§ 258.51

ground-water monitoring requirements specified in §§ 258.51–258.55 by October 9, 1995:

- (3) Existing MSWLF units and lateral expansions greater than two miles from a drinking water intake (surface or subsurface) must be in compliance with the ground-water monitoring requirements specified in §§ 258.51–258.55 by October 9, 1996.
- (4) New MSWLF units must be in compliance with the ground-water monitoring requirements specified in §§ 258.51–258.55 before waste can be placed in the unit.
- (d) The Director of an approved State may specify an alternative schedule for the owners or operators of existing MSWLF units and lateral expansions to comply with the ground-water monitoring requirements specified §§ 258.51-258.55. This schedule must ensure that 50 percent of all existing MSWLF units are in compliance by October 9, 1994 and all existing MSWLF units are in compliance by October 9, 1996. In setting the compliance schedule, the Director of an approved State must consider potential risks posed by the unit to human health and the environment. The following factors should be considered in determining potential risk:
- (1) Proximity of human and environmental receptors;
 - (2) Design of the MSWLF unit;
 - (3) Age of the MSWLF unit;
 - (4) The size of the MSWLF unit; and
- (5) Types and quantities of wastes disposed including sewage sludge; and
- (6) Resource value of the underlying aquifer, including:
 - (i) Current and future uses;
- (ii) Proximity and withdrawal rate of users: and
- (iii) Ground-water quality and quantity.
- (e) Owners and operators of all MSWLF units that meet the conditions of \$258.1(f)(1) must comply with all applicable ground-water monitoring requirements of this part by October 9, 1997.
- (f) Once established at a MSWLF unit, ground-water monitoring shall be conducted throughout the active life and post-closure care period of that MSWLF unit as specified in §258.61.

- (g) For the purposes of this subpart, a qualified ground-water scientist is a scientist or engineer who has received a baccalaureate or post-graduate degree in the natural sciences or engineering and has sufficient training and experience in groundwater hydrology and related fields as may be demonstrated by State registration, professional Certifications, or completion of accredited university programs that enable that individual to make sound professional judgements regarding ground-water contaminant fate monitoring, transport, and corrective-action.
- (h) The Director of an approved State may establish alternative schedules for demonstrating compliance §258.51(d)(2), pertaining to notification of placement of certification in operating record; §258.54(c)(1), pertaining to notification that statistically significant increase (SSI) notice is in operating record; §258.54(c) (2) and (3), pertaining to an assessment monitoring program; §258.55(b), pertaining to sampling and analyzing appendix II constituents; §258.55(d)(1), pertaining to placement of notice (appendix II constituents detected) in record and notification of notice in record; §258.55(d)(2), pertaining to sampling for appendix I and II to this part; §258.55(g), pertaining to notification (and placement of notice in record) of SSI above ground-water protection standard: §§ 258.55(g)(1)(iv) and 258.56(a), pertaining to assessment of corrective measures; §258.57(a), pertaining to selection of remedy and notification of placement in record; §258.58(c)(4), pertaining to notification of placement in record (alternative corrective action measures); and §258.58(f), pertaining to notification of placement in record (certification of remedy completed).

[56 FR 51016, Oct. 9, 1991; 57 FR 28628, June 26, 1992, as amended at 58 FR 51547, Oct. 1, 1993; 60 FR 52342, Oct. 6, 1995]

$\S 258.51$ Ground-water monitoring systems.

(a) A ground-water monitoring system must be installed that consists of a sufficient number of wells, installed at appropriate locations and depths, to yield ground-water samples from the uppermost aquifer (as defined in §258.2) that:

Environmental Protection Agency

- (1) Represent the quality of background ground water that has not been affected by leakage from a unit. A determination of background quality may include sampling of wells that are not hydraulically upgradient of the waste management area where:
- (i) Hydrogeologic conditions do not allow the owner or operator to determine what wells are hydraulically upgradient; or
- (ii) Sampling at other wells will provide an indication of background ground-water quality that is as representative or more representative than that provided by the upgradient wells; and
- (2) Represent the quality of ground water passing the relevant point of compliance specified by Director of an approved State under §258.40(d) or at the waste management unit boundary in unapproved States. The downgradient monitoring system must be installed at the relevant point of compliance specified by the Director of an approved State under §258.40(d) or at the waste management unit boundary in unapproved States that ensures detection of ground-water contamination in the uppermost aquifer. When physical obstacles preclude installation of ground-water monitoring wells at the relevant point of compliance at existing units, the down-gradient monitoring system may be installed at the closest practicable distance hydraulically down-gradient from the relevant point of compliance specified by the Director of an approved State under §258.40 that ensure detection of groundwater contamination in the uppermost aquifer.
- (b) The Director of an approved State may approve a multiunit ground-water monitoring system instead of separate ground-water monitoring systems for each MSWLF unit when the facility has several units, provided the multiunit ground-water monitoring system meets the requirement of §258.51(a) and will be as protective of human health and the environment as individual monitoring systems for each MSWLF unit, based on the following factors:
- (1) Number, spacing, and orientation of the MSWLF units;
 - (2) Hydrogeologic setting;
 - (3) Site history;

- (4) Engineering design of the MSWLF units. and
- (5) Type of waste accepted at the MSWLF units.
- (c) Monitoring wells must be cased in a manner that maintains the integrity of the monitoring well bore hole. This casing must be screened or perforated and packed with gravel or sand, where necessary, to enable collection of ground-water samples. The annular space (i.e., the space between the bore hole and well casing) above the sampling depth must be sealed to prevent contamination of samples and the ground water.
- (1) The owner or operator must notify the State Director that the design, installation, development, and decommission of any monitoring wells, piezometers and other measurement, sampling, and analytical devices documentation has been placed in the operating record; and
- (2) The monitoring wells, piezometers, and other measurement, sampling, and analytical devices must be operated and maintained so that they perform to design specifications throughout the life of the monitoring program.
- (d) The number, spacing, and depths of monitoring systems shall be:
- (1) Determined based upon site-specific technical information that must include thorough characterization of:
- (i) Aquifer thickness, ground-water flow rate, ground-water flow direction including seasonal and temporal fluctuations in ground-water flow; and
- (ii) Saturated and unsaturated geologic units and fill materials overlying the uppermost aquifer, materials comprising the uppermost aquifer, and materials comprising the confining unit defining the lower boundary of the uppermost aquifer; including, but not limited to: Thicknesses, stratigraphy, lithology, hydraulic conductivities, porosities and effective porosities.
- (2) Certified by a qualified ground-water scientist or approved by the Director of an approved State. Within 14 days of this certification, the owner or operator must notify the State Director that the certification has been placed in the operating record.