Equivalency of Two "Cramér Conditions"

by

John L. Spouge (spouge@ncbi.nlm.nih.gov)

Here, we prove the following for real v and any real random variable $K \ge 0$.

Lemma 1: The condition $\liminf_{v\to\infty} \left|1 - \mathbb{E}e^{ivK}\right| > 0$ holds if and only if $\limsup_{v\to\infty} \left|\mathbb{E}e^{ivK}\right| < 1$.

In the renewal theory literature, the condition $\liminf_{v\to\infty} \left|1-\mathbb{E}e^{ivK}\right| > 0$ appears in at least one paper by C. Stone [2]. Asmussen refers to $\limsup_{v\to\infty} \left|\mathbb{E}e^{ivK}\right| < 1$ as the Cramér Condition [1, p. 142], and he cites Stone in his references. Thus, Stone was probably aware of Lemma 1, but I have been unable to turn up any direct reference proving the equivalence of the two conditions. If anyone knows of such a reference, please email me.

Proof of Lemma 1: (Sufficiency) If $\limsup_{v\to\infty} \left| \mathbb{E} e^{ivK} \right| < 1$, then $\liminf_{v\to\infty} \left| 1 - \mathbb{E} e^{ivK} \right| \ge \liminf_{v\to\infty} \left(1 - \left| \mathbb{E} e^{ivK} \right| \right) > 0$.

(Necessity) If $\limsup_{v\to\infty} \left| \mathbb{E} e^{ivK} \right| = 1$, then there are two sequences $\{v_n\} \uparrow \infty$ and $\{\theta_n\} \subseteq [0,2\pi]$ such that $\lim_{n\to\infty} \mathbb{E} e^{i(v_nK-\theta_n)} = 1$. Because $[0,2\pi]$ is compact, we can select a subsequence $\{\theta_{j(n)}\}$ with a limit point $\theta \coloneqq \lim_{n\to\infty} \theta_{j(n)}$. Select the subsequence $\{v_{j(n)}\}$, and renumber it so that $\lim_{n\to\infty} \mathbb{E} e^{i(v_nK-\theta)} = 1$.

The idea behind the following proof is that $v_nK-\theta$ becomes concentrated on integer multiples of 2π . Thus, the differences $(v_nK-\theta)-(v_mK-\theta)=(v_m-v_n)K$ concentrate there as well if $\min\{m,n\}\to\infty$.

For each integer n, choose a larger integer m(n) so that the sequence $\left\{v_{m(n)}-v_n\right\}$ is strictly increasing to infinity. For brevity, define the random variables $A:=A(n):=v_nK-\theta$ and $B:=B(n):=v_{m(n)}K-\theta$, which satisfy $\lim_{n\to\infty}\mathbb{E}e^{iA(n)}=\lim_{n\to\infty}\mathbb{E}e^{iB(n)}=1$.

As a preliminary, we prove the plausible statement that

(1.1)
$$\lim_{n\to\infty} \mathbb{E}e^{iX_n} = 1 \iff \lim_{n\to\infty} \mathbb{E}\left|1 - e^{iX_n}\right| = 0$$

for any sequence of real random variables $\{X_n\}$. The Chebyshev and Cauchy-Schwarz inequalities yield

$$(1.2) \quad \left\{ \mathbb{E} \left| 1 - e^{iX_n} \right| \right\}^2 \le \mathbb{E} \left\{ \left| 1 - e^{iX_n} \right|^2 \right\} = 2 \left(1 - \mathbb{E} \cos X_n \right) \le 2 \left| 1 - \mathbb{E} e^{iX_n} \right| \le 2 \mathbb{E} \left| 1 - e^{iX_n} \right|.$$

The final inequality is a standard inequality on norms. Eq (1.1) therefore follows from Eq (1.2).

The inequality
$$\left|1-e^{i(B-A)}\right| = \left|1-e^{-iA}+e^{-iA}\left(1-e^{iB}\right)\right| \le \left|1-e^{iA}\right| + \left|1-e^{iB}\right|$$
 yields $\mathbb{E}\left|1-e^{i\{B(n)-A(n)\}}\right| \le \mathbb{E}\left|1-e^{iA(n)}\right| + \mathbb{E}\left|1-e^{iB(n)}\right|$. Because of Eq. (1.1), $\lim_{n\to\infty} \mathbb{E}\left|1-e^{iA(n)}\right| = \lim_{n\to\infty} \mathbb{E}\left|1-e^{iB(n)}\right| = 0$, so $\lim_{n\to\infty} \mathbb{E}\left|1-e^{i\{B(n)-A(n)\}}\right| = 0$. Eq. (1.1) again shows that $\lim_{n\to\infty} \mathbb{E}e^{i\{B(n)-A(n)\}} = 1$. Because $B(n)-A(n):=(v_{m(n)}-v_n)K$,

 $\lim_{n\to\infty}\mathbb{E}e^{i\left(v_{m(n)}-v_m\right)K}=1\quad\text{with}\quad \left\{v_{m(n)}-v_n\right\}\uparrow\infty\,.\quad\text{Accordingly,}\quad \liminf_{v\to\infty}\left|1-\mathbb{E}e^{ivK}\right|=0\;,$ proving Lemma 1.

References

- [1] Asmussen, S. Applied Probability and Queueing. New York: Wiley 1987
- [2] Stone, C.J.: On moment generating functions and renewal theory. Annals of Mathematical Statistics 36 1298-1301 1965