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[1] Members of a wide class of geomaterials are known to display complex and
fascinating nonlinear and nonequilibrium dynamical behaviors over a wide range of bulk
strains, down to surprisingly low values, e.g., 10�7. In this paper we investigate two
sandstones, Berea and Fontainebleau, and characterize their behavior under the influence
of very small external forces via carefully controlled resonant bar experiments. By
reducing environmental effects due to temperature and humidity variations, we are able to
systematically and reproducibly study dynamical behavior at strains as low as 10�9.
Our study establishes the existence of two strain regimes separated by �M. At strains below
�M the material is nonlinear and quasi-equilibrium thermodynamics applies as evidenced
by the success of Landau theory and a simple macroscopic description based on the
Duffing oscillator. At strains above �M the behavior becomes truly nonequilibrium, as
demonstrated by the existence of material conditioning, and Landau theory no longer
applies. The main focus of this paper is the study of the first region, but we also comment
on how our work clarifies and resolves previous experimental conflicts, as well as suggest
new directions of research.
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1. Introduction

[2] Geomaterials display very interesting nonlinear fea-
tures, diverse aspects of which have been investigated over
a long period of time. For a recent overview see, e.g.,
Ostrovsky and Johnson [2001, and references therein]. A
standard technique used to study these nonlinear features is
the resonant bar experiment [Clark, 1966; Jaeger and Cook,
1979; Carmichael, 1984; Bourbie et al., 1987]. In these
experiments a long rod of the material under test is driven
longitudinally and its amplitude and frequency response
monitored. For a linear material the resonance frequency of
the rod is invariant over a very wide range of dynamical
strain. An example of this behavior is shown in the results
from one of our experiments on acrylic in Figure 1a:
increasing the strain up to 2 � 10�6 leaves the resonance
frequency unchanged (note that the x axis shows the change

in the resonance frequency, Df, and not the resonance
frequency itself). The resonance frequency of a rod made
from a nonlinear material such as Berea sandstone behaves
quite differently: When a driving force is applied to the rod,
the frequency either increases or decreases (the modulus
either hardens or softens) depending on the precise proper-
ties of the material. This phenomenon is well known, and a
theoretical description based on quasi-equilibrium thermo-
dynamics and nonlinear elasticity has existed for a long time
[see, e.g., Landau and Lifshitz, 1998]; we will refer to this
as the classical theory of nonlinear elasticity or simply as
Landau theory.
[3] Many geomaterials, such as sandstones, belong to the

general class of nonlinear materials. Figures 1b and 1c
display resonant bar results for two representative samples,
Berea and Fontainebleau. In both cases the shift in reso-
nance frequency is very large and the resonance frequency
decreases with drive amplitude. The strength of the non-
linear response in these materials is very large, orders of
magnitude more than for metals. Consequently, it is impor-
tant to check whether Landau theory still applies to these
materials, and, if so, over what range of strains.
[4] It is widely believed that geomaterials behave diffe-

rently than weakly nonlinear materials because of their
complex internal structure. They are formed by an assembly
of more or less rigid ‘‘grains’’ connected via a much softer
‘‘bond’’ network of varying porosity. The grains make up a
large fraction of the volume, between 80 and 99%. Indi-
vidual grains can be very pure (as in the case of Fontaine-
bleau, �99 + % quartz) or made up from several different
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components (as in the case of Berea: 85% quartz, 8%
feldspar, plus small quantities of other minerals). Most of
these materials are quite porous and their behavior changes
dramatically under the influence of environmental effects,
such as temperature [see, e.g., Sheriff, 1973] or humidity
[see, e.g., Gordon and Davis, 1968; O’Hara, 1985; Zinszner
et al., 1997; Van den Abeele et al., 2002]. This sensitivity to
the environment makes controlled studies difficult, as the
experiments must be carried out in such a way that these
effects are demonstrably under control.
[5] Another difficulty in measuring the frequency

response of sandstones arises from the brittleness of rocks.
If the samples are driven too hard, microcracks can be
induced and the resulting behavior of the material can
change dramatically. In addition, driving can also induce
long-lived nonequilibrium macrostates that relax back over
a long period of time (approximately hours). Thus it is
important to ensure, by repeating a given drive protocol on
the same sample and verifying that the material response
does not change from one experiment to the next, that the
samples have not been altered from their original condition
and the environment is unchanged over the set of observa-
tions. The experiments described in this paper were carried
out in this way. Furthermore, the very low strain values
ensured that sample damage rarely occurred.
[6] One goal of this work is to clarify, using new

and existing data, conflicting observations in the literature,
and to present a description of the ‘‘state of the art’’ at low-
strain amplitudes. Here we restrict ourselves mainly to the
question of dynamic nonlinearity and do not take up the
equally important question of the nature of loss mechanisms
and their connection and interaction with the nonlinear
(compliant) behavior underlying the frequency shift.
[7] In the past, several different groups have carried

out resonant bar experiments. Gordon and Davis [1968]
investigated a large suite of crystalline rocks, including
Quartzite, Granite, and Olivine basalt, at strains between
10�9 < � < 10�3. Their main objective was to measure
the loss factor Q�1 (or the internal friction f in their
terminology) as a function of strain and the ratio of stress
and strain. In order to cover the large strain range
they divided their experiments in two components:
for 10�9 < � < 10�5 they used the driven frequency
method, driving the rocks at very high frequencies, and
for 10�5 < � < 10�3 they made direct measurements of the
stress-strain curve. Their main findings were the following.
[8] 1. The loss factor is quite insensitive to the strain

amplitude, diverging from a constant value only at high
strains. At these high strains they conclude that this increase
in Q�1 is the result of internal damage.
[9] 2. Q�1 is highly structure sensitive; that is, it is

sensitive to the details of the microstructure of the rock.
[10] 3. Q�1 increases as the temperature increases. They

conclude that this increase is due to grain-interface
displacement, and therefore alteration of the internal
structure of the rock.
[11] 4. At large strains they find static hysteresis with

end-point memory.
[12] Following up on Gordon and Davis [1968],

McKavanagh and Stacey [1974] and Brennan and Stacey
[1977] performed another set of stress-strain loop
measurements on granite, basalt, sandstone, and concrete.

Figure 1. Resonance curves for (a) acrylic, (b) Berea, and
(c) Fontainebleau at different drives. Acrylic is a linear
material used as a control in the experiments. Nonlinearity
is evidenced in Berea and Fontainebleau samples by the
shift in the peak of the resonance curves. The reference
center frequency is 2150 Hz for acrylic, 2765 Hz for Berea,
and 1155.98 Hz for Fontainebleau.
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Their main objective was the measurement of stress-strain
loops below strain amplitudes of � = 10�5, since Gordon
and Davis [1968] had reported that Q�1 above this limit
was no longer a linear function of the applied strain.
McKavanagh and Stacey [1974] were able to go down to
strains of 10�6. (Note that this level is still above the strain
at which we found nonequilibrium effects to be important,
TenCate et al. [2004].) At these strains they found that the
hysteresis loops for sandstone were always cusped at the
ends. Another interesting result was that below a certain
strain amplitude the shape of the loop became independent
of the applied strain amplitude. From this they concluded
that even at the very smallest strain amplitudes, cusps
should continue to be present in stress-strain loops.
(However, Brennan and Stacey [1977] noted that for granite
and basalt, the stress-strain loops do become elliptical for
strains lower than 10�6.) In view of our recent results
[TenCate et al., 2004] this conclusion might have been
drawn without having enough evidence at low enough strain
amplitudes. We return to this point in section 4.4.
[13] Winkler et al. [1979] conducted experiments with

Massilon and Berea sandstone at strain amplitudes between
10�8 and 10�6. The main goal was to determine the strains
at which seismic energy losses caused by grain boundary
friction become important but the change of the resonance
frequency with strain amplitude was also investigated. They
concluded that the frictional losses are only important at
strains larger than were investigated. Additionally, they
found that the two sandstones investigated displayed
nonlinear features dependent on several external parameters,
such as water content or confining pressure. They find
that the loss factor is independent of strain below strains
of 5 � 10�7, while at relative large strain (>10�6), there is a
clear increase, in agreement with Gordon and Davis [1968].
The main drawback of the experiments by Winkler et al.
[1979] is the relative lack of data points, especially in the
very low strain regime; the quality of the repeatability of
their measurements on the same sample is also not shown.
In this respect, our work significantly improves on previous
results; we increase the number of measurement points in
the low-strain regime by a factor of five in comparison to
Winkler et al. [1979], allowing a more robust analysis of the
data.
[14] More recently, Guyer et al. [1999] and Smith and

TenCate [2000] analyzed a set of resonant bar experiments
with Berea sandstone samples also at low strains. The
conclusions they reached, however, strongly disagreed with
the older results of, e.g., Winkler et al. [1979]. Instead of the
expected quadratic behavior of the frequency shift with
drive at very low strains, an essential prediction of Landau
theory, they reported an ostensibly linear dependence,
which held down to the smallest strains. We note that such
a linear decrease in several material samples was also
reported by Johnson and Rasolofosaon [1996, and refe-
rences therein], albeit at significantly higher strains.
[15] This surprising behavior was claimed to be consis-

tent with predictions of a phenomenological model origi-
nally developed to explain (static) hysteretic behavior in
geomaterials at very high strains (the Preisach-Mayergoyz
space (PM space) model). In this model a rock sample is
described in terms of an ensemble of mesoscale hysteretic
units [McCall and Guyer, 1994; Guyer et al., 1997]. By

applying the PM space model to low-strain regimes, a linear
dependence of the frequency shift with drive can be
obtained. By its very nature, the model also predicts the
existence of cusps in low-amplitude stress-strain loops. As
discussed in section 4.4, however, we do not detect cusps in
stress-strain loops at low strains.
[16] Motivated partly by these very different findings on

similar sandstones and with similar experimental setups, we
embarked on a set of well-characterized resonant-bar
experiments using Fontainebleau and Berea sandstone sam-
ples TenCate et al. [2004]. Broadly speaking, our findings
for the resonance frequency shift confirm the original results
of Winkler et al. [1979]; below a certain strain threshold �M
both sandstones displayed the expected quadratic behavior.
In addition, we were able to show that previous claims of a
linear shift at high strains are actually an artifact due to the
material conditioning mentioned above at strains higher
than �M, and that a simple macroscopic Duffing model
provides an excellent mathematical description of the
experimental data without going beyond Landau theory
(as PM space models explicitly do, by adding nonanalytic
terms to the internal energy expansion). Thus we established
that, to the extent macroreversibility holds, the predictions
of classical theory are in fact correct.
[17] In this paper we extend our previous analysis by

adding an investigation of energy loss (via the resonator
quality factor Q), dynamical stress-strain loops, and
harmonic generation. We carry out the same experiment
several times with the same sample to demonstrate envi-
ronmental control and repeatability. The data analysis is
based on a Gaussian process model to avoid biasing from
nonoptimal fitting procedures applied to experimental data.
The Duffing model introduced in our previous work is
shown to be nicely consistent with the newer results. The
predictions of this model for the quality factor, the frequency
shift, and hysteresis cusps (null prediction) all hold within
experimental error at strains below �M. At higher strains, this
simple model breaks down, as it must, due to (deliberate)
exclusion of nonequilibrium effects. Finally, we have rean-
alyzed a subset of the data which were taken in 1999 [Smith
and TenCate, 2000] and had led to very different conclusions
for Berea samples. We show that the old experimental data
are actually in good agreement with our present findings
[this paper; TenCate et al., 2004].
[18] The paper is organized as follows. First, in section 2

we describe the experimental setup in some detail. Next, in
section 3 we explain how we analyze the data, especially
how we determine the peaks of the resonance curves
and how our procedure allows us to determine realistic
error bars. In section 4 we discuss the results from the
experiments. A simple theoretical model that describes the
experimental results is presented in section 5. We compare
previous findings in very similar experiments with our new
results in section 6 and conclude in section 7.

2. Experiments

[19] The samples used in the experiments are thin cores
of Fontainebleau and Berea sandstone (sources are Fontai-
nebleau from IFP and Berea from Cleveland Quartz Ohio),
2.5 cm in diameter and 35 cm long. As established by X-ray
diffraction measurements, Fontainebleau sandstone is
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almost pure quartz (>99% with trace amounts of
other materials); Berea sandstone is less pure having only
85 ± 8% quartz with 8 ± 1% feldspar and 5 ± 1% kaolinite
and approximately 2% other constituents. Fontainebleau
sandstone has grain sizes of around 150 m and a porosity
of �24%. Berea sandstone samples have grain sizes which
are somewhat smaller, �100 m, with a porosity of about
20%.
[20] A small Bruel&Kjr (B&K) 4374 accelerometer is

carefully bonded to one end of each core sample with a
cyanoacrylate glue (SuperGlue gel, Duro). The accele-
rometers are an industry standard, well characterized, and
calibrated. With perfect bonding between accelerometer
and rock, the accelerometer, and the associated B&K
2635 Charge Amp, has a flat frequency and phase
response to 25 kHz. With poor bonds, the upper frequency
limit of the flat response drops. Thus great care is taken
to establish a good bond between accelerometer and
sample. Each accelerometer is first qualitatively tested
(i.e., finger pressure) to be sure of a strong bond.
Furthermore, before samples are placed in the environ-
mental isolation chamber (discussed below) for measure-
ments, a comparison of the accelerometer response with a
laser vibrometer (Polytec) is made and accelerometers are
rebonded if the frequency responses differed noticeably. In
any case, it is important to point out that for the samples
used in this study, all of the resonance frequencies are
below 3 kHz, nearly an order of magnitude below the upper
frequency flat response limit for the accelerometer/charge
amp combination.
[21] The source excitation is provided by a 0.75 cm thick

piezoelectric disk epoxied (Stycast 1266) to the other end
of the sample core and backed with an epoxied high
impedance backload (brass) to ensure that most of the
acoustic energy couples into the rock sample instead of
the surrounding environment. Resonances in the backload
(>50 kHz) are much higher than the frequencies and
resonances of the sample and thus are not excited in our
experiments.
[22] For all the experiments described here, the lowest-

order longitudinal mode (first Pochhammer mode)
is excited. (We note that the mass of the brass backload
lowers the center frequencies of the Pochhammer mode
resonances somewhat but does not affect the shape of a
resonance curve.) Resonance curves are easy to measure
and analyze and fairly high strains can be attained without
requiring a high-power amplifier (with its frequently
accompanying nonlinearities). For Fontainebleau sandstone
the lowest resonance frequency is around 1.1 kHz; for
Berea sandstone the lowest resonance frequency is around
2.8 kHz. Measured values for the quality factor Q of these
resonances are about 130 for the Fontainebleau sandstone
sample and about 65 for the Berea sandstone sample. The
lowest-order Pochhammer mode has both compressional
and shear components but the motion is nevertheless
quasi-one-dimensional and the bulk of the sample partic-
ipates in the wave motion associated with the resonance.
As higher-order Pochhammer modes begin to resemble
surface waves, only the very lowest frequency modes are
examined here.
[23] Samples are suspended at two points with loops of

synthetic fiber (dental floss) or thin O rings. Different

suspension points slightly alter the lowest Pochhammer
mode resonance frequencies but these differences are much
smaller than differences caused by even slight changes
of temperature; moreover, and perhaps more importantly,
once the bar is mounted, the resonance frequencies do not
change with increasing drive levels when tested with a
standard (an acrylic bar). Suspended in this way (stress-free
ends) the sample’s lowest Pochhammer resonance
frequency corresponds to roughly a half wavelength in the
sample.
[24] Since most rocks are extremely sensitive to tempe-

rature and temperature changes [Ide, 1937], with relaxation
times of several hours, we have built a sample chamber for
effective environmental isolation. A second inner 3/4-inch-
wall Plexiglas box with caulked seams holds both the
samples which are suspended from the top of the box.
Air-tight electrical feedthroughs are available for driver and
accelerometer connections. The entire chamber is flushed
with N2 gas and then placed inside another (larger)
Plexiglas box and surrounded with fiberglass insulation
and sealed. The inner sample chamber also sits on top of
gel pads for vibration isolation. The complete isolation
chamber is placed in a room whose temperature is
controlled with a thermostat and typically varies by no
more than 3�C over the course of an entire daily temperature
cycle and less than a degree over the course of a single
experiment. Measured resonance frequencies of samples in
this box have been stable to within 0.1 Hz.
[25] To get the most precise measurements possible, we

use an HP 3325B Frequency synthesizer with a crystal
oven for frequency stability as the signal source. The
signal from the HP 3325B is fed into the reference input
of an EG&G 5301A Lock-In amplifier which compares
that reference signal with the measured signal from the
accelerometer via a B&K 2635 charge amplifier. The
whole experiment, including data acquisition, is computer
controlled via LabVIEW and a GPIB bus. To drive the
source, the signal from the HP frequency synthesizer is fed
into a Crown Studio Reference I amplifier and matched to
the (purely capacitive) piezoelectric transducer via a care-
fully constructed and tested linear matching transformer.
[26] To test all the electronics for linearity, we have

constructed several known linear sample standards of nearly
identical geometry to the rock samples. The density, sound
speed, and Q’s of the samples are chosen such that the
mechanical impedances r � c are similar to those of the
rock samples. These ‘‘standard’’ samples are driven with
identical source/backloads and at levels similar to those
experienced by the rock samples. No nonlinearities have
been seen; results for an acrylic rod are shown in Figure 1.
[27] With the present isolation system, we have verified

long-term frequency stability of the samples to ±0.1 Hz
(corresponding to a long-term thermal stability inside the
chamber of 10 mK), which is close to how well the peak of
the frequency response curve can be determined at the
lowest levels of strain shown in this paper. To test the
sensitivity of the Lock-In amplifier and assembled appara-
tus, we have measured a resonance curve on the Fontaine-
bleau sample at an extremely low drive level. The result is
shown in Figure 2. The acceleration measured by the
accelerometer has been converted to strain (the open
circles) using the driving frequency f via � = ü/(4pLf 2)
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following the convention by TenCate et al. [2004], where
L is the length of the bar and ü is the acceleration. Even
though the peak strain near the resonance frequency is
only about 1.6 � 10�10, the shape of the resonance curve
is clear with only minimal noise obscuration: a
Lorentzian curve is an extremely good fit to the data as
shown by the solid line. (Error bars are not shown for
clarity.) With computer control and long-term temperature
stability due to the isolation chamber, this experimental
setup permits long enough times to take data over a large,
and an order of magnitude lower, range of strains not
studied previously.

3. Data Analysis

[28] The basic quantities measured in a resonance expe-
riment are frequency f and calibrated accelerometer voltage
V, which is automatically converted into acceleration ü. It is
convenient to translate the acceleration to a strain variable in
order to make the comparison of different samples with
different lengths easier. As stated in section 2, we employ
the convention � = ü/(4pLf 2). These measurements lead to
resonance curves as shown, e.g., in Figure 1. The task now
is to determine the peaks of the resonance curves, tracking
the shift of the resonance frequency as a function of the
strain as displayed in Figure 3.
[29] In this paper we use a statistical analysis based on a

nonparametric Gaussian process to model the strain � as a
function of the driving frequency f. The flexibility of the
Gaussian process model for strain allows for estimation of
the resonance frequency and resulting strain ( f *, �*) with-
out assuming a parametric form for the dependence of strain
on driving frequency. Drawbacks of using a parametric
model can include understated uncertainties regarding res-
onance quantities ( f *, �*) and excessive sensitivity to
measurements far away from the actual resonance frequency.
The nonparametric modeling approach avoids both of these
possible pitfalls.

[30] For a given experiment, observations (fi, �i), i =
1, . . ., n are taken. The observed strain is modeled as a
smooth function of frequency plus white noise d:

�i ¼ z fið Þ þ di; i ¼ 1; . . . ; n; ð1Þ

where the smooth function z( f ) is modeled as a Gaussian
process and each di is modeled as an independent N(0, s2)
deviate. The Gaussian process model for z( f ) is assumed to
have an unknown constant mean m and a covariance
function of the form

C z fið Þ; z fj
� �� �

¼ s2
zr

�jfi�fj j2 : ð2Þ

The model specification is completed by specifying prior
distributions for the unknown parameters s2, m, sz

2, and r.
After shifting and scaling the data so that the fi’s are
between 0 and 1, and the �i’s have mean 0 and variance 1,
we fix m to be 0 and assign uniform priors over the
positive real line to s�2 and sz

�2, and a uniform prior over
[0, 1] to r.
[31] The resulting analysis gives a posterior distribution

for the unknown function z( f ) which we take to be the
resonance curve. This posterior distribution quantifies the
updated uncertainty about z( f ) given the experimental
observations. We use a Markov chain Monte Carlo
(MCMC) approach to sample realizations from the posterior
distribution of z( f ) over a dense grid of points in the
neighborhood of the resonance frequency f * [Banerjee et
al., 2004]. From each of these MCMC realizations of z( f )
the resonance frequency f * and the corresponding maxi-
mum strain �* = z( f *) are recorded. This creates a posterior
sample of pairs ( f *, �*) which are given by the dots in
Figure 4a. Figures 4b and 4c show the posterior uncertainty
for f * and �* separately with histograms of these posterior
samples. We use the posterior mean as point estimates for f *
and �*. In the paper we use error bars that connect the 5th

Figure 2. Low-amplitude drive resonance curve for
Fontainebleau sandstone. The solid curve is a Lorentzian
fit to the data points.

Figure 3. Resonance frequency shift Df as a function of
the effective strain � for the three samples shown in Figure 1.
The reference center frequencies are the same used for
Figure 1.
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and the 95th percentiles of the posterior samples to quantify
the uncertainty in our estimates.

4. Experimental Results

4.1. Memory Effects and Conditioning

[32] We have recently established the existence of two
strain regimes [TenCate et al., 2004]. As mentioned in
section 1, in the first regime (strains below �M) the material
displays a reversible decrease of the resonance frequency
with strain, while in the second regime, (nonequilibrium)
memory and conditioning effects become apparent. The
second regime is entered at the strain threshold �M which
depends on the material and the environment (e.g., tempe-
rature, saturation etc.). To determine �M for these samples,
the following experiments are performed.
[33] A reference resonance curve is obtained at the lowest

strain possible. The resonance frequency is determined and
used as a reference frequency f0 for the following procedure.
The source excitation level is increased, a new resonance
curve is obtained, and then followed immediately by drop-
ping the excitation level back in an attempt to repeat the
reference resonance curve. If there are no memory effects,
the repeated curve’s resonance frequency should match the
initial reference frequency. If memory effects are at play,
they will persist and the repeated curve’s peak resonance
frequency will be lower than the original. An example of
this is shown in Figure 5. This procedure is repeated for
incrementally increasing excitation levels until memory
effects become measurable. The excitation level (and strain)
where memory effects first become noticeable defines �M
for that sample.
[34] The existence of the two regimes delineated by �M

is crucial to understanding and interpreting the dynamical
behavior of geomaterials. Although it is possible to

Figure 4. (a) Resonance curve for Fontainebleau at a
strain �2 � 10�9. The central cluster of dots is the MCMC
posterior sample of pairs (f*, �*) that define the resonance
peak. (b) Frequency peak distribution and (c) frequency
peak strain distribution from the MCMC analysis for the
same resonance curve shown in Figure 4a.

Figure 5. Example of resonance frequency shift showing
the conditioning effect. The drive is increased up to a strain
of 2 � 10�6 and afterward the rock is driven again at the
lowest strain. The black dot shows the value of the
resonance frequency peak after the last drive application.
The difference between the two values for Df at the lowest
strain demonstrates the effect of conditioning. The sample
used in this figure is Fontainebleau and the reference center
frequency is 1155.98 Hz.
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describe the nonlinearity of the material at strains below
�M with classical theory [Landau and Lifshitz, 1998],
above �M the experimental results are complicated by
conditioning effects due to the nonequilibrium dynamics
of the rock. Disentangling the intrinsic nonlinearity of the
material and these nonequilibrium effects is very difficult
and the frequency shifts in dynamical experiments at
strains above �M do not have a simple interpretation. In
particular, classical elasticity theory assumes thermody-
namic reversibility and therefore cannot be applied in this
essentially nonequilibrium situation. By the same token,

classical theory cannot be tested by experiments carried
out in this regime. It is clear that a new theoretical
framework for the second regime, one that combines
nonlinearity with nonequilibrium dynamics, is definitely
needed.
[35] Figures 6a and 6b show our data for the resonance

frequency shifts versus strain for Berea and Fontainebleau
samples, respectively. The first regime, where the material
displays only the intrinsic reversible nonlinearity is shown
in the unshaded area, whereas the regime which combines
nonlinear and nonequilibrium dynamical effects is shaded
in gray. The strain threshold for Berea is �M ’ 5 � 10�7 and
2 � 10�7 for Fontainebleau under the present experimental
conditions. For the remaining part of the paper we will
focus only on the intrinsic nonlinear regime which is
uncontaminated by conditioning effects and allows for a
simple interpretation of the experimental data.

4.2. Intrinsic Nonlinearity

[36] In this section we describe experimental results for
strains below �M. In this regime, the data are free from
memory and conditioning effects and the samples display a
reversible decrease of the resonance frequency with strain.
For this reason it is possible to speak of, and analyze, the
intrinsic nonlinearity of the material. As discussed in some
detail in the Introduction, the previous history of resonance
measurements and the analysis of the associated results is
somewhat confusing. On the one hand, there are claims that
geomaterials display essentially nonclassical nonlinear
elastic behavior down to very low strains (10�8) [Guyer
and Johnson, 1999] with no evidence for a crossover to
elastic behavior. On the other hand, earlier findings [Winkler
et al., 1979], albeit with generous error bars, are inconsis-
tent with these claims.
[37] In order to investigate this issue in a systematic

and controlled fashion, we carried out repeatable reso-
nance bar experiments at strains as low as 10�9 following
the experimental protocols discussed above; these strains
are an order of magnitude lower than those previously
investigated.
[38] The results for the resonance frequency shift Df,

Df = f0 � W/2p, where W is the (linear) resonance radian
frequency, as a function of the effective strain � for
Fontainebleau and Berea sandstone samples are shown in
Figure 7. The measured strain for Fontainebleau ranges
from 2 � 10�9 to �M ’ 2 � 10�7 and from 2 � 10�9 to
�M ’ 5 � 10�7 for Berea. We observe a resonance
frequency shift of 0.45 Hz for Fontainebleau and 0.5 Hz
for Berea in the regime below �M. The error bars shown
in Figure 7 are calculated using the MCMC analysis as
described in section 3. The strain error bars are smaller
than the symbols used in the figures. The error bars for
Df for Berea are larger than the ones for Fontainebleau
because of the smaller Q for the Berea sample: the Berea
resonance curves are much wider, making the peak
determination more uncertain. The resonance frequency
shift observed (0.45 Hz or 0.5 Hz) is less than the errors
bars by Winkler et al. [1979] experiment. Being our
experiment digital, they are more precise than the analog
experiment of Winkler et al. [1979]. The solid lines in
Figure 7 represent the prediction of a theoretical model

Figure 6. Resonance frequency shift versus strain.
The first regime where the material displays only an
intrinsic reversible nonlinearity is shown unshaded, and the
second regime which combines nonlinear and nonequili-
brium effects is shaded in gray. The threshold strain
for (a) Berea is �M ’ 5 � 10�7 and (b) for Fontainebleau
is �M ’ 2 � 10�7. Since �M is not only a material specific
constant but can also depend on environmental variables,
such as temperature and humidity, we show the regime in
which nonlinearity and nonequilibrium are mixed, not as
one solid block, but rather as a region in different shades of
gray. It is important to note that the data points in the shaded
regions depend on the (temporal) experimental protocol,
whereas the data points in the unshaded regions characterize
an invariant behavior. The reference center frequency is
2765 Hz for Berea and 1155.98 Hz for Fontainebleau.
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with a Duffing nonlinearity described in detail in
section 5.
[39] We find that the resonance frequency softens quad-

ratically with increasing drive amplitude until the strain
reaches �M, beyond which value conditioning effects also
enter. This behavior can be fully described by classical
nonlinear theory. At very low strains, �10�8 to 10�7 (lower
end for Fontainebleau, upper end for Berea) the samples are
effectively in a linear elastic regime. At these low strains,
there is no discernible dependence of the resonance
frequency on the strain, the materials behave linearly to
better than 1 part in 104.

4.3. Quality Factor

[40] Energy loss in solids is mostly characterized by a
frequency-independent loss factor (‘‘solid friction’’) in con-
trast to liquid friction. Nevertheless, rocks are known to
display characteristics of liquid friction as a function of pore
fluid loading [e.g., Born, 1941] with an associated depen-

dence of the loss factor 1/Q (Q is also termed the quality
factor) on the frequency. It appears that the unusual nature
of wave attenuation in geosolids remains to be fully studied
and understood [cf. Knopoff and MacDonald, 1958].
As pointed out by Knopoff and MacDonald, a frequency-
independent Q cannot be explained by a linear theory of
attenuation, however, it is unlikely that the nonlinearity
should be associated with amplitude since even for very
small strains, Q remains finite.
[41] In the present work we do not focus on the depen-

dence of Q on frequency at small strains, but investigate
the dependence on strain amplitude as an alternative probe
of dynamical nonlinearity for effective strains � < �M. We
measure the Q from the amplitude resonance curves
directly, using

Q ¼ 2pf0
G

1þO 1=Q2
� �� �

; ð3Þ

where G is the width of the response curve measured at the
points a0/

ffiffiffi
2

p
where a0 is the peak amplitude. This definition

of Q is strictly valid only for linear systems but, as will be
discussed further below, at low strains the amplitude
response curves are effectively those of a linear system,
albeit with a peak frequency shift. At leading order, the Q as
defined in (3) is independent of the nature of the loss
mechanism (solid or liquid friction).
[42] The loss factor thus depends on two variables, the

amplitude response peak frequency and the width G of the
response curve. We certainly expect it to change as a
function of the strain simply because f0 is a function of
the strain amplitude. This is, however, a very small change,
fractionally of order 10�4. Aside from this expected varia-
tion, what is of more interest is whether G is also a function
of the strain.
[43] In Figure 8a we show measurements of the variation

in the relative width DG/G0 for the Fontainebleau sample.
As mentioned in section 4.1, we restrict ourselves to the
strain regime below �M to prevent contamination of the
results by nonequilibrium effects. The width G can only be
measured to an accuracy of �1%, the error bars being
obtained from MCMC analysis of the resonance curves. To
this accuracy, the results of Figure 8a demonstrate that
DG/G0 is essentially constant (except for the single highest
strain point) as is the case for linear systems. This result is
also consistent with the predictions of the Duffing model
discussed below in section 5.
[44] The measurement of the relative change in quality

factor is shown in Figure 8b and, given the smallness of the
frequency peak shift, simply reflects the behavior of DG/G0.
We note that except for the highest strain point, our results
are in agreement with a strain-independent quality factor
within the displayed errors. To summarize, to the extent that
we have investigated the strain dependence of acoustic
losses (� < �M), no unexpected behavior has been found.

4.4. Stress-Strain Loops and Harmonic Generation

[45] At very low strains and at the frequencies of interest
here, one would expect the resonant bar system to be
essentially a damped, driven harmonic oscillator and the
hysteresis curve to be an ellipse. This is in contrast to the
situation in (quasi)static hysteresis where ‘‘pointed’’ or

Figure 7. Resonance frequency shift Df as a function of
the effective strain � for Fontainebleau and Berea samples
for � < �M. The reference center frequency is 2765 Hz for
Berea and 1155.98 Hz for Fontainebleau. The solid lines
represent predictions of a theoretical model incorporating a
Duffing nonlinearity (equation (23)). Two different sets of
data points obtained from the same samples are shown to
demonstrate the robustness of the measurements. Note the
logarithmic scale on the x axis.
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‘‘cusped’’ loops are observed due to sources of inelasticity
that do not fit in to the simple viscoelastic model. Whether
low-strain loops at some point become elliptical was inves-
tigated by McKavanagh and Stacey [1974, p. 250], who
came to the conclusion that this was not the case at strains
�10�5 for sandstone and indeed that ‘‘. . .cusped loops
extend to indefinitely small strain amplitudes.’’ On the other
hand, Brennan and Stacey [1977] found that for granite and
basalt, loops became elliptical at strain values lower than
10�6. These statements were made with data taken at low
frequencies, less than 0.1 Hz, thus do not directly apply to
our experiment unless the underlying sources of inelasticity
continue to be relevant at high frequencies.
[46] Experimental evidence for cusped stress-strain

loops led to the theoretical description of nonequilibrium
dynamics in geomaterials via PM space models which are
based on static-hysteretic building blocks. In previous work,
it has been argued that these models provide a correct
description of the dynamics of rock even at small strains
[McCall and Guyer, 1994]) and at high frequencies
[cf. Guyer et al., 1999]. Our dynamical experiments allow
us to analyze stress-strain loops at very low strains in the
kHz frequency range and to detect the existence of pointed or
cusped loops. As evident in Figure 9, the loops are elliptical

with no evidence for cuspy behavior. Thus we find no
evidence to support the existence of ‘‘nonlinear’’ dissipation
mechanisms, as invoked in PM space models, at kHz
frequencies. Predictions of the simple Duffing model intro-
duced by TenCate et al. [2004] and described in detail in
section 5, are completely consistent with the data.
[47] Our experimental results are shown in Figure 9. We

plot the acceleration versus the amplitude of the drive
applied to the bar for both the Berea (Figure 9a) and
Fontainebleau (Figure 9b) samples. In the case of Fontaine-
bleau, the strain is 1 � 10�7 at a frequency of 1154 Hz
while for Berea the strain is 2.5 � 10�7 at a frequency of
2754.5 Hz. (Note that these experiments are carried out after
the original resonance curve measurements were completed.
Because of different environmental factors, e.g., tempera-
ture, the resonance frequencies of the samples have shifted
slightly.) Acceleration and drive amplitude are proportional
to the strain and the stress, respectively. The acceleration
and the drive voltage are measured as functions of time and
the time series is stored once steady state was attained. In
Figure 9, a piece of the time series is displayed and the

Figure 9. Acceleration versus drive amplitude for the
(a) Berea and (b) Fontainebleau samples. The acceleration
and the drive voltage are proportional to the strain and the
stress, respectively. Berea strain amplitude is 2.5 � 10�7 at
a frequency of 2754.5 Hz; Fontainebleau strain amplitude is
10�7 at a frequency of 1154 Hz. Note the absence of cusps.

Figure 8. Fontainebleau. (a) Variation of the width G of
the resonance curve peak. (b) Variation of the quality factor
Q with strain.
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acceleration shifted by 180�. For both samples, there is no
evidence for cusps in the stress-strain loops.
[48] Another important question is whether the non-

linearity evidenced by the peak frequency shift can also
be detected by searching for harmonic generation in reso-
nant bar and wave propagation experiments. The interpre-
tation of results from wave propagation experiments is
somewhat ambiguous [Meegan et al., 1993; TenCate et
al., 1996] due to experimental complications (e.g., reflective
losses). However, harmonic detection in (potentially much
cleaner) resonant bar experiments has been previously
reported [cf. Johnson et al., 1996]. Johnson et al. found
substantial harmonic generation in rock samples, including
Berea and Fontainebleau, at strains as low as 10�7.
[49] In this paper, we present our results in a search for

harmonics at strains � < �M. Figure 10 shows spectral
measurements for a linear material (acrylic) and the two
rock samples. Dashed lines indicate where first, second, and
third harmonics of the fundamental are expected to appear
(these are not the higher Pochhammer modes). In all three
cases we observe no evidence for the existence of higher-
order harmonics. The two small spikes which occur in the
data for Plexiglas (acrylic) and Berea are due to the residual
nonlinearity of the experimental apparatus.

5. The Model

[50] In this section we introduce a simple phenomeno-
logical model which describes the nonlinear behavior of the
rock samples under consideration. This model does not
include a treatment of memory and nonequilibrium effects
and is therefore not meant to apply in the regime where
these effects become important, i.e., for strains greater than
�M. A more complex model which applies also to the higher-
strain regimes will be described elsewhere. As shown by us
previously [TenCate et al., 2004], a quartic (Duffing)
potential nonlinearity augmenting a damped harmonic
oscillator yields results that accurately describe the data
in the low-strain regime. This model predicts a quadratic
decrease of the resonance frequency as a function of drive
amplitude, as expected from the theory of classical
nonlinear elasticity.
[51] The equation of motion for the displacement is taken

to be

�uþ W2uþ 2m _uþ gu3 ¼ F sin wtð Þ; ð4Þ

where g < 0 leads to a softening nonlinearity as observed in
the experiment (e.g., Figure 1). The driving force on the
right hand side represents the drive applied to the rods in the
experiment. The frequency W is the (unshifted) harmonic
oscillator frequency (for g, m = 0) and m is the linear
damping coefficient. In the following we briefly discuss a
convenient analytic approximation for the solution of
equation (4).

5.1. Multiscale Analysis

[52] Since the displacement u is small we can solve the
equation of motion (4) analytically and predict the decrease
of the frequency with the drive amplitude. We employ
multiscale perturbation theory to obtain a useful closed-

Figure 10. Fourier transform of the acceleration taken at
the resonance frequency for acrylic, Berea, and Fontaine-
bleau (semilog plot). Acrylic has a nominal strain of 2.6 �
10�6 at frequency 2120 Hz; Berea has a nominal strain of
2.5 � 10�7 at 2754.5 Hz; Fontainebleau has a nominal
strain of 10�7 at frequency 1154 Hz. The dashed lines show
the positions of the first, second, and third harmonics.
Harmonic generation is not detected. The two spikes which
occur in Plexiglas and Berea are due to the residual
nonlinearity of the experimental apparatus.
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form solution to equation (4). In the following we describe
how this approach works and how to extract model para-
meters from experimental data. [For a complete derivation
of multiscale perturbation theory see Nayfeh, 1981]. While
one can of course solve equation (4) numerically, the
analytic approach yields simple formulae which provide
much better physical intuition.
[53] A naive approach to solving equation (4) would be a

straightforward expansion of the displacement in the form

u t;að Þ ¼ u0 tð Þ þ au1 tð Þ þ � � � : ð5Þ

This ansatz is justified for small displacements. Inserting
the expansion of u in the equation of motion and keeping
only terms of O(a) leads to two differential equations for u0
and u1:

�u0 þ W2u0 ¼ F sin wtð Þ; ð6Þ

�u1 þ W2u1 ¼ �2m _u0 � gu30; ð7Þ

which are simply harmonic oscillators with an inhomo-
geneity on the right-hand side. The equation for u0 (6) can
be solved immediately and the solution inserted into the
right hand side of the equation of motion for u1 (7)
specifying the inhomogeneity for u1 completely. The
solution for u1 can now be determined and a perturbative
solution for u itself can be obtained by inserting u0 and u1
into equation (5). A detailed analysis of this solution for
u(t) leads to the following result: for specific values of w
resonances occur, the case w � W leading to a primary
resonance causing the solution for u to diverge. To
determine a solution for equation (4) free from this
problem, the method of multiple scales can be used
[Nayfeh, 1981]. The idea is the following: besides assuming
that the displacement is small, we also assume that the
nonlinearity is small. In addition we assume that the
excitation, the damping, and the nonlinearity are all of
the same order in a. This leads to a modified equation of
motion for u:

�uþ W2uþ 2am _uþ agu3 ¼ aF sin wtð Þ: ð8Þ

Further, we introduce two timescales, a slow scale T1 = at
and a fast timescale T0 = t which leads to a transformation
of the derivatives of the form

d

dt
¼ D0 þ aD1; ð9Þ

d2

dt2
¼ D2

0 þ 2aD0D1 þ � � � ; ð10Þ

with Di = @/@Ti. Expanding u in the form

u ¼ u0 T0;T1ð Þ þ au1 T0; T1ð Þ ð11Þ

and keeping again only terms of order a leads to the
following set of differential equation for u0 and u1:

D2
0u0 þ W2u0 ¼ 0; ð12Þ

D2
0u1 þ W2u1 ¼� 2D0D1u0

� 2mD0u0 � gu30 þ F sin wT0ð Þ: ð13Þ

The difference with the previous naive expansion becomes
clear immediately: While earlier the driving force was part
of the differential equation for u0, it is now part of the
inhomogeneity of u1. A general solution for u0 is given by

u0 ¼ A T1ð ÞeiWT0 þ �A T1ð Þe�iWT0 : ð14Þ

Inserting equation (14) into the differential equation for u1
(13) yields

D2
0u1 þ W2u1 ¼� 2iA0Wþ 2imAWþ 3A2 �Ag

� �
eiWT0

� A3ge3iWT0 þ 1

2
FeiwT0 þ c:c: ð15Þ

Since we are only interested in the case w � W, i.e., driving
near to the resonance frequency we introduce a detuning
parameter

w ¼ Wþ as ) wT0 ¼ WT0 þ sT1: ð16Þ

Inserting (16) into the differential equation (15), expressing
A in the polar form A = 1/2a exp ib, defining a new
parameter f = s T1 � Wb and f 0 = s � Wb0, and
eliminating the secular terms from the resulting equation,
we arrive at the following solution for u(t):

u ¼ a cos wt � fð Þ þ O að Þ; ð17Þ

a0 ¼ �amþ 1

2

F

W
sinf; ð18Þ

af0 ¼ as � 3

8

ga3

W
þ 1

2

F

W
cosf: ð19Þ

After a sufficiently long time, a and f will reach a steady
state hence their derivatives will vanish and the left hand
sides of equations (18) and (19) will be zero. Squaring the
equations and adding them leads to the so-called frequency
response equation

W2m2a2 þ a2 sW� 3

8
a2g

� �2

¼ 1

4
F2: ð20Þ

Equation (20) can be solved with respect to s

s ¼ 3

8
a2

g
W
� 1

2aW

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 � 4m2a2W2

q
: ð21Þ
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As s has to be real, the maximum value for a (which we
label a0) and therefore the peak of the response curve can
be immediately determined:

F2 ¼ 4m2a20W
2
0 ) a0 ¼

F

2mW
; ð22Þ

and therefore

s0 ¼
3F2g

32m2W3
: ð23Þ

Thus the model predicts a quadratic decrease of the
frequency with the drive amplitude F. The model also
predicts the invariance of the resonance curve width G
for any strain. Solving equation (20) for s and substituting
a = a0/

ffiffiffi
2

p
we obtain

G ¼ 2m: ð24Þ

Note that the approximation ignores corrections of O(1/Q2).
These are numerically small on the scale of the experi-
mental errors. At this leading order of the approximation,
the effect of the nonlinearity is simply to produce an
effective harmonic oscillator response, with a frequency
shift and peak height dependent on the drive amplitude.

5.2. Constraints on the Model Parameters From the
Experimental Data

[54] The Duffing model predicts an invariant resonance
curve width G, therefore we first measure this quantity from
the experimental resonance curves. Consistent with
the above expectation, we find that G is constant within
1% for both samples over the applicable strain range; using
relation (24), we then immediately determine the damping
coefficients m = 27.5 s�1 for the Fontainebleau and
m = 131.6 s�1 Berea sample, respectively. Using the
definition of s0 = 2pf0 � W and the relation F = 2mWL�/p
we can rewrite equation (23) in terms of the effective strain
� and the resonance frequency f0 as

f0 ¼
3L2g
16p3W

�2 þ W
2p

: ð25Þ

The linear resonance frequency W and the nonlinearity
parameter g now follow by fitting the experimental data for
f0 as a function of the effective strain using the previous
equation. We obtain the following values: the nonlinearity
parameter, g = �7.6 � 1019 m�2s�2 for the Fontainebleau
sample, and g = �5.3 � 1019 m�2 s�2 for the Berea sample,
whereas the corresponding linear resonance frequencies are
7262.8 rad/s and 17375.7 rad/s.

5.3. Comparison of Experimental Results With the
Model

[55] After determining model parameters as above, we
compare the Duffing model predictions with the
experimental results described in section 4.
[56] We begin by investigating the predictions for the

resonance curves themselves, as given in equation (20). In
Figure 11 we show the results from the experiments as
circles and the results from the Duffing model as solid lines

Figure 11. Average strain amplitude � as a function of
drive frequency for (a) Fontainebleau and (b) and (c) Berea.
The reference center frequency is 1155.98 Hz for
Fontainebleau and 2765.179 Hz for Berea. The open circles
are the experimental data; the solid circles mark the peak
positions. The solid lines are theoretical predictions from
equation (20). Figure 11c shows in detail the resonance
curve at the highest strain for Berea.
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for Fontainebleau (Figure 11a) and Berea (Figure 11b),
where Figure 11c shows a single Berea resonance curve
on a smaller range in Df to demonstrate more clearly how
well the model works. In addition, it was shown earlier
(Figure 7) how the resonance frequency shifts as a function
of strain for Fontainebleau and Berea from both the expe-
riment and the model. Figures 7 and 11 clearly demonstrate
the excellent agreement between the experimental data and
the model predictions.
[57] In Figure 12 we show the stress-strain loop obtained

from the Duffing model: no cusps are present in agreement
with the experimental results. Moreover our model indicates
that the response of the bar to the external drive is
dominated by the fundamental mode and there is no
excitation due to mode-coupling of any higher harmonics
as shown in Figure 13. Our model predictions are again in
very good agreement with the experimental results.

6. Comparison With Previous Results

[58] As already discussed in section 1, experiments
similar to the one described in this paper have been carried
out in the past with somewhat confusing results. Some of
them, e.g., those of Winkler et al. [1979], are in qualitative
agreement with our findings though with less control over
errors, while other papers claim quite different results.
Among this second set of papers, two papers are experi-
mentally very close to the present work (two of the authors
of the current paper were involved in these experiments):
the papers by Guyer et al. [1999] (hereinafter referred to as
GTJ) and Smith and TenCate [2000] (hereinafter referred to
as ST). We now address the question why such differing
conclusions were arrived at earlier. In order to provide the
answer we reanalyze a subset of the older data sets inves-
tigated in GTJ and ST (the GTJ data set is a small subset of
the ST data).
[59] The sample under consideration was a Berea sand-

stone rod of similar size used in this paper. In order to
reduce effects from moisture contained in the sandstone the
sample was kept under vacuum for an extended period. This

increased the quality factor to Q = 300 which is roughly five
times higher than in the current one, where Q = 65. (In GTJ
the quality factor is quoted to be Q = 170, the discrepancy
arising due to measuring Q from the width of the resonance
curve at half maximum of the amplitude rather than at 1/

ffiffiffi
2

p

of the maximum.) The resonance frequency in the old
experiment was f � 2880 Hz, which is close the resonance
frequency of the sample we investigated, f � 2755 Hz. In
the old experiments, different measurements were made at
different temperatures.
[60] Unlike our experiments, these experiments were

carried out in three different strain ranges at different times:
at very low strain, at medium strain, and at high strain. The
main result found by GTJ was a linear fall-off of the
resonance frequency peak with increasing strain while ST
concluded from the same experimental data that the reso-
nance frequency peak fell off first linearly and then qua-
dratically with increasing strain.
[61] We first investigate a subset of the old data set in

exactly the same way as in the new experiments. The results
are shown in Figure 14. Figure 14a shows three sets of
resonance curves at different strain ranges. The peaks of the
resonance curves are determined with our MCMC analysis
method as described in section 3 and marked by the solid
circles. In Figure 14b the peaks of the resonance curves are
plotted versus the strain. The solid lines in the low- and
medium-strain regime represent the predictions from our
model. In these two regimes the predictions from the
Duffing model are excellent, and no unexpected behavior,
such as a linear fall-off is observed. The measurements in
the high-strain regime are contaminated by nonequilibrium
effects and therefore our simple model is not applicable.
[62] After verifying that the old experimental data in no

way contradict the results from our new experiments we
now turn to the analysis strategies used in GTJ and ST and
the interpretations of their findings.
[63] The results for the dependence of the resonance

frequency versus strain are shown in Figure 3a in GTJ.
The three different curves GTJ show are from different
measurements and in all cases the dynamic range is very

Figure 12. Hysteresis loop as predicted by the Duffing
model using Berea parameters, strain 2.7 � 10�7,
frequency = 2765.3 Hz.

Figure 13. Spectral response from the Duffing model
using Berea parameters, strain 2.7 � 10�7, frequency =
2765.3 Hz.
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small. Consider now the lowest, and longest, of these
curves, the strain range here is only 10�7 to 3 � 10�7.
[64] To emphasize the importance of having sufficient

dynamic range, we return to Figure 14b and consider only
the lowest-strain measurement data set, shown in detail in
Figure 15. The dashed line marks the strain corresponding
to the lowest strain in GTJ in their longest strain range
measurement. We show in red the best linear fit to all the
data points on the right of this line. The highest strain in
GTJ was 3 � 10�7 so would only include 4 of the data
points in Figure 15. If we only concentrate on the strain
regime to the right of the dashed line, both fits, linear and
quadratic are acceptable. However, if we consider all the
available data points down to the lowest strain, the linear
fit fails by being too high. Therefore, in order to make a
definite statement about the best fit to the data it is clearly
important to have a sufficient range in strain. To summarize:
the experimental data in GTJ is apparently correct, but the
dynamic range of the data points analyzed is not sufficient

to draw any conclusion regarding the nonlinear behavior of
the material.
[65] Next, we turn to the results found in ST. One of the

main objectives in that work was to investigate the depen-
dence of the frequency shift (hence the shift in the Young’s
modulus) as a function of temperature changes. Experi-
ments at temperatures ranging from 35� to 65� were carried
out. In addition different strain regimes were investigated at
different times, as shown in the previous Figure 14a. The
condition of the rock might have changed in between these
different times, which could have led to a contamination of
the results. For each temperature, the three different sets of
measurements at different strains shifted in order to obtain a
single measurement over a wide strain range. This approach
is likely to lead to a bias in the result since the rock might
have been in different metastable conditioned states for each
data set.
[66] In the final step, the relative shift in the Young’s

modulus was determined and fitted by a single function for
all resonance frequency shift curves, independent of the
temperature at which they were taken or the resonance
frequency f0 (recall the different strain ranges of the
data in Figure 14). The result of this analysis is shown in
Figure 6 of ST. It is immediately clear that a single fit to all
the curves does not work particularly well. The functional
form of the fit, first linear and then quadratic, is therefore
also not very meaningful any other functional form, such as
pure quadratic, would have probably worked as well.
[67] The authors’ contention that the temperature insen-

sitivity of the coefficients determining the frequency shift is
directly related to the underlying loss mechanism, and hence
rules out thermal activation mechanisms, cannot be justi-
fied. The relationship between the frequency shift and the
loss mechanism is yet to be elucidated: As shown in the
present work, for example, nonlinear frequency shifts and
linear losses can easily coexist, and it is well known that the
loss factor is temperature-dependent.

Figure 15. Comparison of different fits for the old Berea
data set. Note the logarithmic scale on the x axis. The black
line shows the quadratic fit obtained from the Duffing
model; the red line shows the best linear fit including data
points only to the right of the dashed line. The reference
center frequency is 2877.78 Hz.

Figure 14. Comparison with previous experiments on
Berea. (a) Resonance frequency curves for three sets of
experiments at three different strain ranges. (b) Correspond-
ing resonance frequency peaks. Note the logarithmic scale
on the x axis. The solid lines represent predictions of the
theoretical model (see equation (23)).
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[68] In summary, the measurements used in GTJ and ST
are in fact in very good agreement with our current
measurements and understanding of the nonlinearities in
rocks below a certain strain threshold: It is the interpretation
of the data in these two papers that must be corrected. In
GTJ the strain range over which the analysis was carried out
was insufficient to reach any conclusive result about the
fall-off of the resonance frequency peak with strain. In ST
the fitting procedure applied to the data sets seems to have
led to erroneous conclusions about the behavior of D f
versus strain.

7. Summary and Outlook

[69] In this paper we have described a set of resonant bar
experiments carried out for Berea, Fontainebleau, and
acrylic (as a linear control material) in order to investigate
the dynamic compliance and loss mechanisms at low
strains, between 5 � 10�8 and 2 � 10�6. To ensure isolation
from environmental influences, such as temperature and
humidity, an isolation chamber was employed to obtain
controlled and repeatable results.
[70] The main conclusion of our work is the demarcation

of two strain regimes: in the first regime the material
displays reversible decrease of the resonance frequency,
while in the second regime, which occurs after a material
and environment-dependent threshold �M, nonequilibrium
and conditioning effects become important. Some of these
results were previously reported in a short communication
[TenCate et al., 2004]. Here we report the results of a
detailed study for the first strain regime, below �M, for both
Berea and Fontainebleau samples measuring quantities such
as the quality factor, stress-strain loops, and amplitudes of
higher harmonics. By repeating measurements on the same
samples we have demonstrated the robustness of the results.
At strains characteristic of reversible nonlinear behavior, the
quality factor is essentially constant, but it is possible that it
reduces at higher strain values. It is not unreasonable to
speculate that unlike the resonance frequency shift, the
amplitude dependence of the quality factor is connected to
the onset of nonequilibrium behavior, but this aspect
requires further investigation.
[71] The data analysis was carried out using a statistical

method based on a Gaussian process model. This parameter-
free method avoids any biasing of the analysis due to fitting
of the resonance curves with specific functional forms. It
also determines reliable error bars for the resonance fre-
quency shift Df as a function of the applied drive strength.
The vast majority of previous papers analyzing similar
experiments do not provide a detailed error analysis.
[72] A theoretical framework for the experimental results

is provided by a simple damped Duffing model for which
closed-form results can be obtained. The Duffing model
predictions are in excellent agreement with the entire set of
experimental measurements over the strain regime � < �M.
[73] While in this paper, we have focused on the revers-

ible nonlinear regime (� < �M), future work will target the
understanding of the nonequilibrium behavior of geomate-
rials. The investigation of this second regime is at the same
time fascinating and very challenging. It is difficult, but
essential, to disentangle conditioning/nonequilibrium and
nonlinear effects. New experimental strategies have to be

developed for this endeavor. At the same time a theoretical
framework which encompasses and explains all known
physical effects needs to be developed.
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