1) SS-13 S-BAND D ESIGN OP'J'JMIZA'J'10N USING THE FOCAL-PLANE METHOD[†]

M. S. Esquivel* and W. A. Imbriale Jet l'repulsion Laboratory California 1 nstitute of Technology Pasadena, CA 91109

ABSTRACT

In this paper, the Focal-1'lane (Complex-Conjugate Phase-Matching) Method is used to select the appropriate gain and location of a feed for S-1 3and (2.295 G] Iz) operation of 1) SS-13, the new NASA/JPL Deep Space Network (I EN) 34-m Beam WaveGuide (BWG) antenna. It is found empirically that the Ibcal-}'lane Method gives a better design in terms of the G/I figure than previous S-hand designs.

1 N'J'RO1)UCYJ'ION: A BWG design was chosen for DSS-13 to take advantage of all the improvements achieved by placing the feed in the pedestal room rather than at the focal point of the dual reflector system (Figure 1)[1]. The original design of 1 DSS-13 was done at X-hand; it consisted of a 22-dBi illuminating horn at F₃, a beam magnifier ellipse (M₅) which created a 29-dBi pattern at F₂, and a pair of parabolas which imaged the latter pattern to F₁, the focal point of a dual-shaped reflector system optimized for G/T. 22-dBiX- and Ka-band horns were placed vertically in the pedestal room by means of a flat or dichroic plate used to image the pattern about the ray from F₃ to M₅. An attempt was made to fit a 22-dBi S-hand corrugated horn vertically but, due to lack of room, it had to be laid in a horizontal position. Also, the RF performance of DSS-13 with the 22-dBi horn at S-hand was not satisfactory [2].

The previous analysis and synthesis of the RF performance of 1)SS-13 was calculated using Physical Optics (J)() [3] and the Jacobi--Bessel series [4]. in these calculations a feed radiation pattern was modeled as a set of Shcrical-Wave Expansion (SWE) coefficients expanded about F₃ [5]. The coefficients were used to illuminate M_5 , the BWG mirror in the pedestal room. The induced currents cm M_5 , by means of PO, were cascaded through M_4 , h43, M_2 , M_1 , the Sub and the Main reflectors. The Jacobi-Bessel method was implemented at the Main reflector to obtain the secondary pattern of the antenna.

FOCAL PLANE METHOD: The goal of the new design was to maximize the G/I' of 1)SS-13. To do this empirically, a uniform plane wave was used to illuminate the Main reflector of 1) S-13. PO was then used to analyze the induced currents on the Main and Sub reflectors, h4 1, M2, M3, M4, and M5. Finally, the currents on a circular aperture with a 23 λ diameter at the focal plane centered at F3 were computed. 13y taking the complex-conjugate of these currents and applying the radiation integral, the far-field pattern for a **TheoreticalHorn**, which empirically maximizes the 1)SS.13 gain, was obtained.

To synthesize a hornquickly and inexpensively, the **Theoretical Horn** pattern was matched as well as possible with one from a circular corrugated horn. Figure 2 shows the near-field E-plane patterns of the **Theoretical Horn** and a 19-

¹The research described in this paper was carried out by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

dBi circular corrugated horn. The agreement in amplitude and phase out to $\theta = 21^\circ$, the angle subtended by M₅, is quite good.

RESULTS: SWE coefficients were generated for the Theoretical Horn and the 19-dBi Corrugated Horn at S-Band. Using these as input, PO and Jacobi-Bessel computer software was run for the 1) SS-13 antenna on *Voyager*, JPL's CRAY Y-MP2E/11 G Supercomputer. TABLE 1 shows the results in terms of spillover, efficiency, noise temperature and G/T for 3 different feeds. The first feed is a 22-dBi circular corrugated horn, investigate in a previous design [2]. The second feed is the 19-dBi circular corrugated horn in a vertical position and the third feed is the Theoretical Horn calculated from the Focal-Plane method. The technique used to compute the efficiency and noise temperature of a beam waveguide antenna has been developed and successfully tested at JPL[6].

CONCI,USION: DSS-13 was designed to work at, X- and Ka-Bands with 22dBicorrugated horns placed at F₃. At S-Band, a 22-all Bi corrugated feed located at F₃ does not perform well. The Focal-1'lane method suggested that a 19-dBi corrugated horn might perform better. Using 1 '() and Jacobi-Bessel computer software, this was found to be the cam

1 Besides better RF performance, using a smaller gain horn enabled the designer to fit the feed in a vertical position which makes the mechanical layout of all the waveguide components easier to achieve. Figure 3 shows a complete layout, of the S- and X-Band systems in the pedestal room of DSS-13. The 19-dBi circular corrugated horn fits inside the S-1 Band package.

REFERENCES

- '1'. Veruttipong, W. Imbriale, and 1). Bathker, Design and Performance Analysis of the DSS-13BeamWaveguide Antenna, TDA Progress Report 42-101, May 15, 1990, Jet Propulsion 1 aboratory, California 1 nstitute of Technology.
- [2] T. Cwik and J.C. Chen, DSS- 13 Phase II Pedestal Room Microwave Layout, TDA Progress Report 42-106, August 15, 1991, Jet Propulsion Laboratory, California Institute of Technology.
- [3] W. A. Imbriale and R. E. 1 lodges, The 1.iaear-1'base Triangular Facet Approximation in 1 'hysical Optics Analysis of Reflector Antennas, Applied Computational Electromagnetic Society, vol. 6, No. 2, Winter 1991.
- [4] Y. Rahmat-Samii and V. Galindo-Israel, Shaped Reflector Antenna Analysis using the Jacobi-Bessel Series, IEEE Transactions on Antennas and Propagation, vol. AP-28, No. 4, July1980.
- [5] A.C. Ludwig, Near-Field Far-Field Transformations Using Spherical- Wave Expansions, IEEE Transactions on Antennas and Propagation, vol. AP-19, No. 2, March 1971,
- [6] D.A. Bathker, W. Veruttipong, T.Y. Otoshi, and P.W. Cramer, Jr. Beam-Waveguide Antenna Performance Predictions with Comparisons to Experimental Results, IEEE Transactions on Microwave Theory and Techniques, vol. 40, No. 6, June! 1992

, 1

.

FIGURE 1: DSS-13 Geometry

FIGURE 2: l';-l'lane Near-1~'icld (1{= 165", referenced to F_3) Patterns

	22-dBi Corrugated	19-dBi Corrugated	Theoretical
	Horn	Horn	Horn
Spillover [%]			
M ₆		0,32	
M ₅	2.05	2.50	0.24
M4	1,57	0.67	1.19
M ₃	5.91	0.66	0.86
M ₂	5.55	1.03	1.29
M ₁	1.36	0.27	0.46
Sub		1,69].94
Main		2.18	3.61
Efficiency			
TotalEfficiency	0.48415	0.66219	0.69502
Tot. Efficiency [dB]	55.102	56.462	56.672
Noise Temperature			
TotalNoise [K]	73.574	36.444	35.314
Total Noise [dB]	18.67	15.62	15.48
G/T [d]31	36.43	40.84	41.19

. . .

,

TABLE 1: 1) SS- 13 S-1 Band 1'() & Jacobi-Bessel Calculations

FIGURE 3: 1) SS-13 Pedestal Room Mechanical Layout