The Cramér Condition and Roots Near the Imaginary Axis

by

John L. Spouge (spouge@ncbi.nlm.nih.gov)

In the complex t-plane, let $t:=u+i v$ so $u:=\operatorname{Re} t$ and $v:=\operatorname{Im} t$. (The symbol ":="denotes a definition.) If $K \geq 0$ be a random variable, it is said to be "strongly nonlattice", if and only the "Cramér Condition" $\liminf _{v \rightarrow \infty}\left|1-\mathbb{E} e^{i v K}\right|>0$ holds [1, p.142]. Lemma 1 indicates how the Cramér Condition affects the placement of the roots ζ of $\mathbb{E} e^{\zeta K}-1=0$ near the imaginary axis.

Lemma 1 assumes that $\mathbb{E} e^{i K}<\infty$ for some $\tilde{r}>0$. In addition, r and ρ satisfy $0<4 r \leq \rho<\tilde{r}$ but are otherwise arbitrary. (The factor of 4 is consistent with notation in my other articles.)

Lemma 1: If K is strongly non-lattice, then there exists some $r>0$, such that the only root of $\mathbb{E} e^{\zeta K}-1=0$ within the closed strip $\left\{t: u_{1} \leq u \leq u_{2}\right\}$ is $\zeta_{0}=0$.

In fact, the converse holds, although we do not prove it here.

Proof of Lemma 1: The Cramér Condition $\liminf _{v \rightarrow \infty}\left|1-\mathbb{E} e^{i v K}\right|>0$ implies that K is non-lattice. (If K had span $\sigma, \lim _{n \rightarrow \infty} \mathbb{E} e^{i_{n} K}=1$ for $v_{n}=2 \pi n \sigma^{-1}$.) In addition, $3 \eta:=\liminf _{v \rightarrow \infty}\left|1-\mathbb{E} e^{-i v K}\right|=\liminf _{v \rightarrow \infty}\left|1-\mathbb{E} e^{i v K}\right|>0$. Consequently, there exists some $w_{0}>0$ so that $\left|1-\mathbb{E} e^{i v K}\right| \geq 2 \eta$ within the two rays $\left\{t: u=0\right.$ and $\left.|v| \geq w_{0}\right\}$ on the imaginary axis.

A Taylor expansion of $\mathbb{E} e^{t K}=\mathbb{E} e^{(u+i v) K}$ about $t_{0}=i v$ yields the inequality $\left|\mathbb{E} e^{t K}-\mathbb{E} e^{i v K}\right| \leq 4 r \mathbb{E}\left(K e^{\rho K}\right)$ for $t \in S \overline{(0,4 r)}$. Reduce $r>0$ if necessary, so that $4 r \mathbb{E}\left(K e^{\rho K}\right) \leq \eta$. By the triangle inequality $\left|\mathbb{E} e^{t K}-1\right| \geq\left|\mathbb{E} e^{i V K}-1\right|-\left|\mathbb{E} e^{t K}-\mathbb{E} e^{i V K}\right| \geq \eta>0$, no roots ζ of $\mathbb{E} e^{\zeta K}-1=0$ lie within the two semi-infinite strips $\left\{t: 0 \leq u \leq 4 r\right.$ and $\left.|v| \geq w_{0}\right\}$.

Because of the Cramér Condition, K is not identically 0 . Thus, the set of roots ζ of $\mathbb{E} e^{\zeta K}-1=0$ within the compact rectangular region $\left\{t: 0 \leq u \leq 4 r\right.$ and $\left.|v| \leq w_{0}\right\}$ can have no limit point. (Otherwise, $\mathbb{E} e^{\zeta K} \equiv 1$ identically [2, p. 149].) Thus, the set of roots is finite: $\zeta_{0}:=0, \zeta_{1}, \ldots, \zeta_{m}$. Because K is non-lattice, the only root of $\mathbb{E} e^{\zeta K}-1=0$ actually on the imaginary axis is $\zeta_{0}=0$ [8, p. 500]: for any other root, $\operatorname{Re} \zeta>0$. Reduce $r>0$ if necessary, to make $4 r<\min \left\{\operatorname{Re} \zeta_{1}, \ldots, \operatorname{Re} \zeta_{m}\right\}$, thereby excluding $\zeta_{1}, \ldots, \zeta_{m}$ from the rectangular region $\left\{t: 0 \leq u \leq 4 r\right.$ and $\left.|v| \leq w_{0}\right\}$.

We have therefore displayed $r>0$, such that the only root of $\mathbb{E} e^{\zeta K}-1=0$ within $\left\{t: u_{1} \leq u \leq u_{2}\right\}$ is $\zeta_{0}=0$, completing the proof.

References

[1] Asmussen, S. Applied Probability and Queueing. New York: Wiley 1987
[2] Levinson, N. and Redheffer, R.M. Complex Variables. San Francisco: HoldenDay 1970

