The Cramér Condition and Roots Near the Imaginary Axis

by

John L. Spouge (spouge@ncbi.nlm.nih.gov)

In the complex *t*-plane, let t := u + iv so $u := \operatorname{Re} t$ and $v := \operatorname{Im} t$. (The symbol ":="denotes a definition.) If $K \ge 0$ be a random variable, it is said to be "strongly non-lattice", if and only the "Cramér Condition" $\liminf_{v \to \infty} |1 - \mathbb{E}e^{ivK}| > 0$ holds [1, p.142]. Lemma 1 indicates how the Cramér Condition affects the placement of the roots ζ of $\mathbb{E}e^{\zeta K} - 1 = 0$ near the imaginary axis.

Lemma 1 assumes that $\mathbb{E}e^{\tilde{r}K} < \infty$ for some $\tilde{r} > 0$. In addition, r and ρ satisfy $0 < 4r \le \rho < \tilde{r}$ but are otherwise arbitrary. (The factor of 4 is consistent with notation in my other articles.)

Lemma 1: If *K* is strongly non-lattice, then there exists some r > 0, such that the only root of $\mathbb{E}e^{\zeta K} - 1 = 0$ within the closed strip $\{t : u_1 \le u \le u_2\}$ is $\zeta_0 = 0$.

In fact, the converse holds, although we do not prove it here.

Proof of Lemma 1: The Cramér Condition $\liminf_{v\to\infty} |1 - \mathbb{E}e^{ivK}| > 0$ implies that K is non-lattice. (If K had span σ , $\lim_{n\to\infty} \mathbb{E}e^{iv_nK} = 1$ for $v_n = 2\pi n\sigma^{-1}$.) In addition, $3\eta := \liminf_{v\to\infty} |1 - \mathbb{E}e^{-ivK}| = \liminf_{v\to\infty} |1 - \mathbb{E}e^{ivK}| > 0$. Consequently, there exists some $w_0 > 0$ so that $|1 - \mathbb{E}e^{ivK}| \ge 2\eta$ within the two rays $\{t : u = 0 \text{ and } |v| \ge w_0\}$ on the imaginary axis. Spouge

A Taylor expansion of $\mathbb{E}e^{tK} = \mathbb{E}e^{(u+iv)K}$ about $t_0 = iv$ yields the inequality $|\mathbb{E}e^{tK} - \mathbb{E}e^{ivK}| \le 4r\mathbb{E}(Ke^{\rho K})$ for $t \in S(0, 4r)$. Reduce r > 0 if necessary, so that $4r\mathbb{E}(Ke^{\rho K}) \le \eta$. By the triangle inequality $|\mathbb{E}e^{tK} - 1| \ge |\mathbb{E}e^{ivK} - 1| - |\mathbb{E}e^{tK} - \mathbb{E}e^{ivK}| \ge \eta > 0$, no roots ζ of $\mathbb{E}e^{\zeta K} - 1 = 0$ lie within the two semi-infinite strips $\{t: 0 \le u \le 4r \text{ and } |v| \ge w_0\}$.

Because of the Cramér Condition, *K* is not identically 0. Thus, the set of roots ζ of $\mathbb{E}e^{\zeta K} - 1 = 0$ within the compact rectangular region $\{t: 0 \le u \le 4r \text{ and } |v| \le w_0\}$ can have no limit point. (Otherwise, $\mathbb{E}e^{\zeta K} \equiv 1$ identically [2, p. 149].) Thus, the set of roots is finite: $\zeta_0 := 0, \zeta_1, ..., \zeta_m$. Because *K* is non-lattice, the only root of $\mathbb{E}e^{\zeta K} - 1 = 0$ actually on the imaginary axis is $\zeta_0 = 0$ [8, p. 500]: for any other root, $\operatorname{Re} \zeta > 0$. Reduce r > 0 if necessary, to make $4r < \min\{\operatorname{Re}\zeta_1, ..., \operatorname{Re}\zeta_m\}$, thereby excluding $\zeta_1, ..., \zeta_m$ from the rectangular region $\{t: 0 \le u \le 4r \text{ and } |v| \le w_0\}$.

We have therefore displayed r > 0, such that the only root of $\mathbb{E}e^{\zeta K} - 1 = 0$ within $\{t : u_1 \le u \le u_2\}$ is $\zeta_0 = 0$, completing the proof.

References

- [1] Asmussen, S. Applied Probability and Queueing. New York: Wiley 1987
- [2] Levinson, N. and Redheffer, R.M. Complex Variables. San Francisco: Holden-Day 1970