gti

Development of a Natural Gas-to-Hydrogen Fueling System

> DOE Hydrogen & Fuel Cell Merit Review

William E. Liss Gas Technology Institute

May 2003

Cooperative Agreement DE-FC04-02AL67607

Hydrogen Fueling Systems Problem Statement & Challenges

> Problem Statement

Making hydrogen competitive with gasoline on a \$/vehicle mile basis

> Challenges

- Flexible fuel reformers & systems
- Fuel purity
- Long-life compressors
- Accurate dispensing
- Capital outlay & return on investment

Goals and Objectives

> Goals:

- Distributed high-pressure hydrogen delivered at \$2.50/kg or less to vehicle users
- Avoid high costs for over-the-road hydrogen delivery
 - > Leverage existing energy infrastructure
- Leverage CNG technologies, products, and experience to extent practical
- > Technical Characteristics:
 - 40-60 kg daily
 - 5000 psig fast fill system

Program Participants

> Participants and Roles

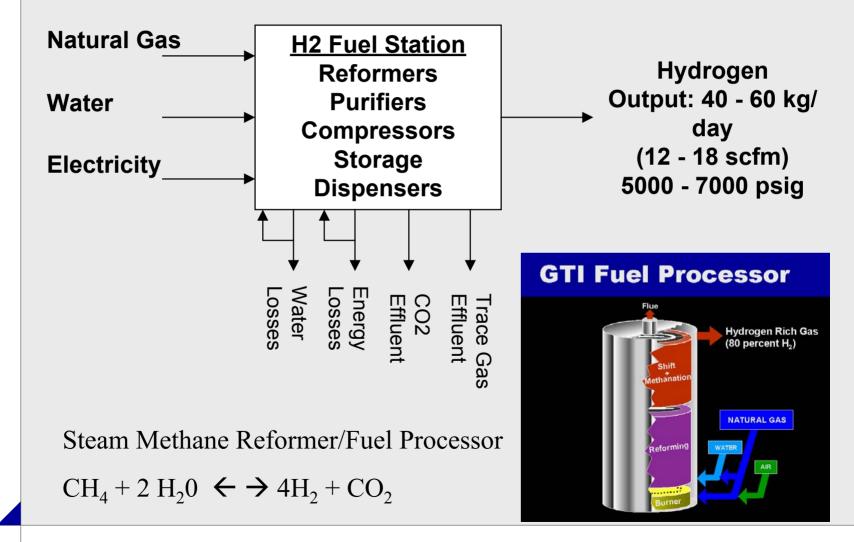
- Gas Technology Institute
 - > Program manager, system integrator, fuel processing subsystem
- FuelMaker Corporation
 - > Maker of high-quality high-pressure compressors and fuel purification systems
 - > Commercialization pathway
- ANGI International
 - > In-kind support on hydrogen dispensing
 - > Commercialization pathway

> Cofunding from Canadian government

Project Plan and Approach

Program Duration 02/02 – 02/05	Phase I Design	Phase II Development/ Lab Test	Phase III Field Test/Dev.
	<u>2/02-9/02</u>	9/02–2/04	3/04–2/05
Fuel Reforming	<u>8/2002</u>	2/2004	2/2005
Fast Fill Testing	<u>8/2002</u>	<u>2/2003</u>	
Dispenser	<u>8/2002</u>	2/2004	7/2004
Compressor	<u>8/2002</u>	2/2004	2/2005
Purification	<u>8/2002</u>	2/2004	2/2005
Design/ Economics	<u>8/2002</u>	2/2004	2/2005

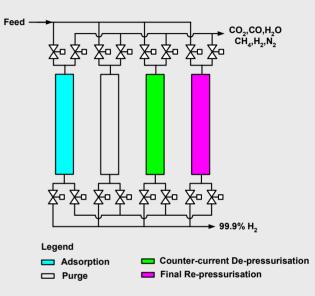
- Phase I completed and report submitted
- Fast-Fill characterization completed and reported
- Phase II development in process


Program on schedule

Plan & Approach at a Glance

- > Task 1: Fuel Reforming
 - Efficiency & turndown
 - Compressor/purifier interface
- > <u>Task 2: Fast-Fill Testing</u>
 - Build SOA Test Facility
 - Refine CHARGE thermodynamic model
 - Conduct testing
- > Task 3: H2 Dispenser
 - Component availability & cost
 - Metering and fill accuracy
 - Code & safety issues

- > Task 4: H2 Compressor
 - Analytical design
 - Tribology & materials
 - Empirical testing
 - Reformer/purifier interface
- > Task 5: H2 Purification
 - Adsorbent, membrane strategies
 - Reformer/compressor interface
- > Task 6: Design & Economics
 - System design, model, and safety
 - System controls
 - Economic model


System Inputs & Outputs

Some Keys to Success

Advanced oil-free highpressure compressors Compact fuel processing using efficient steam methane reforming process

Fuel cleanup systems that are cost effective, efficient, and meet fuel purity requirements

gti

Reliable & cost effective hydrogen fueling system

Accomplishments

- > Comprehensive subsystem and system design report completed
- > Lab prototype fuel processor designed and tested (alpha)
- > Full-scale high-pressure hydrogen test facility constructed
- > Hydrogen cylinder filling model developed (CHARGEH2)
- > Comprehensive set of hydrogen fast-fill tests completed
 - Paper presented at National Hydrogen Assoc. meeting
- > H2 dispenser algorithm developed (in test for validation)
- Primary hydrogen compressor designed and built (operate under 100 psig)
- Secondary compressors undergoing materials evaluation and long-term life testing (operate up to 7,000 psig)
 - Critical path item
 - Evaluating advanced metals, ceramics, and coatings
- > System economic model developed
 - Paper presented at World Hydrogen Energy Conference

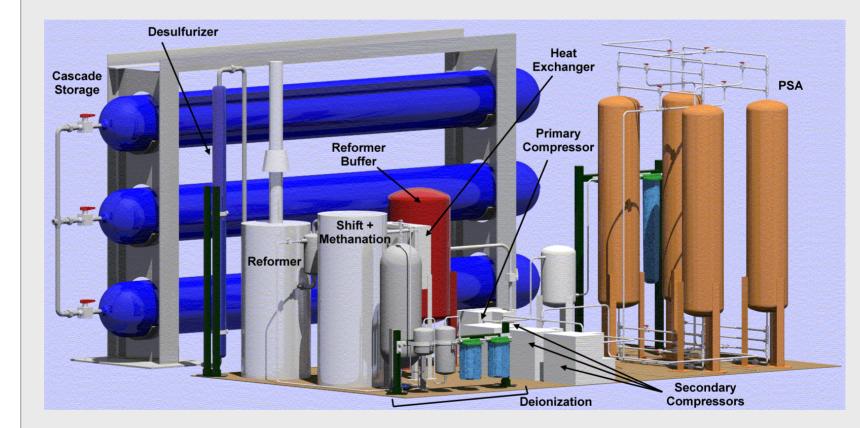
gti

Accomplishments (cont.)

- > Pressure Swing Adsorption (PSA) test facility constructed
- > PSA tests underway to evaluate multi-component removal effectiveness
 - Documenting trade-offs with fuel processor in areas related to CO and methane

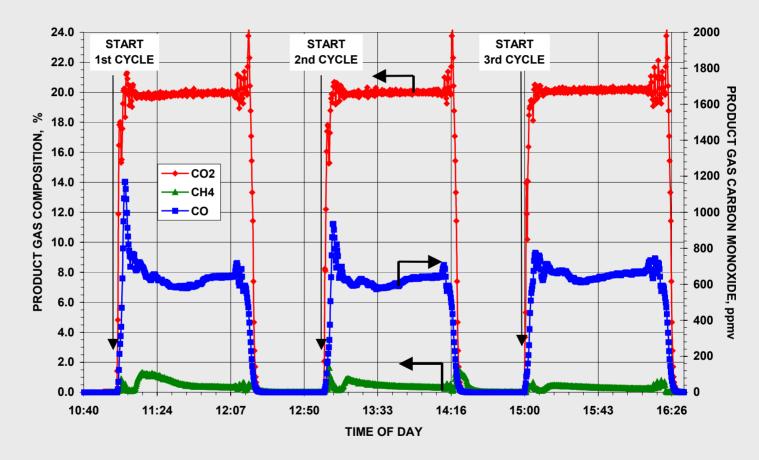
> Phase II Prototype - Alpha Integrated System Build

- Building "front end" of system ("hydrogen generator")
 - > Test "front end" first, then "back end" with fuel purification and high-pressure compression
- Steel skid procured and prepped
- 2nd generation fuel processor subsystem procured (beta) and subsystem assembly underway
- Natural gas & water treatment systems procured and being installed
- Primary compressors procured and being installed
- System controls procured



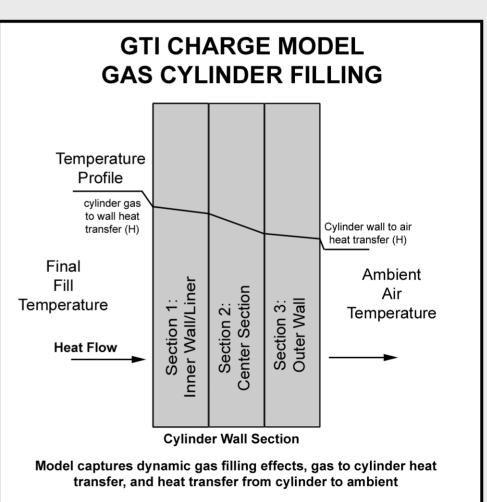
Natural Gas to Hydrogen Fueling System

gti


Preliminary Natural Gas to H2 Fueling Station Design

gti

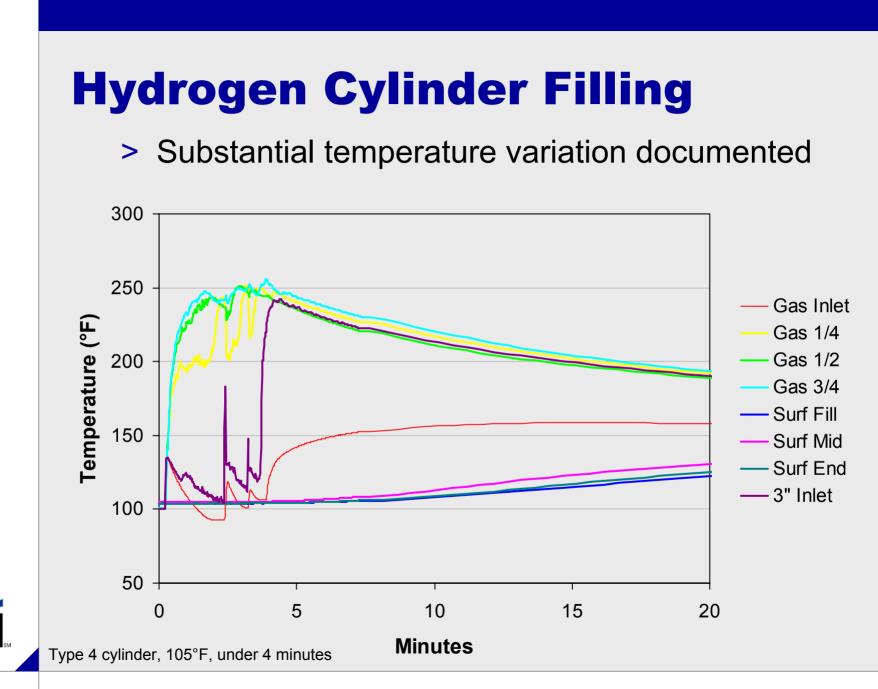
Further refinements underway to reduce size & cost


Fuel Processor Testing

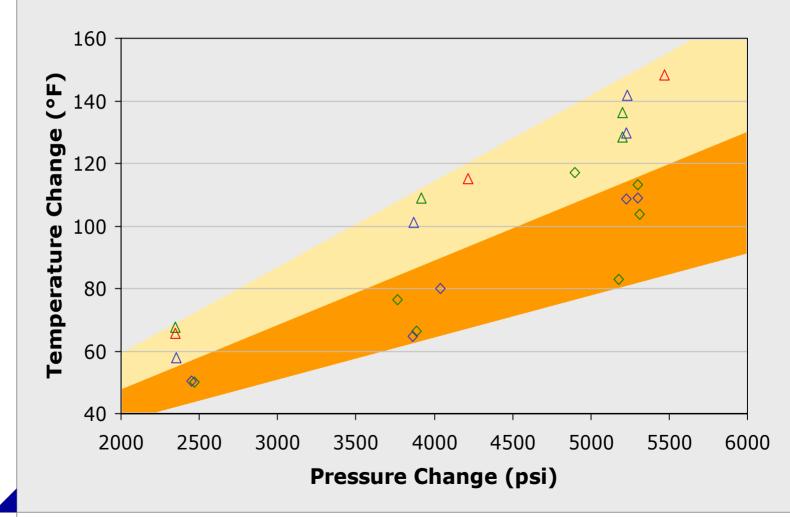
Substantial testing done on start-up, ramping, shutdown testing of fuel processor to characterize dynamic response

GTI CHARGEH2 Model

- Characterizes dynamic fast-fill process
- > Assess cylinders of different size & construction
- Various starting & ending fill conditions
 - Cylinders
 - Ground storage


GTI High-Pressure Hydrogen Test Facility

- > Full-scale, three bank, high-pressure hydrogen cascade
 - 7,000 psig
 - Expanding to 12,000 psig
- > Wide temperature range
 - -50 to 160°F
- > Fully instrumented with data acquisition
- Flexibility to run wide range of conditions



High-Pressure Hydrogen Environmental Chamber

15

Hydrogen Cylinder Filling Test Summary

Communication & Cooperation

Gas Technology Institute

- > Founding Member National Hydrogen Association
- > Member U.S. Fuel Cell Council
- > DOE Executive Advisory Council for FreedomCAR
- > Secretary SAE Fuel Cell Standards Committee
 - Specific input to group on vehicle/dispenser interface
- > International Code Council Ad Hoc Hydrogen Committee
- > International Energy Agency Advanced Motor Fuels Annex
- > U.S. TAG to ISO/TC 197 (ISO/CD 15869) and ANSI/NGV2 on hydrogen vehicle cylinder standards
- > Technology exchange with several companies/organizations in U.S., Canada, Japan, China, India, and Europe
- > Presented on this work at various meetings:
 - World Hydrogen Energy Conference (6/02), NHA Annual Meeting (3/03) SAE TOPTEC (4/03), SAE Gov-Ind Conference (5/03), others

FuelMaker Corporation

> NFPA committee on hydrogen fueling system fire safety codes

gti

Next Steps Alpha Unit Implementation

- > Complete build-up and testing of "front end" of alpha system in 2003
 - Fine tune system integration and controls
- > Build "back end" of alpha system second half of 2003
- > Target tests results from fully integrated alpha system by February 2004
- > Identify improvements for Phase III
- > Work with potential partners on field testing, commercialization, technology transfer

Conclusions

- > Significant thermal effects seen with hydrogen fast filling
- > Meaningful variation in gas temperature exist
 - Various factors: cylinder design and materials, time of fill, ambient temperature, cascade pressure and temperature, etc.
 - Data indicate potential for large spatial internal gas temperature variation
- Intelligent pressure-based compensation algorithms are expected to be viable
 - Near 100% fill under most conditions
 - Implementation costs confined to fueling station
 - Compatible with approaches requiring additional vehicular equipment and communication

