
암
호

모
듈

구
현

적
합

성
시

험
도

구
개

발 A New Dedicated 256-bit Hash
Function : FORK-256

Deukjo Hong*, Jaechul Sung**, Seokhie Hong *,
Sangjin Lee*, Dukjae Moon***

*CIST, Korea University
**University of Seoul

***National Security Research Institute

Talker : Jaechul Sung (jcsung@uos.ac.kr)

2/25

Contents
Motivation of Design of FORK-256
FORK-256 Algorithm
Design Principle of FORK-256
Implementation of FORK-256
Conclusion

3/25

Motivation of FORK-256
Until now, several hash algorithms are analyzed.
What are their common weaknesses?
Our purpose is to design a new hash function which

does not have any known weakness.

4/25

Outline of FORK-256 (1/2)
Message Block Size : 512 bits (16 words)
Output Size : 256 bits (8 words)
Use 4 Branches
8 steps in Each Branch

5/25

Outline of FORK-256 (2/2)

6/25

BRANCH functions (1/6)
Each Branch consists of 8 steps

7/25

BRANCH functions (2/6)
Two message words in each step

8/25

BRANCH functions (3/6)
Two constants in each step

9/25

BRANCH functions (4/6)
f, g function :

10/25

BRANCH functions (5/6)
The order of input message words

11/25

BRANCH functions (6/6)
Two Constants in each step

12/25

Design Principle (1/11)
Consists of 4 Branches

Security Aspects
− With the different message-ordering in branches we can give the

security against known attacks.
Example

RIPEMD : consists of 2 branches, has same message
ordering in 2 branches, was fully attacked by Wang et al.
RIPEMD-128,160 : have different message ordering in
branches, there in no attack result.

Implementation Aspects
− The message ordering is simpler than the message expansion such as

that of SHA-1,256.

13/25

Design Principle (2/11)
Constants

The first thirty-two bits of the fractional parts of the cube
roots of the first sixteen four prime numbers.

14/25

Design Principle (3/11)
Nonlinear functions

One input word and output one word.
− Almost dedicated hash functions use boolean functions which output

one word with at least three input words.
easy to control the output word : the attacks on
MD4,MD5,HAVAL,RIPEMD,SHA-0,1 are based on this
weakness.

The output words of f and g are used to update other
chaining variables.
− In almost dedicated hash functions output words of boolean

functions are used to update only one chaining variable.
This weakness is used to analyze above hash functions.

15/25

Design Principle (4/11)
The shift rotations in Nonlinear functions 1/2

Branch number is 4 when + is changed into ⊕.
−The branch numbers of 31C2=465 cases are all 4.

If the hamming weight of input word = 2, the hamming
weight of output word ≥ 4.
If the hamming weight of input word = 3, the hamming
weight of output word ≥ 3.
If the hamming weight of input word = 4, the hamming
weight of output word ≥ 4.

16/25

Design Principle (5/11)
The shift rotations in Nonlinear functions 2/2

If the hamming weight of output word = 1, the hamming
weight of input word ≥ 17.
If the hamming weight of output word = 2, the hamming
weight of input word ≥ 14.
The interval of shift values ≥ 4.

By above all conditions, we found f, g functions.

17/25

Design Principle (6/11)
the ordering of Message words 1/3

balance of upper(step0~3) & lower(step4-7) parts
− each value is applied twice to upper and lower parts, respectively.

balance of left & right parts
− each value is applied twice to left and right parts, respectively.

18/25

Design Principle (7/11)
the ordering of Message words 2/3

balance of sums of input orders
− Each word is applied four times and is indexed by 0~15.
− Total sum of indexes is 480. Therefore, the average of sum of

indexes applied to each word is 30.
− We search the ordering so that that of all of each word is 25~35.

19/25

Design Principle (8/11)
the ordering of Message words 3/3

Conditions on same differential patterns in all branches
− Specific differential pattern used to a branch may be applied to other

branches.
− Therefore, except the case of giving a same difference to all words,

we try to find an ordering such that there is no same differential
patterns in all branches.

20/25

Design Principle (9/11)
Shift rotations & Rank 1/2

5 and 17 are fixed.

We search all the case. we
found candidate values
(corresponding to 9,21)
so that the rank of the
linearly-changed step
function is maximized.
The rank is 252.

21/25

Design Principle (10/11)
Shift rotations & Rank 2/2

31 6,21,31
4,11,26

6,16,23

31

31 12,26,31
3,8,21

1,15,20

Among candidate values,
we select 9, 21 so that the
the values of differences
do not overlap.

22/25

Design Principle (11/11)
Use of addition and ⊕ by turns.

By using addition and ⊕ by
turns, the diffusion effects
grow big.

23/25

Implementation (1/2)
CPU

P.III : Pentium III, 801 MHz, 192MB RAM
P.IV : Pentium IV, 2.0 GHz, 768 RAM

OS
Win. XP : Microsoft Windows XP Professional ver 2002

Compiler
VC : Microsoft Visual C++6.0

24/25

Implementation (2/2)
Mbps

Cycle/Byte

SHA-256 FORK-256

P.III/Win.XP/VC 132.469 192.010

P.III/Win.XP/VC 318.721 521.111

SHA-256 FORK-256

P.III/Win.XP/VC 44.581 31.413

P.III/Win.XP/VC 46.372 28.755

25/25

Conclusion
Unlike other dedicated hash functions, FORK-256 doesn’t use
boolean functions but uses another diffusion functions which
output one word with one input word.
Especially, FORK-256 updates several words with using one
word.
These properties make it difficult to analyze FORK-256 with
known attack methods including Wang’s attack.
In addition, FORK-256 consists of 4 branches in parallel. This
means that FORK-256 can be implemented in parallel. Also it is
difficult to analyze all branches simultaneously.

A New Dedicated 256-bit Hash Function:
FORK-256

Deukjo Hong1, Jaechul Sung2, Seokhie Hong1, Sangjin Lee1, and Dukjae Moon3

1 Center for Information Security Technologies(CIST),
Korea University, Seoul, Korea

{hongdj,hsh,sangjin}@cist.korea.ac.kr
2 Department of Mathematics, University of Seoul, Seoul, Korea

jcsung@uos.ac.kr
3 National Security Research Institute

djmoon@etri.re.kr

Abstract. This paper descirbes a new software-efficient 256-bit hash
function, FORK-256. Recently proposed attacks on MD5 and SHA-1
motivate a new hash function design. It is designed not only to have
higher security but also to be faster than SHA-256. The performance of
the new hash function is at least 30% better than that of SHA-256 in
software. And it is secure against any known cryptographic attacks on
hash functions.

1 Introduction

For cryptographic hash function, the following properties are required:

– preimage resistance: it is computationally infeasible to find any input
which hashes to any pre-specified output.

– second preimage resistance: it is computationally infeasible to find any
second input which has the same output as any specified input.

– collision resistance: it is computationally infeasible to find a collision, i.e.
two distinct inputs that hash to the same result.

For an ideal hash function with an m-bit output, finding a preimage or a second
preimage requires about 2m operations and the fastest way to find a collision is
a birthday attack which needs approximately 2m/2 operations.

Most dedicated hash functions which have iterative process use the Merkle-
Damg̊ard construction [6, 10] in order to hash inputs of arbitrary length. They
work as follows. Let HASH be a hash function. The message X is padded to a
multiple of the block length and subsequently divided into t blocks X1, · · · , Xt.
Then HASH can be described as follows:

CV0 = IV ; CVi = COMP(CVi−1, Xi), 1 ≤ i ≤ t; HASH(X) = CVt,

where COMP is the compression function of HASH, CVi is the chaining variable
between stage i and stage i + 1, and IV denotes the initial value.

The most popular method of designing compression functions of dedicated
hash functions is a serial successive iteration of a small step function, as like
round functions of block ciphers. Many hash functions such as MD4 [12], MD5
[13], HAVAL [19], SHA-family [11], etc., follow that idea. Attacks on hash func-
tions have been focused on vanishing the difference of intermediate values caused
by the difference of messages. On the other hand, a hash function has been
considered secure if it is computationally hard to vanish such difference in its
compression function. Usually, the lower the probability of the differential char-
acteristic is, the harder the attack is. Therefore a step function is regarded as
a good candidate if it causes a good avalanche effect in the serial structure. A
function which has a good diffusion property can not be so light in general.
However, most step functions have been developed to be light for efficiency. This
may be why MD4-type hash functions including SHA-1 are vulnerable to Wang
et al.’s collision-finding attack [15–18].

RIPEMD-family [9] has somewhat different approach for designing a secure
hash function. The attacker who tries to break members of RIPEMD-family
should aim simultaneously at two ways where the message difference passes.
This design strategy is still successful because so far there is not any effec-
tive attack on RIPEMD-family except the first proposal of RIPEMD. However,
RIPEMD-family have heavier compression functions than hash functions with
serial structure. For example, the first proposal of RIPEMD consists of two lines
of MD4. Total number of steps is twice as many as that of MD4. Also, the
number of steps of RIPEMD-160 is almost twice as many as that of SHA-0.

In this paper, we propose a new dedicated hash function FORK-256. Accord-
ing to the above observation, we determined the design goals (of compression
function) as follows.

– It should have a 256-bit output because the security of 2128 operations is
recommended for symmetric key cryptography as the computing power in-
creases.

– Its structure should be resistant against known attacks including Wang et
al.’s attack [1–5, 7, 8, 14–18].

– The performance should be as competitive as that of SHA-256.

2 Description of FORK-256

In this section, we will describe FORK-256. These are basic notations used in
FORK-256.

� : addition mod 232

⊕ : XOR (eXclusive OR)
A≪s : s-bit left rotation for a 32-bit string A

2.1 Input Block Length and Padding

An input message is processed by 512-bit block. FORK-256 pads a message by
appending a single bit 1 next to the least significant bit of the message, followed

by zero or more bit 0’s until the length of the message is 448 modulo 512, and
then appends to the message the 64-bit original message length modulo 264.

2.2 Structure of FORK-256

Fig. 1 depicts the outline of the compression function of FORK-256. The name
‘FORK’ was originated from the figure. The compression function of FORK-256
hashes a 512-bit string to a 256-bit string. It consists of four parallel branch func-
tions, BRANCH1,BRANCH2,BRANCH3, and BRANCH4. Let CVi = (A,B,C,
D,E, F, G,H) be the chaining variable of the compression function. It is initial-
ized to IV0 which is:

A = 6a09e667x B = bb67ae85x C = 3c6ef372x D = a54ff53ax
E = 510e527fx F = 9b05688cx G = 1f83d9abx H = 5be0cd19x.

Each successive 512-bit message block M is divided into sixteen 32-bit words
M0,M1, · · · ,M15 and the following computation is performed to update CVi to
CVi+1:

CVi+1 = CVi � {[BRANCH1(CVi, Σ1(M)) � BRANCH2(CVi, Σ2(M))]
⊕ [BRANCH3(CVi, Σ3(M)) � BRANCH4(CVi, Σ4(M))]},

where Σj(M) = (Mσj(0), · · · ,Mσj(15)) is the re-ordering of message words for
j = 1, 2, 3, 4, given by Table 1.

Fig. 1. Outline of the FORK-256 compression function

Fig. 2. Step function of FORK-256, STEPj,k

2.3 Branch Functions: BRANCHj

Each BRANCHj is computed as follows:

1) The chaining variable CVi is copied to initial variables Vj,0 for j-th branch.
2) At k-th step of each BRANCHj (0 ≤ k ≤ 7), the step function STEPj,k is

computed as follows:

Vj,k+1 = STEPj,k(Vj,k,Mσj(2k),Mσj(2k+1), αj,k, βj,k),

where αj,k and βj,k are constants.

Input Order of Message Words This table shows the input order of message
words M0∼M15 applied to BRANCHj (1≤j≤4) functions.

Table 1. Ordering rule of message words

t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

σ1(t) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

σ2(t) 14 15 11 9 8 10 3 4 2 13 0 5 6 7 12 1

σ3(t) 7 6 10 14 13 2 9 12 11 4 15 8 5 0 1 3

σ4(t) 5 12 1 8 15 0 13 11 3 10 9 2 7 14 4 6

Constants The compression function of FORK-256 uses sixteen constants given
by the following table:

δ0 = 428a2f98x δ1 = 71374491x
δ2 = b5c0fbcfx δ3 = e9b5dba5x
δ4 = 3956c25bx δ5 = 59f111f1x
δ6 = 923f82a4x δ7 = ab1c5ed5x
δ8 = d807aa98x δ9 = 12835b01x
δ10 = 243185bex δ11 = 550c7dc3x
δ12 = 72be5d74x δ13 = 80deb1fex
δ14 = 9bdc06a7x δ15 = c19bf174x

These constants are applied to each BRANCHj according to the ordering
rule of them as follows:

step k α1,k β1,k α2,k β2,k α3,k β3,k α4,k β4,k

0 δ0 δ1 δ15 δ14 δ1 δ0 δ14 δ15

1 δ2 δ3 δ13 δ12 δ3 δ2 δ12 δ13

2 δ4 δ5 δ11 δ10 δ5 δ4 δ10 δ11

3 δ6 δ7 δ9 δ8 δ7 δ6 δ8 δ9

4 δ8 δ9 δ7 δ6 δ9 δ8 δ6 δ7

5 δ10 δ11 δ5 δ4 δ11 δ10 δ4 δ5

6 δ12 δ13 δ3 δ2 δ13 δ12 δ2 δ3

7 δ14 δ15 δ1 δ0 δ15 δ14 δ0 δ1

Step Functions: STEPj,k The input register Vj,k of STEPj,k is divided into
eight 32-bit words:

Vj,k = (Aj,k, Bj,k, Cj,k, Dj,k, Ej,k, Fj,k, Gj,k,Hj,k).

STEPj,k takes Vj,k,Mσj(2k),Mσj(2k+1), αj,k and βj,k as inputs, and then provides
the output as follows (See Fig 2):

Aj,k+1 = Hj,k � g(Ej,k � Mσj(2k+1))≪21 ⊕ f(Ej,k � Mσj(2k+1) � βj,k)≪17,

Bj,k+1 = Aj,k � Mσj(2k) � αj,k,

Cj,k+1 = Bj,k � f(Aj,k � Mσj(2k))⊕ g(Aj,k � Mσj(2k) � αj,k),

Dj,k+1 = Cj,k � f(Aj,k � Mσj(2k))≪5 ⊕ g(Aj,k � Mσj(2k) � αj,k)≪9,

Ej,k+1 = Dj,k � f(Aj,k � Mσj(2k))≪17 ⊕ g(Aj,k � Mσj(2k) � αj,k)≪21,

Fj,k+1 = Ej,k � Mσj(2k+1) � βj,k,

Gj,k+1 = Fj,k � g(Ej,k � Mσj(2k+1))⊕ f(Ej,k � Mσj(2k+1) � βj,k),

Hj,k+1 = Gj,k � g(Ej,k � Mσj(2k+1))≪9 ⊕ f(Ej,k � Mσj(2k+1) � βj,k)≪5,

where f and g are nonlinear functions as follows:

f(x) = x � (x≪7 ⊕ x≪22),
g(x) = x⊕ (x≪13 � x≪27).

3 Design Strategy

3.1 Motivation for Our Proposal

In 2004, Wang et al.’s attacks on MD4, MD5, HAVAL, and RIPEMD [15, 16] and
SHA-0/1 [17, 18] brought the big impact on the field of symmetric key cryptog-
raphy including hash function. However, RIPEMD-128/160 are the algorithms
which are still secure against their attacks. No attacks on them are found so far.

They were designed to have two parallel lines, which is different from MD4,
MD5 and SHA-family. This makes an attacker take into account two lines si-
multaneously. However, since each line needs almost same operation of MD5
and SHA algorithms, its efficiency was degenerated almost half of them. This
motivates our design. We use four lines instead of two.

In order to overcome disadvantage of RIPEMD algorithms, we manage to
reduce operations for step functions of each line. The message reordering of each
branch is deliberately designed to be resistant against Wang et al.’s attack and
differential attacks. The function f and g in each step are chosen to have good
avalanche effects.

3.2 Design Principle

Structure FORK-256 consists of 4 Branches. In the security aspect, we can
give the security against known attacks with the different message-ordering
in branches. For example, RIPEMD, which consists of 2 branches, was fully
attacked by Wang et al. because RIPEMD has same message-ordering in 2
branches. On the other hand, in case of RIPEMD-128/160, there is no attack
result because RIPEMD-128/160 have different message-ordering in branches.
In the implementation aspect, FORK-256 can be implemented efficiently be-
cause the message-ordering is simpler than the message expansion such as that
of SHA-256.

Constants Each BRANCHi uses 16 different constants αi,j and βi,j for j =
0, · · · , 7. By using constants we pursue the goal to disturb the attacker who tries
to find a good differential characteristic with a relatively high probability. So,
we prefer the constants which represent the first thirty-two bits of the fractional
parts of the cube roots of the first sixteen four prime numbers.

Nonlinear Functions Nonlinear functions f and g output one word with one
input word. Almost dedicated hash functions use boolean functions which output
one word with three words at least. The boolean functions make it easy to control
the output one word by adjusting the input several words. The attacks on MD4,
MD5, HAVAL, RIPEMD and SHA-0/1 are based on this weakness of boolean
functions. In addition, the output words of f and g functions are used to update
other chaining variables. In almost dedicated hash functions output words of
boolean functions are used to update only one chaining variable. This weakness
is also used to analyze above hash functions.

Shift Rotations in Nonlinear Functions If the addition is changed into
the bitwise xor operation in f and g, nonlinear functions are generalized as
x⊕ (x≪s1 ⊕x≪s2). We consider all 465(=31C2) cases for s1 and s2 and want to
define shift rotations satisfying the following 7 conditions. HW(x) denotes the
Hamming Weight of x.

– The branch number of f and g is four.
– If HW(input word) = 2, then HW(output word) ≥ 4.
– If HW(input word) = 3, then HW(output word) ≥ 3.
– If HW(input word) = 4, then HW(output word) ≥ 4.
– If HW(output word) = 1, then HW(input word) ≥ 17.
– If HW(output word) = 2, then HW(input word) ≥ 14.
– The interval of shift rotations are greater than or equal to 4.

By above all conditions, we have defined f and g functions.

Ordering of Message Words We adopt the message word ordering instead
of the message word extension. If an attacker constructs an intended differential
characteristics for one branch function, the ordering of message words will cause
unintended differential patterns in the other branch functions. This is the core
part of the security in the compression function. When we define the ordering
of message words, following four conditions are considered.

– Balance of upper (step 0∼3) and lower (step 4∼7) parts : Each value is
applied twice to upper and lower parts, respectively.

– Balance of left and right parts : Each value is applied twice to left and right
parts, respectively.

– Balance of sums of input orders
• Each word is applied four times and is indexed by 0∼15.
• Total sum of indexes is 480. Therefore, the average of sum of indexes

applied to each word is 30.
• We search the ordering so that the sum of indexes corresponding to each

word is 25∼35.
– Conditions which do not have same differential patterns in all branches

• Specific differential pattern used at a branch may be applied to other
branches.

• Therefore, except the case of giving a same difference to all words, we
try to find an ordering such that there is no same differential patterns
in all branches.

Shift Rotations and Rank In the step function, 5 and 17, the values of
shift rotation, are fixed. Then we search all the case and find candidate values
(corresponding to 9 and 21) so that the rank of the linearly-changed step function
is maximized. The maximum of the rank is 252. Finally we select 9 and 21
among candidate values so that differences generated from the outputs of f and
g functions do not overlap when a message word inputted at a step function has
an one-bit difference.

4 Security Analysis of FORK-256

4.1 Collision-Finding Attack

Assume that an attacker inserts the message difference. Let ∆i be the output
difference of i-th branch BRANCHi. Then the attacker expects the following
event for finding collisions:

(∆1 � ∆2)⊕ (∆3 � ∆4) = 0.

For this, he can take several strategies:

1. The attacker constructs a differential characteristic with a high probability
for a branch function, say BRANCH1, and then expects that the operation
of the output differences in the other branches, ∆3 �∆4 �∆2 is equal to ∆1.

2. The attacker constructs two distinct differential characteristics, and expects
that ∆1 = −∆2 and ∆3 = −∆4.

3. The attacker inserts the message difference which yields same message differ-
ence pattern in four branches, and expects that same differential character-
istic occurs simultaneously in four branches. Then the output difference of
the compression function vanishes if the hamming weight of the output dif-
ference of each branch is small. This is because the final output is generated
with using ⊕ and � by turns.

Let us see the first strategy. If we assume that the outputs of each branch
function is random, the probability of the event is almost close to 2−256. It is
also difficult for the attacker to mount any attack following the second strategy
because he should find such differential pattern of the message words.

Third strategy is relatively easy for the attacker to perform. For example, if
he inserts the same difference to all the message words, then the same message
difference pattern occurs in every branches. However, the message word reorder-
ing was designed so that the third strategy is satisfied only if the attacker inserts
the same difference to all the message words. Under the assumption that every
step is independent, we can compute the upper bound of the probability that
such kind of differential characteristic occurs, which frustrates the attacker.

4.2 Attacks Using Inner Collision Patterns

When the attacker inserts the differences to the message words, the event that
the difference of the intermediate value becomes zero often occurs. It is called
inner collision. We call a differential characteristic which causes an inner collision
with a probability, inner collision pattern.

Note that an inner collision is not a real collision, but the notion of inner
collision pattern is important in cryptanalysis of hash function because it can be
repeatedly used to yield a real collision with a high probability. The main idea of
attacks on SHA-0 and SHA-1 is also the repetition of an inner collision pattern.

So, in hash functions with a serial structure it is related to the resistance against
collision-finding attack how many time an inner collision can be repeated.

Let us focus on only one branch function, say BRANCH1. We can construct
5-step inner collision pattern easily. Let ∆A, ∆B, · · · ,∆H denote the differences
of A1,k, B1,k, · · · ,H1,k, respectively. ∆ML and ∆MR denote the differences of
Mσ1(2k) and Mσ1(2k+1), respectively. We found 5-step inner collision patterns of
FORK-256 with the probability 2−40 as listed in Table 2 and 3. If we apply these
patterns to BRANCH1, the output difference ∆1 will be zero with the probability
2−40. As mentioned in the previous subsection, however, it is hard to use the
pattern for the attack on FORK-256 because the following events seldom occurs:
either that the computation of the output differences of the other branches is
zero or that the other branches have the same differential pattern in the message
words as BRANCH1.

Table 2. Case 1. 5-step inner collision pattern of FORK-256: The numbers in the
entries of the table denotes the bits in which the difference is 1.

Step ∆A ∆B ∆C ∆D ∆E ∆F ∆G ∆H ∆ML ∆MR Prob.

0 31 2−10

1 31 6,12, 3,4, 1,6, 1,6, 2−16

21,26 8,11, 15,16, 15,16,
21,26 20,23 20,23

2 31 6,12, 3,4, 3,4, 2−10

21,26 8,11, 8,11,
21,26, 21,26

3 31 6,12, 6,12, 2−4

21,26 21,26

4 31 31 1

Table 3. Case 2. 5-step inner collision pattern of FORK-256: The numbers in the
entries of the table denotes the bits in which the difference is 1.

Step ∆A ∆B ∆C ∆D ∆E ∆F ∆G ∆H ∆ML ∆MR Prob.

0 31 2−10

1 1,6, 31 6,12, 3,4, 1,6, 2−16

15,16, 21,26 8,11, 15,16,
20,23 21,26 20,23

2 3,4, 31 6,12, 3,4, 2−10

8,11, 21,26 8,11,
21,26, 21,26

3 6,12, 31 6,12, 2−4

21,26 21,26

4 31 31 1

5 Efficiency and Performance

In this section we compare the total number of operations and the performance
of FORK-256 and SHA-256. The total number of operations is compared in the
Table 4, Implementations were written in C language. We denote the simula-

Table 4. Number of operations used in FORK-256 and SHA-256

operation FORK-256 SHA-256

addition (+) 472 600

bitwise operation (⊕,∧,∨) 328 1024

shift (�,�) 96

shift rotation (≪, ≫) 512 576

tion environment as CPU/OS/Compiler. The performance is compared in the
following environments:

– P3/WinXP/VC
– P4/WinXP/VC

where the notations are as follows:

P3 : Pentium III, 801 MHz, 192MB RAM
P4 : Pentium IV, 2.0 GHz, 768MB RAM

WinXP : Microsoft Windows XP Professional ver 2002
VC : Microsoft Visual C++ Ver 6.0

Table 5. Performance of FORK-256 and SHA-256 on several environments

FORK-256 SHA-256
environment Mbps Cycle/Byte Mbps Cycle/Byte

P3/WinXP/VC 192.010 31.413 132.469 44.581

P4/WinXP/VC 521.111 28.755 318.721 46.372

These implementations of FORK-256 are not optimized, so we expect perfor-
mance can be improved for the optimized version.

6 Summary

In this paper we have proposed a new dedicated 256-bit hash function FORK-
256, which is designed to be not only secure but also fast than SHA-256. The
main features are the followings;

– Four branches are used in parallel, where as SHA-256 uses four serial rounds.
This means that FORK-256 can be implemented in hardware and it is diffi-
cult to analyze all branches simultaneously.

– Unlike other dedicated hash functions, FORK-256 doesn’t use boolean func-
tions but uses another nonlinear functions which output one word with one
input word.

– Especially, FORK-256 updates several words with using one word.
– These properties make it difficult to analyze FORK-256 with known attack

methods including Wang et al.’s attack.

It is believed that FORK-256 is secure against any known attacks on hash
functions. However, the extensive analysis of our new hash function is required.
We encourage the readers to give any further analysis on the security of FORK-
256.

References

1. E. Biham and R. Chen, “Near-Collisions of SHA-0,” Advances in Cryptology –
CRYPTO 2004, LNCS 3152, Springer-Verlag, pp. 290–305, 2004.

2. E. Biham, R. Chen, A. Joux, P. Carribault, C. Lemuet and W. Jalby, “Collisions
of SHA-0 and Reduced SHA-1,” Advances in Cryptology – EUROCRYPT 2005,
LNCS 3494, Springer-Verlag, pp. 36–57, 2005.

3. B. den Boer and A. Bosselaers, “An Attack on the Last Two Rounds of MD4,”
Advances in Cryptology – CRYPTO’91, LNCS 576, Springer-Verlag, pp. 194–203,
1992.

4. B. den Boer and A. Bosselaers, “Collisions for the Compression Function of MD5,”
Advances in Cryptology – CRYPTO’93, LNCS 765, Springer-Verlag, pp. 293–304,
1994.

5. F. Chabaud and A. Joux, “Differential Collisions in SHA-0,” Advances in Cryptol-
ogy – CRYPTO’98, LNCS 1462, Springer-Verlag, pp. 56–71, 1998.

6. I. Damg̊ard, “A Design Priciple for Hash Functions,” Advances in Cryptology –
CRYPTO’89, LNCS 435, Springer-Verlag, pp. 416–427, 1989.

7. H. Dobbertin, “RIPEMD with Two-Round Compress Function is Not Collision-
Free,” Journal of Cryptology 10:1, pp. 51–70, 1997.

8. H. Dobbertin, “Cryptanalysis of MD4,” Journal of Cryptology 11:4, pp. 253–271,
1998.

9. H. Dobbertin, A. Bosselaers and B. Preneel, “RIPEMD-160, a strengthened version
of RIPEMD,” FSE’96, LNCS 1039, Springer-Verlag, pp. 71–82, 1996.

10. R. C. Merkle, “One way hash functions and DES,” Advances in Cryptology –
CRYPTO’89, LNCS 435, Springer-Verlag, pages 428–446, 1989.

11. NIST/NSA, “FIPS 180-2: Secure Hash Standard (SHS)”, August 2002 (change
notice: February 2004).

12. R. L. Rivest, “The MD4 Message Digest Algorithm,” Advances in Cryptology –
CRYPTO’90, LNCS 537, Springer-Verlag, pp. 303–311, 1991.

13. R. L. Rivest, “The MD5 Message-Digest Algorithm,” IETF Request for Comments,
RFC 1321, April 1992.

14. B. Van Rompay, A. Biryukov, B. Preneel and J. Vandewalle, “Cryptanalysis of 3-
pass HAVAL,” Advances in Cryptology – ASIACRYPT 2003, LNCS 2894, Springer-
Verlag, pp. 228–245, 2003.

15. X. Wang, X. Lai, D. Feng, H. Chen and X. Yu, “Cryptanalysis of the Hash Func-
tions MD4 and RIPEMD,” Advances in Cryptology – EUROCRYPT 2005, LNCS
3494, Springer-Verlag, pp. 1–18, 2005.

16. X. Wang and H. Yu, “How to Break MD5 and Other Hash Functions,” Advances in
Cryptology – EUROCRYPT 2005, LNCS 3494, Springer-Verlag, pp. 19–35, 2005.

17. X. Wang, H. Yu and Y. L. Yin, “Efficient Collision Search Attacks on SHA-0,”
Advances in Cryptology – CRYPTO 2005, LNCS 3621, Springer-Verlag, pp. 1–16,
2005.

18. X. Wang, Y. L. Yin and H. Yu, “Finding Collisions in the Full SHA-1,” Advances
in Cryptology – CRYPTO 2005, LNCS 3621, Springer-Verlag, pp. 17-36, 2005.

19. Y. Zheng, J. Pieprzyk and J. Seberry, “HAVAL – A One-Way Hashing Algorithm
with Variable Length of Output,” Advances in Cryptology – AUSCRYPT’92, LNCS
718, Springer-Verlag, pp. 83–104, 1993.

7 Source Code

unsigned int delta[16] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174

};

#define ROL(x,n) (x << n) | (x >> (32-n)) // n-bit left rotation

#define f(x) (x + (ROL(x,7) ˆ ROL(x,22)))

#define g(x) (x ˆ (ROL(x,13) + ROL(x,27)))

#define step(A,B,C,D,E,F,G,H,M1,M2,D1,D2) \
temp = H + ROL(g(E+M2),21) ˆ ROL(f(E+M2+D2),17); \
H = G + ROL(g(E+M2),9) ˆ ROL(f(E+M2+D2),5); \
G = F + g(E+M2) ˆ f(E+M2+D2); \
F = E + M2 + D2; \
E = D + ROL(f(A+M1),17) ˆ ROL(g(A+M1+D1),21); \
D = C + ROL(f(A+M1),5) ˆ ROL(g(A+M1+D1),9); \
C = B + f(A+M1) ˆ g(A+M1+D1); \
B = A + M1 + D1; \
A = temp;

FORK256 compression function(CV,M)
{

unsigned int A1,B1,C1,D1,E1,F1,G1,H1;
unsigned int A2,B2,C2,D2,E2,F2,G2,H2;
unsigned int A3,B3,C3,D3,E3,F3,G3,H3;
unsigned int A4,B4,C4,D4,E4,F4,G4,H4;

unsigned int temp;

A1 = A2 = A3 = A4 = CV[0]; B1 = B2 = B3 = B4 = CV[1];
C1 = C2 = C3 = C4 = CV[2]; D1 = D2 = D3 = D4 = CV[3];
E1 = E2 = E3 = E4 = CV[4]; F1 = F2 = F3 = F4 = CV[5];
G1 = G2 = G3 = G4 = CV[6]; H1 = H2 = H3 = H4 = CV[7];

// BRANCH1(CV,M)
step(A1,B1,C1,D1,E1,F1,G1,H1,M[0],M[1],delta[0],delta[1]);
step(A1,B1,C1,D1,E1,F1,G1,H1,M[2],M[3],delta[2],delta[3]);
step(A1,B1,C1,D1,E1,F1,G1,H1,M[4],M[5],delta[4],delta[5]);
step(A1,B1,C1,D1,E1,F1,G1,H1,M[6],M[7],delta[6],delta[7]);
step(A1,B1,C1,D1,E1,F1,G1,H1,M[8],M[9],delta[8],delta[9]);
step(A1,B1,C1,D1,E1,F1,G1,H1,M[10],M[11],delta[10],delta[11]);
step(A1,B1,C1,D1,E1,F1,G1,H1,M[12],M[13],delta[12],delta[13]);
step(A1,B1,C1,D1,E1,F1,G1,H1,M[14],M[15],delta[14],delta[15]);

// BRANCH2(CV,M)
step(A2,B2,C2,D2,E2,F2,G2,H2,M[14],M[15],delta[15],delta[14]);
step(A2,B2,C2,D2,E2,F2,G2,H2,M[11],M[9],delta[13],delta[12]);
step(A2,B2,C2,D2,E2,F2,G2,H2,M[8],M[10],delta[11],delta[10]);
step(A2,B2,C2,D2,E2,F2,G2,H2,M[3],M[4],delta[9],delta[8]);
step(A2,B2,C2,D2,E2,F2,G2,H2,M[2],M[13],delta[7],delta[6]);
step(A2,B2,C2,D2,E2,F2,G2,H2,M[0],M[5],delta[5],delta[4]);
step(A2,B2,C2,D2,E2,F2,G2,H2,M[6],M[7],delta[3],delta[2]);
step(A2,B2,C2,D2,E2,F2,G2,H2,M[12],M[1],delta[1],delta[0]);

// BRANCH3(CV,M)
step(A3,B3,C3,D3,E3,F3,G3,H3,M[7],M[6],delta[1],delta[0]);
step(A3,B3,C3,D3,E3,F3,G3,H3,M[10],M[14],delta[3],delta[2]);
step(A3,B3,C3,D3,E3,F3,G3,H3,M[13],M[2],delta[5],delta[4]);
step(A3,B3,C3,D3,E3,F3,G3,H3,M[9],M[12],delta[7],delta[6]);
step(A3,B3,C3,D3,E3,F3,G3,H3,M[11],M[4],delta[9],delta[8]);
step(A3,B3,C3,D3,E3,F3,G3,H3,M[15],M[8],delta[11],delta[10]);
step(A3,B3,C3,D3,E3,F3,G3,H3,M[5],M[0],delta[13],delta[12]);
step(A3,B3,C3,D3,E3,F3,G3,H3,M[1],M[3],delta[15],delta[14]);

// BRANCH4(CV,M)
step(A4,B4,C4,D4,E4,F4,G4,H4,M[5],M[12],delta[14],delta[15]);
step(A4,B4,C4,D4,E4,F4,G4,H4,M[1],M[8],delta[12],delta[13]);
step(A4,B4,C4,D4,E4,F4,G4,H4,M[15],M[0],delta[10],delta[11]);
step(A4,B4,C4,D4,E4,F4,G4,H4,M[13],M[11],delta[8],delta[9]);
step(A4,B4,C4,D4,E4,F4,G4,H4,M[3],M[10],delta[6],delta[7]);
step(A4,B4,C4,D4,E4,F4,G4,H4,M[9],M[2],delta[4],delta[5]);
step(A4,B4,C4,D4,E4,F4,G4,H4,M[7],M[14],delta[2],delta[3]);

step(A4,B4,C4,D4,E4,F4,G4,H4,M[4],M[6],delta[0],delta[1]);

// output
CV[0] = CV[0] + ((A1 + A2) ˆ (A3 + A4));
CV[1] = CV[1] + ((B1 + B2) ˆ (B3 + B4));
CV[2] = CV[2] + ((C1 + C2) ˆ (C3 + C4));
CV[3] = CV[3] + ((D1 + D2) ˆ (D3 + D4));
CV[4] = CV[4] + ((E1 + E2) ˆ (E3 + E4));
CV[5] = CV[5] + ((F1 + F2) ˆ (F3 + F4));
CV[6] = CV[6] + ((G1 + G2) ˆ (G3 + G4));
CV[7] = CV[7] + ((H1 + H2) ˆ (H3 + H4));

}

8 Test Vector

1 Block Message :
4105ba8c d8423ce8 ac484680 07ee1d40 bc18d07a 89fc027c 5ee37091 cd1824f0

878de230 dbbaf0fc da7e4408 c6c05bc0 33065020 7367cfc5 f4aa5c78 e1cbc780

The Output of Compression Function :
ebcc5b3d d3715534 a6a7a68a e6022b02 49c676ed 639a34b0 b8d978c2 cfdf1a2b

Intermediate Values :

BRANCH 1 :

V1,0 = 6a09e667 bb67ae85 3c6ef372 a54ff53a 510e527f 9b05688c 1f83d9ab 5be0cd19

V1,1 = 574faabb ed99d08b 55559509 ca832197 cc3e5d3d 9a87d3f8 a53a7eff e5b76844

V1,2 = 15b6cd3d b958ed0a bc5ec9da 0685ff8e eecd75a9 bde25622 730387f0 8cd537f4

V1,3 = b37a2f3c 0b266012 421e26a6 c78f6e0b 1cd85800 d2ba8a16 7449f6c0 0f8c7a01

V1,4 = 31be4596 a49d2271 6ee14e1a e33ff108 11f5f01a 950cdbc5 5dcd1a2a 32aa199f

V1,5 = 62fd9d8b 9153d25e 4a23586e 9b599483 cf29e3af 00343c17 f33f23cb 9c903e62

V1,6 = d36228e4 61ad6751 fe55bb69 94720b3c 8a810aa7 eaf6bd32 737155e2 b96a93e9

V1,7 = 7a779e32 7926d678 3aec6bdd 0e208057 c349f555 7ec78c6a 91ebeb68 1fc96600

V1,8 = 85c3c25b 0afe0151 60d37e53 93df1ad6 390f9cea 66b1ae49 71de5de6 17ae42cd

BRANCH 2 :

V2,0 = 6a09e667 bb67ae85 3c6ef372 a54ff53a 510e527f 9b05688c 1f83d9ab 5be0cd19

V2,1 = 09a80c1a 20503453 b7ce65dc 686c5844 8f7b750a ceb620a6 e84808f4 13a2716f

V2,2 = e21fd29c 514719d8 47c2c8b0 116c12a7 42ddee6f ddf4c37a 3b2884ee 1b6552ca

V2,3 = 608f85bc beba328f da492019 ce8cc5ac e939ee3d 418db835 0d4088c0 a4515753

V2,4 = 9d819935 7b00fdfd d9947c55 0dfccfd7 817088d7 7d5a694f 8da6b62e 3b63944f

V2,5 = f22fa55e f4e63e8a 2516289f 77d9b888 dc500533 8717db40 6158e3e7 0e922286

V2,6 = 13ca89c4 8d2671db afbc022b 9580fdfe 356e2f63 9fa2ca0a d2199dee 455937e5

V2,7 = b8d0fc67 5c63d5fa d2b45236 fad40792 759b52ab b8475022 1cf6c001 6a0cf5f2

V2,8 = 08283ecb 5d0e9118 da92c996 9316c47c 26167358 9067bf2b 33a76294 a2c36255

BRANCH 3 :

V3,0 = 6a09e667 bb67ae85 3c6ef372 a54ff53a 510e527f 9b05688c 1f83d9ab 5be0cd19

V3,1 = 46f81ba6 a8594fe8 f0348c97 749c040f 8e6801dc f27bf2a8 275472bf 0866407e

V3,2 = 56a9eac1 0b2c3b53 0e98c271 ec010b6c 448475b5 38d35a23 455b10c5 4c819e3b

V3,3 = 38cd29dc 2402cc77 48018a70 26a5dcf2 3da527e9 2a237e90 2f4dc6a8 33bd5b6f

V3,4 = a28f637c bfa479ad 68059737 374a7e75 b5e5b8c6 02eafaad 15799680 ae2d5da0

V3,5 = 64607852 7bd31a3d a54f54b2 4013d658 1fbcbc0a 4a0633d8 972027f7 40a519ed

V3,6 = b27cf46d 9b38bd95 fb3978fd d52a18c8 1cdbd155 cb7c23f8 d3ce2cdd 5e6705b2

V3,7 = 317ce148 bd57a8e7 d3b60337 f0dd8789 1a925421 d09fe955 c626a195 8d38ed5d

V3,8 = 72ec7187 cb5b0fa4 59b04096 55b45924 d54c20ad be5c7808 ec104b46 08d57f3d

BRANCH 4 :

V4,0 = 6a09e667 bb67ae85 3c6ef372 a54ff53a 510e527f 9b05688c 1f83d9ab 5be0cd19

V4,1 = ce371d88 8fe1ef8a f4e6891a dd47fbec 8655e369 45b09413 8d2e660f 968ed897

V4,2 = 015a57e3 1937b7e4 d82e18fe 374895df 3e1357d6 8ec27797 81e87c75 627d168a

V4,3 = f2619dce 0757a521 b3dc348f a91771d4 00a58535 d4259025 37fc2a18 c5a9d37a

V4,4 = dc4ebcd3 3dd1182b acb226cd 3ed1c4a9 f6191a1b d9e93bf6 62752a33 d29d946e

V4,5 = ad2c36d3 767c5cb7 8d977401 ebd447de a0e6e49b 7bb3bcf8 d7b3eadc 71c2d2a4

V4,6 = b871dbb2 c23dea2a aebfcf21 6de34a20 41d677c5 a7203d0c 14c00db6 d5b6d5ce

V4,7 = a6072510 3b4afc71 e74b9db3 5120200b b1167426 2036afe2 ddcd1ac5 096735bb

V4,8 = 99420469 a4aa2522 f7aeb45b 10939176 d252137f 81312948 50c01427 c0ba68f3

Output : ebcc5b3d d3715534 a6a7a68a e6022b02 49c676ed 639a34b0 b8d978c2 cfdf1a2b

	Sung_FORK-256_PPT.pdf
	A New Dedicated 256-bit Hash Function : FORK-256
	Contents
	Motivation of FORK-256
	Outline of FORK-256 (1/2)
	Outline of FORK-256 (2/2)
	BRANCH functions (1/6)
	BRANCH functions (2/6)
	BRANCH functions (3/6)
	BRANCH functions (4/6)
	BRANCH functions (5/6)
	BRANCH functions (6/6)
	Design Principle (1/11)
	Design Principle (2/11)
	Design Principle (3/11)
	Design Principle (4/11)
	Design Principle (5/11)
	Design Principle (6/11)
	Design Principle (7/11)
	Design Principle (8/11)
	Design Principle (9/11)
	Design Principle (10/11)
	Design Principle (11/11)
	Implementation (1/2)
	Implementation (2/2)
	Conclusion

