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Here, we prove the following for real  and any real random variable . v 0K ≥

Lemma 1: The condition liminf 1 0ivK
v e→∞ − >E  holds if and only if 

limsup 1ivK
v e→∞ <E . 

In the renewal theory literature, the condition liminf 1 0ivK
v e→∞ − >E  appears in at 

least one paper by C. Stone [2]. Asmussen refers to limsup 1ivK
v e→∞ <E  as the Cramér 

Condition [1, p. 142], and he cites Stone in his references. Thus, Stone was probably 

aware of Lemma 1, but I have been unable to turn up any direct reference proving the 

equivalence of the two conditions. If anyone knows of such a reference, please email me. 

Proof of Lemma 1: (Sufficiency) If li , then msup 1ivK
v e→∞ <E

( )liminf 1 liminf 1 0ivK ivK
v ve e→∞ →∞− ≥ − >E E .  

(Necessity) If limsup 1ivK
v e→∞ =E , then there are two sequences { }nv ↑ ∞  and 

{ } [ ]0, 2nθ π⊆  such that ( )lim i v K
n e→∞ 1n nθ− =E . Because [ ]0, 2π  is compact, we can select 

a subsequence { ( )}j nθ  with a limit point (imn j n): lθ θ→∞= . Select the subsequence { ( )}j nv , 

and renumber it so that ( )lim ni v K
n e −
→∞ 1θ =E .  
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The idea behind the following proof is that v Kn θ−  becomes concentrated on integer 

multiples of 2π . Thus, the differences ( ) ( ) ( )mv K K v v Kθ θ− = −n mv− − n  concentrate 

there as well if { }min ,m n →∞ .  

For each integer , choose a larger integer n ( )m n  so that the sequence { ( ) }nm nv v−  is 

strictly increasing to infinity. For brevity, define the random variables 

( ): : nA A n v K θ= = −  and ( ): : m nn v ( )B B K θ= = − , which satisfy 

( ) ( )lim limiA n
n n→∞ 1iB ne e= =E E→∞ . 

As a preliminary, we prove the plausible statement that  

 (1.1) lim 1  lim 1 0n niX iX

n n
e e

→∞ →∞
= ⇔ −E E =  

for any sequence of real random variables { }nX . The Chebyshev and Cauchy-Schwarz 

inequalities yield 

 (1.2) { } { } ( )
2 2

1 1 2 1 cos 2 1 2 1n n niX iX iX iX
ne e X e− ≤ − = − ≤ − ≤ −E E E E E ne . 

The final inequality is a standard inequality on norms. Eq (1.1) therefore follows from Eq 

(1.2). 

The inequality ( ) ( )1 1 1 1 1i B A iA iA iB iA iBe e e e e− − −− = − + − ≤ − + − e  yields 

( ) ( ){ } ( ) ( )1 1 1i B n A n iA n iB ne e−− ≤ − + −E E E

( )

e . Because of Eq (1.1), 

( ) lim 1 lim 1iA n iB n
n ne e→∞ →∞− = −E E 0= , so ( ) ( ){ }lim 1 0i B n A n

n e −
→∞ − =E . Eq (1.1) 

again shows that ( ) ( ){ } lim i B n A n
n e −
→∞ 1=E . Because ( ) ( ) : ( )( )nm nB n A n− = v v K− , 



( )( )lim 1mm ni v v K
n e

−

→∞ =E  with { ( ) }nm nv v− ↑ ∞ . Accordingly, lim , 

proving Lemma 1. 

inf 1 0ivK
v e→∞ − =E
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