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Abstract—Significant advances have been made in the study
of neuroprotection and neural regeneration following spinal
cord injury (SCI). However, there is wide variability in the ani-
mal models used for these studies. Moreover, there is no con-
sensus on which outcome measures are best used to document
recovery in animals. On top of these issues, the transfer of
research from the laboratory into clinical trials is also ham-
pered by a lack of sensitive outcome measures to document the
recovery of function in humans with SCIs. This paper identi-
fies specific issues related to the transfer of research findings
from animals into humans. In the laboratory, these issues
include the choice of animal model and outcome measures
selected; and in humans, the standardization of medical treat-
ment and other therapies, patient selection, and the outcome
measures chosen. In the transfer of research from animals into
humans, safety and feasibility issues must also be considered.

Key words: basic science, clinical trials, spinal cord
injury (SCI),  translational research.

INTRODUCTION

Significant progress has been made in the search for
techniques to promote the recovery of motor and sensory
function after the spinal cord is damaged. One often hears
media reports of studies documenting promising results
from one form of therapy or another. Moreover, a number

of clinical trials have been [1–3], and are being, conducted
to promote the recovery of motor and sensory function in
the injured human. Despite the excitement in this area of
research, there are many unresolved issues that hinder our
ability to effectively translate a promising therapy from
animals to humans. These issues can be discussed concep-
tually as those related to basic research, those related to
the translation of research to humans, and those related to
the performance of clinical trials in humans.

Abbreviations: BBB = Basso, Beattie, Bresnahan, FDA = Food
and Drug Administration, NIDRR = National Institute on Dis-
ability and Rehabilitation Research (U.S. Department of Educa-
tion), NYU = New York University, QIF = Quadriplegic Index of
Function, SCI = spinal cord injury, SCIM = Spinal Cord Indepen-
dence Measure, WISCI = walking index for spinal cord injury.
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BASIC RESEARCH

The performance of basic research—the study of inju-
ries and new therapies in animal or cellular models—is
generally considered the gold standard for scientific stud-
ies. However, there are many issues associated with basic
science research that can affect its relevance to human
pathology. These issues include the choice of animals, the
mechanisms of injury, the outcome measures used, and
the types of therapies used. Each of these issues affects
the relative importance of individual research studies.

The choice of animal is of great significance in deter-
mining the importance of basic science studies. Rat mod-
els are probably the most consistently studied and
standardized and are often used to study the effects of spi-
nal cord damage [4–7]. However, a notable limitation,
when one considers the normal movement patterns of the
rat, is that able-bodied rats tend to use their forelegs
rather than their hindlegs for locomotion.* Thus, for stud-
ies of spinal cord injury (SCI), it may be more appropriate
to use a feline model [8–12] or a canine model [13,14].
With advances in genetics, genetically deficient mice are
becoming popular as another model to study [15,16].
Other investigators have used guinea pigs [17,18]. The
lamprey has been identified as a vertebrate animal that
demonstrates the capacity for neural regeneration [19].
The limitations in most of these models, however, are that
none of these animals walk on two legs or have the hand
dexterity of humans; thus, the replication of promising
results in a primate model [20–22] would be desirable.

Another area of great importance is the mechanism
of injury and how this affects study results. Probably the
most well studied injury model is the performance of tho-
racic contusion injuries through the use of the New York
University (NYU) impactor [23]. It can be argued that
this model is most relevant to the types of injuries in
humans and is therefore best for the study of
neuroprotective techniques. With the use of this model,
injuries are standardized as severe, moderate, or mild [5].
Other contusion models of injury and forms of impactors
exist [24]. An alternative technique for the creation of a
spinal cord compression is the use of forceps to lesion the
cord [25,26]. Other groups of investigators perform open
laminectomies with complete cord transections [27],
lesions of specific axons [28,29] or an injury hemisection

*Personal communication, Timothy Schallert, 3 April 2003.

 [30]. These latter techniques may be the best for studies
of neural regeneration.

Probably the most important issue related to any of
these injury models is whether the injury produced is
reproducible and consistent. This is an issue that obvi-
ously could affect degree of recovery; thus, consistency
is of the utmost importance. In comparisons of different
injury models, models that used the NYU impactor dem-
onstrated consistency in spinal cord lesion volumes [23],
morphological changes [31], and recovery of locomotor
function [32] after injury; thus, the contusion model of
injury using the NYU impactor is a good model. How-
ever, again, the performance of thoracic injuries in the rat
may not be the best model for relevance to humans.
Moreover, despite the standardization of this technique,
others still continue to use other models for contusion
injury [24–26].

Another point that must be considered when evaluat-
ing basic science research for transfer to clinical trials is
the outcome measure used. One recently developed
behavioral outcome measure, the Basso, Beattie, Bresna-
han (BBB) Locomotor Rating Scale [33], has proven to
be a valid and predictive measure of locomotor recovery.
Inter-rater reliability tests have been performed and
found that a wide variety of examiners will be able to
apply the scale consistently and obtain similar scores.
Although the BBB scale is available for rat models of
injury, many investigators still use other behavioral out-
come measures, such as open-field testing using different
scales, testing of placing, withdrawal reflex, and toe
spread [9]. In addition to traditional histological and trac-
ing studies, other supplementary types of testing include
electrophysiologic tests, such as somatosensory and
motor-evoked potentials [34,35]; neuroimaging, includ-
ing MRI [36]; and testing for the presence of specific
reflex functions [25].

TRANSFER OF RESEARCH FROM ANIMAL 
MODELS TO HUMANS

In basic science research related to SCI, there is an
immense variability in the types of animals studied and
the mechanisms of injury. Additionally, the outcome
measures used are quite variable. So one can well under-
stand why replicating basic science studies in two differ-
ent animal models before the transfer of a therapy to
humans is the ideal practice. Moreover, one could argue
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that invasive therapies should be tested in primates
before they are tested in humans. However, if we are
truly interested in facilitating the use of therapies in
humans, we must also consider the role of safety in the
transfer of a particular therapy into humans.

Some treatments being tested in animal models may
have been used previously in humans for other conditions
[37]. With these therapies, the need for phase I trials in
humans may be eliminated. Other therapies for SCI that
have not been used previously in humans will need to
undergo safety testing [38]. To speed up the process of
translations into humans, those therapies that are known
to be safe in humans should be given greater priority for
testing than those in which the safety is unknown.

Another issue to consider when evaluating basic sci-
ence research for transfer into humans is the practicality
of the therapy. It is unlikely that treatments that are timed
precisely with injury will be able to be used practically in
humans. On the other hand, therapies with a larger win-
dow of opportunity (e.g., therapy administered 8 to 12, or
even 24, hours post injury) will be more easily used in
humans. The importance of this issue was emphasized in
the studies related to methylprednisolone [1], where the
efficacy was directly related to the timing of therapy.

With respect to practicality, the type of therapy must
also be considered when moving from an animal model
to humans. Medications are probably the easiest to
administer, thus their use in humans is relatively simple
[1,2]. Administration of modalities—e.g., electrical stim-
ulation [17] or hypothermia [39]—would require the use
of specialized devices, so this could delay their transla-
tion. Administration of cellular therapies is more invasive
and costly, requiring specialized facilities. Moreover, it
will require the development and standardization of tech-
niques to prepare cells and a determination of the most
appropriate means of administering those cells. All these
issues make the transfer of cellular therapies from animal
models to humans more difficult. Lastly, therapy that
includes a surgical procedure would require extensive
training in the surgical techniques.

CLINICAL TRIALS RELATED TO RECOVERY 
OF FUNCTION IN SCI

There are many issues to consider in the clinical trials
in humans with SCIs, just as there are with basic science
research. The standardization of medical care is important,

because clinical trials are performed at multiple sites, and
care generally varies among these sites. Another issue is
that some of the drugs administered to patients might have
yet undiscovered beneficial or deleterious effects on the
recovery of function after SCI. The pattern of adverse
events could be different in patients receiving different
drugs, and the administration of different drugs might
affect the blood levels of new therapies. Another impor-
tant consideration is whether surgery will be performed  to
stabilize a patient’s spinal column and the timing of such
surgery.

Patient selection is another important issue in clinical
trials. From a research standpoint, it is often beneficial to
target patients with specific levels and degrees of injury.
This might mean studying only individuals with ASIA A
and B tetraplegia [40], for example; however, the number
of subjects with SCIs is relatively small, and posing such
limitations on the selection of subjects may limit the fea-
sibility of study performance. While one might think this
problem is easily solved by the performance of multi-
center studies, it is this author’s experience that recruit-
ment of subjects with specific levels and degrees of SCIs
is still challenging, even with multicenter studies. More-
over, in multicenter studies the issue of standardization of
therapies becomes paramount. Another issue is the etiol-
ogy of the injury and how this will affect the study design
and feasibility. For instance, limiting research to the
study of individuals with gun shot wounds might elimi-
nate the issue of surgery; however, it would so limit the
number of subjects that the research might not be able to
be practically completed. Also of concern are the ages of
study subjects and how these affect study feasibility.
Finally, if the therapy is a medication, once indications
for administration of the medication are then approved by
the Food and Drug Administration (FDA), all these
patient selection issues will likely carry forward to the
official labeling of the medication—in other words,
approval of the treatment could be limited to individuals
with those specific characteristics.

Another issue to consider is the outcome measures
being used to document recovery of function in humans.
While the International Standards [40] are internationally
accepted, widely used, and standardized, there are still
many limitations on their ability to detect subtle changes
in neurological function. For instance, any decreases in
sensory function to pinprick are graded as 1, with an
absence of function graded as 0. Sensation may be
minimally impaired or almost completely impaired, and
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yet the same grade of 1 is given. Although the standards
provide more complete information about the location
and degree of spinal cord dysfunction than other
methodologies, they are not sensitive enough to detect
subtle improvements or declines in sensory function.
Additionally, the inter-rater reliability of the International
Standards has been shown to range from 0 to 0.83 for
pinprick, 0 to 1 for light touch, and 0 to 0.89 for motor
function [41]. Because of these issues, exploration has
begun on quantitative sensory testing as an adjunctive
means to document sensory function in patients with
incomplete SCIs [42,43].

In addition to outcome measures that specifically
look at neurological function, the therapy’s impact on
function is also important. Most SCI clinical trials use the
Functional Independence Measure [44] to document
function. However, this instrument was designed prima-
rily as a tool to document a patient’s progress in rehabili-
tative therapies and is not sensitive for measuring
changes of function in patients with tetraplegia. Other
outcome measures that may be more appropriate to docu-
ment the recovery of functional ability associated with
increased upper extremity strength include the Spinal
Cord Independence Measure (SCIM) [45] and the Quad-
riplegia Index of Function (QIF) [46]. These instruments
can be extremely time-consuming to use, however, and
thus a short form of the QIF was recently proposed [47].
To measure the recovery of ambulatory function, the
walking index for spinal cord injury (WISCI) was
recently developed and has been shown to have good
inter-rater reliability [48]. After initial testing of the
WISCI scale, it was revised to include an additional level
of ambulatory function [49].

Also associated with the performance of clinical tri-
als in SCI is the issue of concomitant rehabilitative thera-
pies: one would ideally like to control this variable.
However, the amount, duration, and provision of thera-
pies is based on patient’s location, neurologic status,
body habitus, concomitant medical problems, family sup-
port, motivation, and insurance status. Thus, it would be
impossible to perform a clinical trial without some
degree of variability in therapies. Recently, the use of
body-weight support has also gained popularity for clini-
cal use in the rehabilitation of patients with acute SCIs,
and a number of clinical trials are now ongoing to docu-
ment whether the use of body-weight supported treadmill
training [50,51] is superior to traditional therapies. Here
is yet another new variable that must be accounted for

when we translate therapies from animals into humans
with acute SCIs. 

In addition to the issues associated with the clinical
provision of care, two notable neurologic sequelae asso-
ciated with SCI must also be considered. Neuropathic
pain has been shown to affect approximately two-thirds
of persons with SCIs and is described as severe by one-
third [52]. Spasticity also affects approximately two-
thirds of persons with SCIs, is known to interfere with
function, and often requires the use of medications
[53,54]. Each of these issues will have a significant
impact on patients with SCIs; thus, the impact of any
treatments for SCI on pain and spasticity should be con-
sidered. Moreover, in some cases the issues of pain and
spasticity become more disabling than the patient’s SCI;
thus, it is theoretically possible that one could lose any
benefits gained from improved motor function if pain and
spasticity remained problematic.

CONCLUSIONS

Despite all the issues associated with the perform-
ance of clinical trials in humans, a number of advantages
remain in studying curative strategies for SCI in humans
as opposed to animals. Probably the main advantage to
studying therapies in people is that people can
communicate, and thus our motor and sensory
examinations—despite being less than perfect—are
much more exact than those used in animals. On the
other hand, the fact that humans are subject to other
treatments and therapies makes the study of curative
strategies more difficult. All these issues must be taken
into account when we consider the issue of translation of
research from animals into humans.

Although significant work remains to develop thera-
pies that provide a significant recovery of neurologic
function to persons with SCIs, we have made great
strides in the past few years in many animal models. In
order to accelerate the translation of these findings into
humans, it is important that more basic scientists and
clinical researchers continue to speak and meaningfully
address these issues. The development of consensus on
an optimal pathway for the study of therapies for SCI in
animals would be helpful. Moreover, the formulation of a
team of investigators to perform clinical trials on patients
with SCIs may be one way to begin to address some of
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the issues associated with clinical research in this patient
population.
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