>                                            | (ALEPH Collab.)                         |
| BARENBOIM               | 97<br>07         | PR D55 4213                                  | G. Barenboim <i>et al.</i>                                         | (VALE, IFIC)                            |
| DEANDREA<br>DERRICK     | 97<br>97         | PL B409 277<br>ZPHY C73 613                  | A. Deandrea<br>M. Derrick <i>et al.</i>                            | (MARS)<br>(ZEUS Collab.)                |
| GROSSMAN                | 97               | PR D55 2768                                  | Y. Grossman, Z. Ligeti, E. Nardi                                   | (REHO, CIT)                             |
| JADACH<br>STAHL         | 97<br>97         | PL B408 281<br>ZPHY C74 73                   | S. Jadach, B.F.L. Ward, Z. Was                                     | (CERN, INPK+)                           |
| ABACHI                  | 97<br>96C        | PRL 76 3271                                  | A. Stahl, H. Voss<br>S. Abachi <i>et al.</i>                       | (BONN)<br>(D0 Collab.)                  |
| ABACHI                  | 96D              | PL B385 471                                  | S. Abachi <i>et al.</i>                                            | (D0 Collab.)                            |
| ABREU<br>ADAM           | 96T<br>96C       | ZPHY C72 179<br>PL B380 471                  | P. Abreu <i>et al.</i><br>W. Adam <i>et al.</i>                    | (DELPHI Collab.)<br>(DELPHI Collab.)    |
| AID                     |                  | PL B369 173                                  | S. Aid <i>et al.</i>                                               | (H1 Collab.)                            |
| ALLET                   | 96               | PL B383 139                                  |                                                                    | EUV, LÔUV, WISC)                        |
| BUSKULIC,D<br>ABACHI    | 96<br>95E        | ZPHY C71 179<br>PL B358 405                  | D. Buskulic <i>et al.</i><br>S. Abachi <i>et al.</i>               | (ALEPH Collab.)<br>(D0 Collab.)         |
| ABE                     | 95<br>95         | PR D51 R949                                  | F. Abe <i>et al.</i>                                               | (CDF Collab.)                           |
| ABE                     |                  | PRL 74 2900                                  | F. Abe <i>et al.</i>                                               | (CDF Collab.)                           |
| ABE<br>ABREU            | 95N<br>95M       | PRL 74 3538<br>ZPHY C65 603                  | F. Abe <i>et al.</i><br>P. Abreu <i>et al.</i>                     | (CDF Collab.)<br>(DELPHI Collab.)       |
| AID                     | 95<br>95         | PL B353 578                                  | S. Aid <i>et al.</i>                                               | ` (H1 Collab.)́                         |
| BALEST                  | 95<br>05         | PR D51 2053<br>PRL 75 794                    | R. Balest <i>et al.</i>                                            | (CLEO Collab.)                          |
| KUZNETSOV<br>KUZNETSOV  | 95<br>95B        | PAN 58 2113                                  | I.A. Kuznetsov <i>et al.</i> (PN<br>A.V. Kuznetsov, N.V. Mikheev   | PI, KIAE, HARV+)<br>(YARO)              |
|                         |                  | Translated from YAF 58                       |                                                                    | × ,                                     |

HTTP://PDG.LBL.GOV Page 39

| MIZUKOSHI            | 95          | NP B443 20                 | J.K. Mizukoshi, O.J.P. Eboli, M.C. Gonzalez-Garcia                                     |
|----------------------|-------------|----------------------------|----------------------------------------------------------------------------------------|
| ABREU                | 940         | ZPHY C64 183               | P. Abreu <i>et al.</i> (DELPHI Collab.)                                                |
| BHATTACH             | 94          | PL B336 100                | G. Bhattacharyya, J. Ellis, K. Sridhar (CERN)                                          |
| Also                 | 94B         | PL B338 522 (erratum)      | G. Bhattacharyya, J. Ellis, K. Sridhar (CERN)                                          |
| BHATTACH             | 94B         | PL B338 522 (erratum)      | G. Bhattacharyya, J. Ellis, K. Sridhar (CERN)                                          |
| DAVIDSON             | 94          | ZPHY C61 613               | S. Davidson, D. Bailey, B.A. Campbell (CFPA+)                                          |
| KUZNETSOV            | 94          | PL B329 295                | A.V. Kuznetsov, N.V. Mikheev (YARO)                                                    |
| KUZNETSOV            | 94B         | JETPL 60 315               | I.A. Kuznetsov <i>et al.</i> (PNPI, KIAE, HARV+)                                       |
|                      |             | Translated from ZETFP      |                                                                                        |
| LEURER               | 94          | PR D50 536                 | M. Leurer (REHO)                                                                       |
| LEURER               | 94B         | PR D49 333                 | M. Leurer (REHO)                                                                       |
| Also                 | 93          | PRL 71 1324                | M. Leurer (REHO)                                                                       |
| MAHANTA              | 94          | PL B337 128                | U. Mahanta (MEHTA)                                                                     |
| SEVERIJNS            | 94          | PRL 73 611 (erratum)       | N. Severijns <i>et al.</i> (LOUV, WISC, LEUV+)                                         |
| VILAIN               | 94B         | PL B332 465                | P. Vilain <i>et al.</i> (CHARM II Collab.)                                             |
| ABE                  | 93C         | PL B302 119                | K. Abe <i>et al.</i> (VENUS Collab.)                                                   |
| ABE                  | 93D         | PL B304 373                | T. Abe <i>et al.</i> (TOPAZ Collab.)                                                   |
| ABE                  | 93G         | PRL 71 2542                | F. Abe <i>et al.</i> (CDF Collab.)                                                     |
| ABREU                | 93J         | PL B316 620                | P. Abreu <i>et al.</i> (DELPHI Collab.)                                                |
| ACTON                | 93E         | PL B311 391                | P.D. Acton <i>et al.</i> (OPAL Collab.)                                                |
| ADRIANI              | 93D         | PL B306 187                | O. Adriani <i>et al.</i> (L3 Collab.)                                                  |
|                      |             | PRPL 236 1                 | O. Adriani <i>et al.</i> (L3 Collab.)                                                  |
| ALITTI               | 93<br>02D   | NP B400 3                  | J. Alitti <i>et al.</i> (UA2 Collab.)                                                  |
| ALTARELLI            | 93B         | PL B318 139                | G. Altarelli <i>et al.</i> (CERN, FIRZ, GEVA+)                                         |
| BHATTACH<br>BUSKULIC | 93<br>93F   | PR D47 R3693               | G. Bhattacharyya <i>et al.</i> (CALC, JADA, ICTP+)                                     |
| DERRICK              | 93F<br>93   | PL B308 425<br>PL B306 173 | D. Buskulic <i>et al.</i> (ALEPH Collab.)<br>M. Derrick <i>et al.</i> (ZEUS Collab.)   |
| RIZZO                | 93<br>93    | PR D48 4470                | M. Derrick <i>et al.</i> (ZEUS Collab.)<br>T.G. Rizzo (ANL)                            |
| SEVERIJNS            | 93<br>93    | PRL 70 4047                | N. Severijns <i>et al.</i> (LOUV, WISC, LEUV+)                                         |
| Also                 | 93<br>94    | PRL 73 611 (erratum)       | N. Severijns et al. $(LOUV, WISC, LEUV+)$<br>N. Severijns et al. $(LOUV, WISC, LEUV+)$ |
| STERNER              | 93          | PL B303 385                | K.L. Sterner <i>et al.</i> (AMY Collab.)                                               |
| ABE                  | 92B         | PRL 68 1463                | F. Abe <i>et al.</i> (CDF Collab.)                                                     |
| ABREU                | 92D         | ZPHY C53 555               | P. Abreu <i>et al.</i> (DELPHI Collab.)                                                |
| ADRIANI              | 92F         | PL B292 472                | O. Adriani <i>et al.</i> (L3 Collab.)                                                  |
| DECAMP               | 92          | PRPL 216 253               | D. Decamp <i>et al.</i> (ALEPH Collab.)                                                |
| IMAZATO              | 92          | PRL 69 877                 | J. Imazato <i>et al.</i> (KEK, INUS, TOKY+)                                            |
| MISHRA               | 92          | PRL 68 3499                | S.R. Mishra <i>et al.</i> (COLU, CHIC, FNAL+)                                          |
| POLAK                | 92B         | PR D46 3871                | J. Polak, M. Zralek (SILES)                                                            |
| ABE                  | 91F         | PRL 67 2609                | F. Abe <i>et al.</i> (CDF Collab.)                                                     |
| ACTON                | 91          | PL B268 122                | D.P. Acton <i>et al.</i> (ÒPAL Collab.)                                                |
| ACTON                | 91B         | PL B273 338                | D.P. Acton <i>et al.</i> (OPAL Collab.)                                                |
| ADEVA                | 91D         | PL B262 155                | B. Adeva <i>et al.</i> (L3 Collab.)                                                    |
| ALITTI               | 91          | ZPHY C49 17                | J. Alitti <i>et al.</i> (UA2 Collab.)                                                  |
| AQUINO               | 91          | PL B261 280                | M. Aquino, A. Fernandez, A. Garcia (CINV, PUEB)                                        |
| COLANGELO            | 91          | PL B253 154                | P. Colangelo, G. Nardulli (BARI)                                                       |
| CUYPERS              | 91          | PL B259 173                | F. Cuypers, A.F. Falk, P.H. Frampton (DURH, HARV+)                                     |
| FARAGGI              | 91          | MPL A6 61                  | A.E. Faraggi, D.V. Nanopoulos (TAMU)                                                   |
| POLAK                | 91          | NP B363 385                | J. Polak, M. Zralek (SILES)                                                            |
| RIZZO                | 91          | PR D44 202                 | T.G. Rizzo (WISC, ISU)                                                                 |
| WALKER               | 91<br>005   | APJ 376 51                 | T.P. Walker <i>et al.</i> (HSCA, OSU, CHIC+)                                           |
| ABE<br>ABE           | 90F<br>90H  | PL B246 297                | K. Abe <i>et al.</i> (VENUS Collab.)<br>F. Abe <i>et al.</i> (CDF Collab.)             |
| AKRAWY               | 9011<br>90J | PR D41 1722<br>PL B246 285 | F. Abe et al.(CDF Collab.)M.Z. Akrawy et al.(OPAL Collab.)                             |
| ANTREASYAN           |             | PL B251 204                | D. Antreasyan <i>et al.</i> (Crystal Ball Collab.)                                     |
| GONZALEZ-G.          |             | PL B240 163                | M.C. Gonzalez-Garcia, J.W.F. Valle (VALE)                                              |
| GRIFOLS              | 90          | NP B331 244                | J.A. Grifols, E. Masso (BARC)                                                          |
| GRIFOLS              | 90D         | PR D42 3293                | J.A. Grifols, E. Masso, T.G. Rizzo (BARC, CERN+)                                       |
| KIM                  | 90          | PL B240 243                | G.N. Kim <i>et al.</i> (AMY Collab.)                                                   |
| LOPEZ                | 90          | PL B241 392                | J.L. Lopez, D.V. Nanopoulos (TAMU)                                                     |
| ALBAJAR              | 89          | ZPHY C44 15                | C. Albajar <i>et al.</i> (UA1 Collab.)                                                 |
| ALBRECHT             | 89          | ZPHY C42 349               | H. Albrecht <i>et al.</i> (ARGUS Collab.)                                              |
| BARBIERI             | 89B         | PR D39 1229                | R. Barbieri, R.N. Mohapatra (PISA, UMD)                                                |
| LANGACKER            | 89B         | PR D40 1569                | P. Langacker, S. Uma Sankar (PENN)                                                     |
| ODAKA                | 89          | JPSJ 58 3037               | S. Odaka <i>et al.</i> (VENUS Collab.)                                                 |
| ROBINETT             | 89          | PR D39 834                 | R.W. Robinett (PSU)                                                                    |
| ALBAJAR              | 88B         | PL B209 127                | C. Albajar <i>et al.</i> (UA1 Collab.)                                                 |
| BAGGER               | 88          | PR D37 1188                | J. Bagger, C. Schmidt, S. King (HARV, BOST)                                            |
| BALKE                | 88          | PR D37 587                 | B. Balke <i>et al.</i> (LBL, UCB, COLO, NWES+)                                         |
| BERGSTROM            | 88          | PL B212 386                | L. Bergstrom (STOH)                                                                    |
|                      |             |                            |                                                                                        |

HTTP://PDG.LBL.GOV Page 40

Created: 12/18/2000 15:07

| CUYPERS   | 88  | PRL 60 1237        | F. Cuypers, P.H. Frampton          | (UNCCH)           |
|-----------|-----|--------------------|------------------------------------|-------------------|
| DONCHESKI | 88  | PL B206 137        | M.A. Doncheski, H. Grotch, R. Rob  | inett (PSU)       |
| DONCHESKI | 88B | PR D38 412         | M.A. Doncheski, H. Grotch, R.W. F  | Robinett (PSU)    |
| ANSARI    | 87D | PL B195 613        | R. Ansari <i>et al.</i>            | (UA2 Collab.)     |
| BARTEL    | 87B | ZPHY C36 15        | W. Bartel <i>et al.</i>            | (JADE Collab.)    |
| ARNISON   | 86B | EPL 1 327          | G.T.J. Arnison <i>et al.</i>       | (UA1 Collab.)     |
| BEHREND   | 86B | PL B178 452        | H.J. Behrend <i>et al.</i>         | (CELLO Collab.)   |
| DERRICK   | 86  | PL 166B 463        | M. Derrick <i>et al.</i>           | (HRS Collab.)     |
| Also      | 86B | PR D34 3286        | M. Derrick <i>et al.</i>           | (HRS Collab.)     |
| JODIDIO   | 86  | PR D34 1967        | A. Jodidio <i>et al.</i>           | (LBL, NWES, TRIU) |
| Also      | 88  | PR D37 237 erratum | A. Jodidio <i>et al.</i>           | (LBL, NWES, TRIU) |
| MOHAPATRA | 86  | PR D34 909         | R.N. Mohapatra                     | (UMD)             |
| ADEVA     | 85  | PL 152B 439        | B. Adeva <i>et al.</i>             | (Mark-J Collab.)  |
| BERGER    | 85B | ZPHY C27 341       | C. Berger <i>et al.</i>            | (PLUTO Collab.)   |
| STOKER    | 85  | PRL 54 1887        | D.P. Stoker <i>et al.</i>          | (LBL, NWES, TRIU) |
| ADEVA     | 84  | PRL 53 134         | B. Adeva <i>et al.</i>             | (Mark-J Collab.)  |
| BEHREND   | 84C | PL 140B 130        | H.J. Behrend <i>et al.</i>         | (CELLO Collab.)   |
| ARNISON   | 83D | PL 129B 273        | G.T.J. Arnison <i>et al.</i>       | (UA1 Collab.)     |
| BERGSMA   | 83  | PL 122B 465        | F. Bergsma <i>et al.</i>           | (CHARM Collab.)   |
| CARR      | 83  | PRL 51 627         | J. Carr <i>et al.</i>              | (LBĹ, NWES, TRIU) |
| DESHPANDE | 83  | PR D27 1193        | N.G. Deshpande, R.J. Johnson       | (OREG)            |
| BEALL     | 82  | PRL 48 848         | G. Beall, M. Bander, A. Soni       | (UCI, UCLA)       |
| SHANKER   | 82  | NP B204 375        | O. Shanker                         | (TRIU)            |
| DIMOPOUL  | 81  | NP B182 77         | S. Dimopoulos, S. Raby, G.L. Kane  | (STAN, MICH)      |
| STEIGMAN  | 79  | PRL 43 239         | G. Steigman, K.A. Olive, D.N. Schr | amm ` (BART+)     |
|           |     |                    |                                    | . ,               |

HTTP://PDG.LBL.GOV Page 41