NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE

No. 1122

LG GT GI Y dY

SIDESLIP ANGLES AND VERTICAI-TAIL LOADS IN ROINTNG PULI -OUT MANEUYEFG
By Maurice D. White, Harvard Lomax, and Howard L. Turner
Ames Aeronautical Laboratory
Moffett Field, Calif.

Washington
:april 1947

NA C A LIBRARY
'ANGLES MEMORIAL AERONAUTICAL LABORATORY
agley Field Va

SIDESLIP ANGIES AND VERTICAI-TAIL IOADS IN ROILING PUTIT-OUT MANEUVERS
By Maurice D. White, Harvard Lomax, and Howard L. Turner April 1947

In the original derivation of appendixes A and B, the load factor n was inappropriately included in the definition of T. The Pollowing changes should be ñoted:
$\begin{array}{lll}\text { Page 4, change } & \tau \quad \text { aerodynamic time } & {\left[\left(\mathrm{pVS}_{\mathrm{W}} / \mathrm{nm}\right) t\right]} \\ \text { to } & \tau \quad \text { aerodynamic time } & {\left[\left(\mathrm{\rho VS}_{W} / \mathrm{m}\right) t\right]}\end{array}$
Pages 15 to 24 , chenge $n \mu$ to μ.
Page 20 equation B5 first line, change $\int_{0}^{t / n}$ to \int_{0}^{t}
Page 20 equation B5 third line, delete $\frac{1}{n}$

Page 20 equation $B 5$ fourth line, delete n.

Page 20 sixth Iine, change $b_{1} \approx \sqrt{N_{\beta} n}$ to $b_{1} \approx \sqrt{N_{\beta}}$

Figure 4, change $\pi \mu$ to μ.

The section "Design Charts" should be interpreted in accordance with the implications of the above changes. In particular, the distinctions made between nu and μ are no longer pertinent.

SIDESIIP ANGLES AND VERTICAI-TATH LOADS IN ROITING PULL-OUT MANFUVERS

By Maurice D. White, Harvard Iomax, and Howard I. Turner

SUMMARY

Previous NACA reports have indicated that it is possible to develop angles of sideslip which may cause critical vertical-tail loada in abrupt rudder-fixed rolls from accelerated flight, but the reliability of methods for predicting these sideslip angles has not beer demonstrated. In this report expressions for calculating the sideslip anglee in these meneuvers are derived from theoretical considerations, and numerical solutions are obtained for a wide enough range of variables to permit construction of design charts. Comparison of the maximum gideslip angles obtained from the design charts and from fligint tests with those obtained using a greatly simplified expression indicates sufficiently close agreement to warrant use of the simplified expression for first approximations in predicting eldeslip angles and vertical-tail loads occurring in rolifg pullout maneuvers for conventionel ailerons. An approximate method for treating cases of nonlinear directional-stability cheractoristice is presented which gives reasonably good results. The vertical-tail loads measured on one airplane in rolling pull-out maneuvers corresponded closely with those calculated by the simplest methoda when the actual sideslip angles attainod were applied.

INTIRODUCTION

Recently attention has been directed to the rolling pull-out maneuver as a condition in which crtical loads might be developed on the vertical tail through the attainment of large sideslip angles (reference I). Subsequent filight testa have verified the fact that the vertical-tail loads in rolling pull-out maneuvers may exceed design loads based on other maneuvers. To indicate the order of magnitude of these loads approximate expressions were presented in reference 1 for estimating the maximum sideslip angles and maximum vertical-tail loads developed in this maneuver; it was indicated in reference 1 , however, that flight values might exceed the values computed by these approrimate expressions. Comparison of the sideslip angles determined in filght with those computed using the
approximate expresaion of reference 1 verified that the approximate axpression underestimates the sidesilp angles developed, in most cases by a factor of the order of 2. This resmlt indicated that the usefulneas of the approximete expression of reference 1 is limited to the purpose of that report; that is, to demonstrate the importence of the rolling pull-out maneuver.

To provide inforination better suited to design purposes a more complete analysia has been made of the rolingg-pull out maneuver. In the analysis a ainplified expression suitable for preliminary deaign is developed for predicting the sideslip angle resulting from the rolling pull-out maneuver. Dosign charts which may be utilized for more procise computaticns are presented, and the effeots of such fectoris as nonlinear directional-gtability characteriatics are diacussed. Flight data aro presented and compared with the analytical results.

The determination of vertical-tail loads in rolling pull-out manouvers resolver itaelf" essentially into the determination of the eidealip angles developed. This is demonstratod by the agreement shown in figure i between vertical-tail loads determined in flight and those computed by the simplest methods using measured values of sideslip angle, with no regard for sidewash effects, differences in the dynamic pressure at the tall from free-stream dynamic pressure, or poesible yawing velocities. For this reason the present report is devoted exclusively to the determination of the sideslip angles developed in roling pull-outs.

SYMBOIS

The following symbols are used throughout this report:
A aspect ratio $\left(b_{W}{ }^{2} / S_{W}\right)$
a real part of complex root
b imaginary part of complex root
b_{W} wing span, feet
g
acceleration due to gravity, 32.2 feet per second per second
I_{X} moment of inertia of airplane about X-axie, slug-feet square
I_{Z} moment of inertia of airplane about z-axis, slug-feet square
$1_{a} \quad 4 I_{X} / \mathrm{mb}_{W}{ }^{2}$
$i_{c} \quad 4 I_{Z} / \mathrm{mb}_{W}{ }^{2}$
k_{X} radius of gyration about X-axis, feet
k_{Z} radius of gyration about Z-axis, feet
Iv load on vertical tail, pounds
i_{t} tail length, feet
In mase of alrplane, slugs
n normal acceleration divided by acceleration of gravity
\bar{p} rate of roli, radians per unit aorodynamic time
P rate of roll, radians per second
q free-stream dynemic pressure, pounds per square foot $\left(\frac{1}{e^{\rho} V^{2}}\right)$
q_{t} dynamic pressure at tail, pounds per equare foot
\bar{r} rate of yaw, radians per uilit aerodymamic time
x rate of yaw, radians per second
S_{W} wing area, squere feet
S_{t} Vertical-teil area, square feet
s operational parameter
t time, seconde
V velocity of airplane along flight path, feet per second
∇ component of flight velocity along Y-axis, feet per second
W weight of airplane, pounds
β angle of sidesilp (positive when right wing is forward), radians
β° angle of sideslip, degrees
δ_{r} rudder deflection, degrees
θ angle between horizontal plane and relative wind, radians

λ_{n}	damping factor (used in $e^{\lambda_{n} t}$)
λ	wing taper ratio $\left(\frac{\text { tip chord }}{\text { root chord }}\right)$
μ	relative density coefficient ($\mathrm{m} / \rho \mathrm{S}_{\mathrm{w}} \mathrm{b}_{\mathrm{w}}$)
ρ	air density, slugs per cublc foot
T	
τ_{r}	relative rudier offectiveness $\left[\left(\partial C_{N_{t}} / \partial \delta r\right)\left(\frac{1}{\partial C_{N t} / \partial \alpha_{t}}\right)\right]$
φ	angle of bank, redians
ψ	angle of yaw, radiens
L	moment about X-axis, foot-pounds
N	moment about 2 -axis, foot-pounds
N_{t}	normal force on vertical tail, pounds
Y	force along Y-aris, pounds
$\mathrm{C}_{\mathbb{N} t}$	vertical tail normal force coefficient ($\mathrm{N}_{t} / \mathrm{Z}_{t} S_{t}$)
$\partial C_{N t} / \partial \alpha_{t}$	slope of curve of vertical-tail normal-force coefficient against angle of attack, per degree
${ }^{\text {c }}$ I	lift coefficiont ($\mathrm{nW} / \mathrm{qS}_{\mathrm{W}}$)
${ }^{\text {C }}$	lateral force coefficient ($\mathrm{Y} / \mathrm{qS} \mathrm{w}_{\mathrm{w}}$)
c_{2}	rolling-moment coefficient ($L^{\prime} / \mathrm{qS}_{W} \mathrm{~b}_{W}$)
ΔC_{2}	increment of rolling-moment coefficient due to lateral-control deflection
C_{n}	yawing-moment coefficient (N/qS $\mathrm{W}^{\mathrm{b}} \mathrm{w}^{\text {) }}$
$\Delta 0_{n}$	fncrement of yawing moment coefficient due to lateral-control deflection
$\mathrm{C}_{\boldsymbol{Y}}$	$\partial \mathrm{C}_{\mathrm{Y}} / \partial \beta$
${ }^{C} 2_{\beta}$	$\partial c_{2} / \partial \beta$

$\mathrm{C}_{\mathrm{n} \beta}$	$\partial c_{n} / \partial \beta$.
Cl_{r}	$\partial C_{l} / \partial\left(r b_{W} / \mathrm{LV}\right)$	
$\mathrm{C}_{\mathrm{n}_{\mathrm{r}}}$	$\partial c_{n} / \partial\left(r b_{W} / 2 V\right)$	
${ }^{C_{2 p}}$	$\partial \mathrm{c}_{\mathrm{l}} / \partial\left(\mathrm{pb}_{\mathrm{w}} / 2 \mathrm{~V}\right)$	
$\mathrm{C}_{\mathrm{n}_{\mathrm{p}}}$	$\partial C_{T} / \partial\left(p b_{W} / 2 \nabla\right)$	
Y_{V}	$\left(q^{S} S_{W} / \mathrm{mV}\right) C_{Y_{\beta}}$	
I_{β}	$\left(q S_{W} b_{W} / m k X^{2}\right) C^{\prime} l_{\beta}$,
N_{β}	$\left(\mathrm{qS}_{W} \mathrm{~b}_{W} / \mathrm{mk}_{\mathrm{Z}}{ }^{2}\right) \mathrm{c}_{\mathrm{n} \beta}$	
N_{p}		.
${ }^{N_{r}}$		-
I_{p}		
Ir_{r}	$\left(q S_{w} b_{w} / m k x^{2}\right)\left(b_{w} / 2 V\right) c_{l_{r}}$	
β^{*}	parametors used in computing	$\beta_{\text {max }}^{0}$ for nonlinear curver
$\left.\left(c_{n \beta^{0}}\right)_{1}\right\}$	of C_{n} against β	
$\left(\mathrm{Cn}^{\circ} \mathrm{O}\right)_{a}$.	.

THEORETICAI ANALYSIS

For the puxposes of the theoretical analysis the rolling pull-out maneuver is consideled to coneiat of an abrupt aileron deflection in accelerated flight, the rudder being held fixed. The normal acceleration and the aileron deflection are considered constant throughout the maneuver, and the angle θ between the horizontal plane and the relative wind is considered small enough so that $\cos \theta$ can be set equal to unity. These assumptions are conservative in that they will result in computed aldealip angles larger then those that would be obtained in actual flight meneuvers where a finite time is required to reach maximum normal teceleration or maximum alleron deflection or where the normal eccelerátion is unsteady or where the angle θ is large. The effect of differences in θ on the magnitude of the maximum computed angle of side s.lip will be small, but the effect of unsteady normal acceleration may be larger, though still conservative.

In the analysis the parameter $\left(\mathrm{SC}_{2} / \mathrm{C}_{Z_{\rho}}\right)\left(\mathrm{C}_{\mathrm{I}} / \mathrm{C}_{2 \beta} \mathrm{O}\right)$ is substituted for the parameter ($\mathrm{pb} / 2 \mathrm{~V}$) $\left(\mathrm{C}_{\mathrm{I}} / \mathrm{C}_{\mathrm{n}_{\beta}} \circ\right.$) used in reference 1 .

The equations and methode used in the theoretical anelyeis are given in detail in appendixes A, B, and C. Appendix A gives the equations for which numerical solutions are obtained in order to develop design charta. In appendix B a aimplifiod expression is obtained for calculating the maximum sidesilp angle developed in rolling pull-cute. Appondix C describes an approximation made for the gravity componont of force on the airplane which perente its inclusion in the equatione of motion as a linear factor.

Stmplifiod Expresion

The theoretical analysis presented in detail. in appendix A and eppondix B leads to the results plotted in figure 2 from which the following elmplified expression for the maximum sideslip angle developed in rolling pull-out maneuvers is deduced:

$$
\begin{equation*}
\frac{\beta_{\text {max }}^{\circ}}{\left(\Delta C_{2} / C_{I_{p}}\right)\left(C_{L} / C_{n \beta} \circ\right)}=1 / 4 \tag{I}
\end{equation*}
$$

In the deriration of this expression the value of $C_{n_{p}}$ was assumed as $C_{L} / 16$. Thie value is about the mean of the values of $C_{L} / 18$ and $C_{I} / 14$ which would be deduced for aspect ratios of 6 and 10 and a taper ratio of 0.5 from reference 2. The relative insensitivity of this value to changes in both aspect ratio and taper ratio within current design limits is noteworthy. The values of C_{l} p presented in reference 2 are based on lifting-line theory; refinements to these values based on iffting-surface theory are shom in reference 4.

In the development of equation (1), it wes aleo assumed that the adverse yawing-moment coefficient of the allerons was given by

$$
\Delta C_{12}=\left(\Delta C_{i} / C_{i_{p}}\right)\left(C_{L} / 16\right)
$$

This is the theoretical value for a wing of aspect ratio 8 and taper ratio 0.5 heving ailerons extending over the outer 50 percent of tho epan, as obtained by combining data in references 2 and 3. These references may also be used to determine values of ΔC_{n} for other wing-aileron configurations.

In reference 3 only the induced yawing moment due to the ailerons is considered. For large aileron deflections or for unconventional ailerons the profile drag effect may al.so be importent. An expanded form of equation (I) which may be used to account for emall differences in ΔC_{n} from that assumed for equation (1) is given by equation (2).

$$
\begin{equation*}
\frac{\beta o_{\max }}{\left(\alpha_{2} / c_{l_{p}}\right)\left(\sigma_{L} / \sigma_{n \beta} \nu\right)}=2 \frac{\alpha_{n}}{C_{L}}\left(\frac{C_{l_{p}}}{\alpha_{2}}\right)+\frac{1}{8} \tag{2}
\end{equation*}
$$

For reasons discussed in more dotall later, the validity of equation (2) decreases es the value of ΔC_{n} departe from $\left(\Delta C_{2} / C_{l_{p}}\right)\left(C_{I} / 16\right)$.

The sum of the values of $C_{n p}$ and ΔC_{n} ueed in deriving equation (1) Is equal to that used in deriving the equivalent expression given in reference 1 . The value of the constant $1 / 4$ given in equation (1) is, however, twice that obtained in reference 1 , which indicatee that the derivation of reference I which is based on static conditions is oversimplified.

In the next section of this report, Design Charte, the resulte of a more exact analybis indicate that equations (1) and (2), while satiofactory for the preliminary design of airplanes with conventionel arrengements, may be greatly in error for airplanes with unconventional latoralcontrol devices such as spoilers.

Design Charts

In order to provide data suitable for design purposes, and to show by comparison the applicability of equations (I) and (2), a numerical analysis was made in which the maximum aideslip angle developed for each of several combinations of veriables was determined. The equations of appendix A used for the analysis involve only minor assumptione and these are such as to result in slightiy larger computed angles of siden slip than would actually be obtained.

The range of variables considered covers the limits of conventional design practice. The analysis was made for the conditions of the $V-n$ diagram shown in figure 3. Calculations were made for the curve of $C_{L}=0.9$ (curve $A-B$ in fig. 3) and at a high-speed point for $n=8$ (point C in fig. 3). Results obtained from this analysts are considered equally applicable to the region within the boundary shown in figure 3. Compressibility effecte are not considered in the analyeis.

Along the normal acceleration-velocity curve, values of $n \mu$ of 30, 75, and 120 were considered for a O_{I} of 0.9 and of 120 for a C_{L} of 0.35 . The value of μ for an airplane with a wing loading of 40 pounds per square foot and a span of 40 feet at sea level is about 13. Variations in the othor parametors auch as. vertical-tail size, dihedral effect, moment of inertia about the airplane X-and Z-axes, and wing aspect ratio and taper ratio were considered either individually or in combination where it appeared edvisabie. The combinations of parameters used in these computations are given in table I. Since the analyais was carried out on a dimensionless basis, the velocity and normal acceleration for any particular airplane configuration may be calculated from the expression

$$
\begin{gathered}
V=8.02 \sqrt{\frac{n \mu b_{F}}{C_{L}}} \text { feet per second } \\
n=32.2 \frac{\rho b_{W}}{\left(W / S_{W}\right)}(n \mu)
\end{gathered}
$$

In cases where the oscillations were divergent the maxinum value of the sideslip angle was considered to be that attained in the first poak.

The results of the numerical analysie are presented in figures 4 and 5 in a form that permits easy interpolation for deaign purposes. The curves of figure 4 cover the part of the $V-n$ diagrem which is ifmited by maximum lift coefficient (curre $A-B$ of fig. 3). In figure $4(a)$ the variation of $\beta_{\max }^{\circ}$ with $\left(\Delta C_{l} / C_{l_{p}}\right)\left(C_{I} / C_{n \beta} \circ\right)$ is presented for various values of $C_{n \beta}{ }^{\circ}, \Delta C_{n}$, and $n \mu$ for a value of $C l_{\beta} O=$ -0.0010; corresponding data for a value of $C_{i \beta}{ }^{\circ}=0$ are shown in figure 4(b).

Similar curves for very high speeds and high normal acceleration (point C of fig. 3) axe ahown in figure 5. For purposes of comparison, $\beta_{\max }$ as calculated from equation (2) with ΔC_{n} set equal to $\left(C_{i} / C_{l_{p}}\right)\left(C_{I} / 16\right)$ is shown on all the curves. Also the results of applying equation (2) to the case of $\Delta C_{n}=0$ is indicated in figure 4 for comparison with the corresponding curves obtained from the numerical enalysis.

The curves of figure 4 indicate thet for preliminary estimates of sideslip angles and corresponding vertical-tall loads the use of aquation
(2) for values of $\Delta 0_{n}$ around $\left(\Delta c_{2} / C_{l_{p}}\right)\left(C_{I} / 16\right)$, that is, equation (1), is satisfactory, the percentage error being for nost practical configurations of a relatively low megnitude and the direction of the error being conservative except for amengements having low dihedral effect and low directional stability. The deviations in the latter case are greatest for the lowest values of $n \mu$ where, from the standpoint of vertical-tail loads, the importance of the deviations would be less, since low values of $n \mu$ represent low vajues of noymal acceleration and hence of G_{I} which correspond to low values of β.

The agreement shown in figure 4 between the design charts and the curve representing equation (2) with $\Delta C_{n}=0$ is poorer then the egreement shown with $\Delta C_{n}=\left(C_{2} / C_{l_{p}}\right)\left(C_{I} / I 6\right)$. This poorer agreement results from the fact that equation (2) neglects a phase relationship that exists between the effects of ΔO_{n} and $C_{n p}$. This phase relationship is properly accounted for only where $\Delta C_{12}=\left(C_{2} / C_{l_{p}}\right)\left(C_{L} / 16\right)$ as in equation (1), eo that equation (2) becomes less valid as it departs from equation (1). The varying discrepancies indicated in figure 4 between the results of the numerical analysis and of the application of equations (1) and (2) may be used as an indication of the diacrepencies that will arise from the use in equation (2) of other values of Δc_{n}.

Results of applying the numerical ansifsis to high values of nu and low values of C_{I} which together correspond to high speeds and high accelerations are shown in figure 5 and indicate that for this condition the use of equation (1) is decidedy conservative for all configurations. This condition is not considered too important as regards vertical-tail loads because the maximum amount of aileron control is generally not applied at the highest speeds, with the result that the loads are not critical at the highest speeds. These curves are included, however, as an indication of the range of applicability of equation (1).

The effects of independent changes in several other variables that were consilered in the analyais are indicated in figure 6. The results in figure 6(a) indicate that, for the changes in configuration assumed, the differences are of secondery order. Figure 6(b) shows that the rate of movement of the aileron control within the limits indicated has only a emall effect on the maximum sidesilp angles attained.

Discussion of Nonlinear Characteristics

The preceding analyeis has been carried out assuming inear variations of C_{n} with β^{0} for all configurations. In practice, however, these curves as well as those for other stability coofficients are frequently nomlinear, Accordingly, an analysis wes made to develop
mothods for handing nonlinear verlations of C_{n} with β^{0} that would permit uee of the simplified equations (1) and (2) or the design charts of figure 4. For this purpose numerical calculations were made of the maximum eidealip angles developed in rolling pull-outs, using the equations of appendix A, but modified by using appropriate initial conditions, and for simplicity, by using the angle of bank P instead of the approximation of appendix C. For the calculations $C_{n \beta}{ }^{\circ}$ was assumed nonlinear, $C_{n_{r}}$ and $C_{Y}{ }^{\circ}$ were assumod to vary consistently with $C_{n \beta}{ }^{\circ}$; and all
other paremeters of the airpleno remeined constant. The various curves of C_{n} against β° covered by the calculations are belleved to encompass roughly the variations ueuelly encountered in practice. The variations essumed are shown in figure 7 together with the results of the calculations presented as values of maxiroum sideslip angle attained for various applied rolling-moment ccefficients ΔC_{2}. The parameter ΔC_{l} was used instead of $\left(\Delta C_{i} / C_{i_{p}}\right)\left(C_{I} / C_{n \beta} O\right)$. In the abscises of figure 7 because for the nonlinear case no single value of $C_{n \beta} o$ could logically be used in the latter term.

The curves of figure 7 indicate that for the cases considered the variations of $\beta^{\circ} \max$ with ΔC_{i} are consistent and may be predicted by the following purely ompirical mothod:

1. Denote by $\left(C_{n \beta} O\right)_{1}$ the slope of the curves of C_{n} againgt $\beta 0$ through $\beta=0$, by $\left(C_{n_{\beta}} O\right)_{2}$ the slope of the curve of C_{n} aegainst β° at values of β^{0} beyond the break in the curve and $b y \beta^{*}$ the sidesilp angle at which the break in the curve of C_{n} againat β° occurs.
2. Assuming each of the slopes $\left(C_{n \beta}\right)_{1}$ and $\left(C_{n \beta} O\right)_{2}$ to exiat separately through $\beta=0$, compute the curves of $\beta_{\max }$ againat $\left(\Delta_{2} / C_{l_{p}}\right)\left(C_{I} / C_{n \beta} O\right)$ from the design charte.
3. Through $\beta=0$ draw the curve of $\beta^{\circ} \max$ againat $\Delta C q$ corresponding to $\left(C_{n \beta}{ }^{\circ}\right)_{1}$. Denote this curre as line A.
4. Through $\beta 0=1.5 \beta^{*}\left[1-\left(C_{n \beta}\right)_{1} /\left(C_{n \beta}\right)_{2}\right]$ at $\Delta C_{2}=0$, draw the curve of β° mex against ΔC_{2} corresponding to $\left(C_{n \beta}\right)_{2}$. Denote this curve as line B.

The final curve is composed then of line A from $\beta=0$ to the intersection of lines A and B, and of line B. from the intereection on to higher values of β°. The curves computed from tinis method for curves II, $I V$, and V are show in figure 7 for comparison with those computed by the numerical analysis. A leasonable fairing of the intersection of lines A and B may be applied for greater accuracy.

This analysis was made only for curves of C_{n} against β^{0} which could be approximated by two straight lines. For cases in which this is not sufficient, or for cases in which extreme accuracy is desired, solutions mey be obtained by use of a differential analyzer or by a step-bystep integration as in reference 5.

The generality of the method presented and conclusions indicated by the curves of figure 7 is not, of course, established by the few cases considered. The results do offer promise that with further analysis the concluelons will be verified or other rational simplifioations will be developed. In assessing the value of the methods given here it is of interest to note that it gave good agreement with the maximum sidesilp angles computed for the airplane of reference 5 by step-by-step methods.

FLIGHI-TEST RESUIIS

Filght data which may be compared with the theoretical resulte previously discussed have been obtained on two airplanes, one of which was Ilown with two different vertical-tail configurations. Views of the airplanes tested are shown in figure 3. A typical time history of a roll out of a steady turn is given in figure 9. It will be noted in figure 9 that the maximum value of the vertical-tail load occurs at the time of maximum sideslip. For airplane 1 , fmes flight data obtained in aileron rolls were used, and for airplane 2 at configurations 1 and 2, Iangley flight date on rolling pull-outs were used. For airplane 3, the maneuvers were not made steadily enough to permit correlation with the design charts or with equation (I), the normal acceleration for most runs being less steady than the time history shown in figure 9.

Comparison of Flight and Theoretical Data

For the airplanes for which filght data were available, there were inoufficient data to permit accurate eatimation of $C_{i \beta}$ or of $C_{n \beta}$ so that correlation could not justifiably be made with the design charts presented in the preceding sections of this report. As an indication of the applicability of equation (I), however, the value of C_{n} was estimated by the mothod shown in table II. The resulting sidesifp angles are compared with values obtained in filight tests in figure 10. As a matter of interest the values of sideslip angle computed from the approximate expression of reference 1 , that is,

$$
\begin{equation*}
\beta^{0}=\frac{C_{I}}{8} \frac{\left(p b_{W} / 2 V\right)}{\left(\partial C_{I} / \partial \beta^{0}\right)} \tag{3}
\end{equation*}
$$

are also show in figure 10. For simplicity the chenge in aideslip angle denoted by $\Delta \beta^{\circ}$ is used in figure 10 instead of the absolute sideslip angle of β°.

For airplane 1, excellent agreement is indicated between flight data and equation (1) and correspondingly poor agreement for equation (3). (See fig. 10.)

For airplane 2 with configuration 1 the comparison indicates reasonably good agreement between flight values of β and values computed from equation (1).

For airplane 2 with configuration 2, the agreoment betweon flight data and equatipn (I) is less favorable.

Although the data for alrplane 3 were not steady enough to permit their inciusion in the correlation, it is of Interest that when the maximum accelerations were used in the computations the values of sideslip angle were consistently larger than those obtained in filght.

There are several factore entering into the foregoing comparison that would explain, at least partialiy, the disagreements noted and which should be considered in the interpretation of all the comparisons. These factors, it will be noted, are essentially dofects in the basic data and hence represent limitations in the application to these airplanes of the desien charts as well as equation (1). One of these factors is the value of $\mathrm{C}_{\mathrm{n} \beta}$ used in the approximate expreseion. The method used for determining this value in the present case, noted in table II, involves the estimation of the values of $\partial \mathrm{CN}_{t} / \partial \alpha_{t}$ and T_{r} from a knowledge of geometric properties of the airplene and of the value of $d s_{r} / d \beta$ as determined from ateady sideslips. The methods used for estimating the values of $\partial C_{N t} / \partial \alpha_{t}$ and T_{r} ere based on wind-tunnel data (reference 6) and remain to be verified by fllght tests. For airplanes that are already flying, a preferable mothod of determining $C_{n \beta}$ from flight tests is indicated in reference 7.

In addition, the methode do not attempt to take into account rationally the possible nonlinearity of the curves of C_{n} against β which are Prequentiy found in practice. This factor is aiscussed at length in a preceding section of this report. In this connection it is significant that the curves of δ_{r} versus β in steady sideslip were less linear for configuration 2 than for configuration 1 of airplane 2, and the agreement between filght and computed values of sideslip angle was not so good for configuration 2 as for configuration 1.

A third source of error results from the use of the term $\left(\mathrm{C}_{2} / \mathrm{C}_{l_{p}}\right)\left(\mathrm{C}_{\mathrm{I}} / \mathrm{l} 6\right)$ for the adverse zawing-moment coefficient of the ailerons. Aside from the small differences arising from differences in wing and alleron configurations from that assumed, the theoretical analyais from which this value was obtained (reference 2 combined with reforence 3) accounts only for the induced drag and not for the profile drag due to aileron deflection which may in some ceses be of signtficant value.

Vertical-Tail Ioads

For airplane 3, the flight data were obtained at the Ames Jaboratory from simultaneous ruder-fixed pull-ups and rolls and from abrupt rudderfixed rolls from steady accelerated turns. Both maneuvers were besically a sudden application of ailerons in accelerated flight and no differentia tion is made between the date for the two maneuvers.

The maximum loads on the verticel tall as obtalned from pressurom diatribution measurements taken while performing these meneuivers are compared in figure I with those calculated using the expression

$$
\begin{equation*}
I_{V}=q t S_{t} \frac{d C_{N}}{d \alpha_{t}} \beta^{0} \tag{4}
\end{equation*}
$$

The values of β^{0} and q_{t} used in the expression were flight values corresponding to the time at which the loads were obtained, and no allowance was made for the effects of sidewash as discussed in reference 8 , and $q t$ was assumed equal to a. However, the data were corrected for the load changes resulting from small inadvertent movements of the rudder. At the time of maximum sideslip angle the tail loads computed in this manner gave good agreement with the measured loads; at other times in the runs as indicated in the time history of figure 9, effects of jawing velocity, and so forth, would have to be included to obtain correlation. The scatter indicated in figure i is partiy accounted for by the accuracy with which the loads are determined (error eatimated to be 5 to 15 percent, depending on the absolute magnitude of the load). It appears, therefore, that equation (' 4) is adequate for estimating vertical-tail loads when the correct sideslip angles are applied.

CONCLUSIONS

From a theoretical analysis of the motions of an airplane in a rudderfixed, rolling pull-out maneuver and from comparison of the results of the analysis with flight date the following results have been obtained:

1. From numerical solutions to the theoretical equationa design charts were developed for predicting the sideslip afgles in rolling pullouts for a wide rangs of variables.
2. A sfmplified expression for computing the maximum sideslip angles in rolling pull-outs was derived. The maximum sidesilp ancies computed by this expreseion were sufficiently close to those obtained from filght teste and from the design charts to warrant use of the expression for preliminary estimates of the maximum eidesilip angles and hence the maximum vertical-tail loade.
3. An approximate method was developed for treating cases of nonlinear directional-stability characteristics. From a limited comparison with results obtalned from a numerical analysis of the theoretical ezpressions, the approximate method eppeared to be generalily applioable.
4. The vortical-tall loads in rolling puli-out maneuvers corresponded closely with those calculated by the simplest methods whon the actual sideslip aneles attained were applied.

Ames Aeronautiaal Laboratory,
Mational Advisory Committee for Aeronautice, Moffett Field, Calif., August 1946.

APPENDIX A

EQUATIONS FOR NUMERICAL ANALYSIS

The solution to the linearized lateral equations of motion (reference
9)

$$
\begin{align*}
& \left(-\frac{1}{2} \frac{C_{T} \varphi}{A}\right)+(\bar{x})+\left(\frac{d_{B}}{d T}-\frac{I}{2} \beta C_{Y_{\beta}}\right)=0 \tag{AI}
\end{align*}
$$

was obtained by operational methods using the Laplacian operator, such that (reference $10, \mathrm{p} .2$)

$$
\begin{gather*}
\tilde{f}(s)=\int_{0}^{\infty} \bar{f}(x) e^{-\theta x} d x \\
\tilde{\theta I}(s)-\bar{f}(0)=\int_{0}^{\infty} \frac{\partial \bar{f}}{d T} e^{-s x} d x \tag{AP}
\end{gather*}
$$

The reduced equations, therefore, can be written,

$$
\tilde{p}\left(B-\frac{c_{p}}{i_{a}}\right)-\tilde{r^{c}} \frac{{ }^{c} q_{r}}{i_{a}}-2 d \tilde{\beta} \frac{{ }^{c} q_{\beta} \mu}{i_{a}}=\sim \frac{\Delta c q_{\mu}}{\Delta 1_{a}}
$$

$$
\begin{gather*}
\tilde{p}\left(-\frac{C_{n_{p}}}{I_{c}}\right)+\tilde{r}\left(s-\frac{C_{n_{r}}}{i_{c}}\right)-2 \tilde{C_{n \beta} \mu} \\
1_{c} \tag{A3}
\end{gather*}=\frac{\Delta C_{n \mu}}{\varepsilon_{c}}
$$

provided the initial rates of roll and yaw and the initial angles of bank, yew, and sideslip are all zero. The solution to these equations in torms of angles of aideslip is given, therefore, by
where the symbol I^{-1} stands for the inverse of the operation indicated by equation (A2). The reduction of this expression is normally obtained by factoring the denominator of equation (A4) and making use of the axpression

$$
\begin{equation*}
I^{-1}\left(\frac{1}{\theta^{-}-\lambda_{n}}\right)=e^{\lambda_{n} T} \tag{A5}
\end{equation*}
$$

In the present case, however, the denominator represents a quartic for which there is no practical general factorization, so that either a numerical solution or simplifying assumptions are required tc obtain quantitative resuita in terms of the derivatives.

The design charts presented as figures 4 and 5 were obtained ron numerical solutions using values of the derivatives presented. in table I.

APPENDIX B

DERIVATION OF APPROXIMATE EXPRESSION

Neglecting the terms $\frac{1}{2} C_{L_{l}}$ and $C_{n_{p}} / i_{C}$ in finding the roots to the quartic, an assumption which is best for high-speed unaccelerated flight, equation (A4) is written

This reduces to
where

$$
\mathrm{a} \approx \frac{1}{2}\left[\left({c_{n_{r}} / 1_{c}}\right)+\frac{1}{2} c_{Y_{\beta}}\right]
$$

and where, by further neglecting

$$
\left[\left(C_{Y_{\beta}} / 2\right)-\left(C_{D_{r}} / 1_{C}\right)\right]^{2} / 4
$$

ae compared to

$$
a\left(c_{n \beta} \mu / I_{0}\right), \quad b \approx \sqrt{\varepsilon\left(c_{n_{\beta}} \mu / I_{c}\right)}
$$

The part of equation (B 2) multiplying $\mathrm{C}\left(\Delta \mathrm{C}_{\mathrm{n}} \mu / \mathrm{Bic}\right)$ roducea to $-\left[s-\left(C l_{p} / i_{a}\right)\right]$ since $\frac{1}{2}\left(C_{l_{r}} C L / i_{a}\right)$ may bo neglected as compared to $\mathrm{C}_{\text {lp }} / \mathrm{i}_{\mathrm{a}}$. inis part can be rerritten

$$
-\frac{\Delta C_{n} \mu}{1_{c} 1 b s}\left(\frac{1}{s-a-1 b}-\frac{1}{s-B+1 b}\right)
$$

which, according to equation (A5), has the inverse transform (referenco 10)

$$
\begin{equation*}
-2 \frac{\Delta G_{n^{\mu}}}{1_{c^{b}}^{b}} \int_{0}^{T} e^{a x} \sin b x d x \tag{B3}
\end{equation*}
$$

The part of equation (BI) which multiplies $2\left(\Delta C / \mu / 1_{\mathrm{a}} \mathrm{g}\right)$ can be rewritten

$$
\begin{aligned}
& \left.+\frac{\left\{\frac{1}{21 b\left[a-\left(c_{p} / 1_{a}\right)+1 b\right]}\right\}}{a-a-1 b}-\frac{\left\{\frac{1}{21 b\left[a-\left(c_{p} / 1_{a}\right)-1 b\right]}\right.}{B-a+1 b}\right\}
\end{aligned}
$$

which, according to equation (A5), has the inverse transform

$$
\begin{align*}
& +\frac{\frac{C_{I_{p}}}{I_{c}}-\frac{I_{C}}{2} C_{I}+\frac{C_{I} C_{n_{r}}}{2 I_{c}}\left(\frac{2 a-\frac{C I_{p}}{I_{a}}}{a^{2}+b^{2}}\right)}{\left[\left(C_{I_{p}} / I_{a}\right)-a\right]^{a}+b^{2}} e^{a x} \cos b x \\
& +\frac{\frac{I}{b}\left(\frac{C_{n_{p}}}{I_{a}}-\frac{I_{2}}{C_{L}}\right)\left[\left(C_{I_{p}} / i_{a}\right)-a\right]}{\left[\left(C_{I_{p}} / I_{a}\right)-a\right]^{a}+b^{a}} e^{a x} \sin b x \\
& -\frac{\left(\operatorname{cIC}_{n_{r}} / 2 b i_{c}\right)\left[a^{2}-b^{2}-a\left(q_{p} / i_{a}\right)\right] /\left(a^{2}+b^{2}\right)}{\left.\left[C \eta_{p} / i_{a}\right)-a\right]^{a}+b^{2}} \theta^{a x} \sin b x \quad d x \tag{By}
\end{align*}
$$

By assuming now that $C_{n_{p}}=\left(C_{I} / 16\right)$ and the adverse yawing-mosent coefficient of the ailerons ΔC_{n} is equal to $\left(C_{I} / 1 \sigma\right)\left(\Delta C_{2} / c_{l_{p}}\right)$, and changing the notation and the variable in order to simplify the results, the sum of equations (B3) and (B4) can be written

$$
C_{n p} \frac{p b}{2 v}=C_{n_{a}} S_{a} \quad ? ?
$$

$$
\begin{aligned}
& -\frac{\frac{1}{16}+\frac{1}{2^{1}}\left[1-N_{r}\left(\frac{2 a_{1}-I_{p}}{a_{1}{ }^{2}+b_{1} 2}\right)\right]}{\left(I_{p}-a_{1}\right)^{2}+b_{1}^{2}} I_{p N \beta e^{a_{1} x} \cos b_{1} x}
\end{aligned}
$$

$$
\begin{align*}
& \left.\left.-\frac{1}{16} b_{1}\right] e^{a_{1} x} \sin b_{1} x\right\} \max \tag{By}
\end{align*}
$$

where

$$
\begin{aligned}
& a_{1} \approx \frac{l}{2}\left(Y_{V}+N_{r}\right) \\
& b_{I} \approx \sqrt{N_{\beta} m_{2}}
\end{aligned}
$$

Equation (B5) may be written

$$
\frac{\beta^{O_{\max }}}{\left(\Delta C_{2} C_{L} / C_{q_{p} C_{n \beta}}\right)}=\mathrm{P}\left(N_{\beta}, I_{p}, N_{r}, Y_{V}, I_{C}\right)
$$

As an indication of the magnitude resulting from this analysis, the following approximate values were chosen:

$$
\begin{aligned}
& N_{z}=-0.126-0.050 N_{\beta} \\
& I_{\nabla}=-0.177-0.012 N_{\beta} \\
& i_{c}=0.143
\end{aligned}
$$

and equation (B5) was plotted on figure 2 for various values of N_{β} and I_{p}. The curves show that for the assumption mentioned, equation (B5) may be written with littie error as

$$
\frac{\beta O_{\max }}{\left(\triangle C_{2} C_{I} / C_{Z_{p}} C_{n \beta} O\right)}=\frac{1}{4}
$$

APPEIDIX C

APPROXIMATION FOR SIIVY IN THEORETICAL ANALYSIS

The asaumption made in solving equation (Al) that φ is equal. to einp is equivalent to roplacing the sine curve with a straight ilne having the seme slope as the initial blope of the sine curve, and becomes increasingly erroneous as φ beciomes greater. A better approximation may be obtained by finding the slope of a straight IIne which has the same integrated effect as the sine ourve. This relationship may bo expressed mathematically by
or

$$
\begin{align*}
& \int_{0}^{T_{I}} \operatorname{k\varphi d} T=\int_{0}^{T_{1}} \sin \varphi d T \\
& \int_{0}^{T_{1}} \varphi\left(k-\frac{\sin \varphi}{\varphi}\right) d T=0 \tag{CI}
\end{align*}
$$

where k represents the desired straight line alope and T_{1} is the time of maximum sideslip.

The angle of bank will certainly be greater than zero in the rem gion considered and may be replaced by some average value Φ, so that equation (CI) can be writton as

$$
\Phi \int_{0}^{T_{1}}\left(k-\frac{\theta \operatorname{nn\varphi }}{\varphi}\right) d r=0
$$

or

T_{1}

$$
\begin{equation*}
k=\frac{1}{T_{1}} \int_{0}^{\sin \varphi} \frac{\varphi}{\varphi} \tag{c2}
\end{equation*}
$$

In order to solve equation (C2), an iteration process is used. That is, equation (AI) is solved with the original substitution of φ for sinp to determine the variation of φ with T and the valuo of T_{1}. Inose values are used in equation (C2) and k is determinod. This value of k is then multiplied into the term $\frac{1}{c_{C}} C_{I P}$ of equation (Al) and equation (AI) is agein scived, this time for B. This second iteratson ubially is sufficiently accurate for the evaluation of β max; but if a check solution for φ and T_{1} shows that it is not aufficiently accurtite, the process may be repeated.

1. Gilruth, Robert R,: Analysis of Vertical-Tail Ioads in Roling FullOut Meneurers. NACA CB No. I4H14, 1944.
2. Pearson, Henry A., and Jones, Robert T.: Theoretical Stability and Control Characteristics of Wings with Various Amounts of Taper and Twist. NAGA Rep. No. 635, 1938.
3. Weick, Fred $\mathbb{F} .$, and Jones, Robert T.: Resume and Analysis of NACA Lateral Control Research. NACA Rep. No. 605, 1937.
4. Swaneon, Robert S. , and Priddy; E. LaVerne: Iifting-Sivfece-Theory Values of the Damping in Roll and of the Parameter Used in Eatimaiing. Alleron Stick Forces. NACA ARR NO. ISF23, 1945.
5. Wolowicz, Chester H.: Prediction of Motions of an Airplane Resultilig from Abrupt Movement of Iateral or Directional Controls. INACA ARR NO. I5E02, 1945.
6. Pass, H. R.: Analysis of Wind-Iunnel Data on Directional Stability and Control. NACA TNN NO. 775, 1940.
7. Bishop, Robert C., and Lomax, Harvard: A Simplified Method for Determining from Filight Data the Rate of Change of Yawing-Homent Coefficient with Gideslip. NACA TN No. 1076, 1946.
8. Recant, Isidore G., and Wallace, Arthur R.: Wind-TunneI Inveatigation of the Effect of Vertical Position of the Wing on the Side Flow in the Region of the Vertical Teil. NACA TN No. 804, 1941.
9. Jones, Robert T.: A Study of the Two-Control Operation of an Alrplane. NACA Rep. No. 579, 1937.
10. Churchill, Ruel V.: Modern Operational Mathematics in Engineering. McGraw-Hill Book Co., Inc., 1944.

Con-fig-furation	1	2	3	4	5	6	7	8	9	10	113	12^{2}	13
C_{2}	-0.455	-0.455	-0.455	10.455	-0.455	-0.455	-0.455	-0.455	-0.430	-0.415	-0.455	-0.455	-0.455
Cl_{1}	. 198	. 198	. 198	. 198	. 198	: 198	. 198	.198	.189	. 180	. 0578	. 0578	. 198
$C_{2 \beta}$	$-.0573$	-. 0573	$-.0573$	0	0	0	$-.0573$	$-.0573$	-. 0573	$-.0573$	$-.1246$	0	-. 0573
C_{Ip}	$-.0440$	$-.0440$	-. 0440	$-.0440$	-. 0440	\cdots	-. 0440	-. 0440	-. 0401	-. 0525	-. 0128	-. 0128	-. 0440
$\mathrm{C}_{\mathrm{I}_{\text {I }}}$	-. 0669	-. 0955	$-.1580$	-. 0669	-. 0955	$-.1580$	- -. 0955	-. 0955	$-.0982$	-.0959	-.0669 -.0955 -.1580	$\begin{aligned} & -.0669 \\ & -.0955 \\ & -.1580 \end{aligned}$	-. 0955
$c_{n_{\beta}}$. 0229	. 0515	.1030	. 0222	. 0515	. 1030	. 0515	. 0515	. 0515	. 0515	.0229 .0515 .1030	$\begin{aligned} & .0229 \\ & .0515 \\ & .1030 \end{aligned}$. 0515
											-. 429	-. 429	
${ }_{C O}$	-.420	$-.527$	$-.650$	-. 429	-. 527	-. 650	-. 527	$-.527$	$-.527$	$-.527$	-.527 -.650	$\begin{aligned} & -.527 \\ & -.650 \end{aligned}$	$-.527$
c_{1}	.9	. 9	. 9	.9	. 9	. 9	. 9	. 9	. 9	. 9	. 35	. 35	. 9
1ád	1. . 06	. 06	. 06	. 06	. 06	. 06	. 12	. 06	. 06	. 06	. 06	. 06	. 06
1_{c}	. 16	. 16	. 16	. 16	. 16	. 16	.16	. 20	. 16	.16	. 16	.16	.16
等	30 120	30 120	30 120	30 120	30 120	- $\begin{array}{r}30 \\ 120\end{array}$	75	75	75	7	120	120	75
A	6	6	6	6	6	6	6	6	5	6	6	6	6
λ	. 5	. 5	. 5	. 5	. 5	. 5	. 5	. 5	. 5	. 25	. 5	. 5	.5

${ }^{3}$ For configurations 11 and $12, C_{n_{r}}, C_{Y_{\beta}}$, and $C_{n_{\beta}}$ wero combined ooly in the some combinations as in confieurations 1,2 , and 3.

TABLE II.- VALUES ASSUMED TOR AERODYNAMIC PARAMETERS
IN DETERMINATION OF DIRECTIONAJ, STABILITY

$$
\partial G_{n} / \partial B \quad O F \text { ITS AIRPLANES }
$$

${ }^{2}$ In steady sideslips from flight data.
${ }^{2} \partial C_{n} / \partial \beta^{\circ}$ is computed from the expression

$$
\begin{aligned}
& \frac{\partial C_{n}}{\partial \beta^{0}}=\frac{\left(\partial C_{N_{t}} / \partial \alpha_{t}\right) \tau_{r}\left(q_{t} / q\right) S_{t} \eta_{t}\left(d \delta_{r} / d \beta^{\circ}\right)}{b_{W} S_{W}}
\end{aligned}
$$

Figure l.- Comparison of vertical-tail loads computed with measured values of β with vertical-tail loads
measured in rolling puli-out maneuvers in flight. Airplane 3.

 With \mathbb{N}_{β} for various values of L_{p} for an
alrclane in high-speed unaceslerated flight. ic ${ }^{\text {a }}$ $0.143, \mathrm{H}_{r}=-0.1264-0.0500 \mathrm{i}_{\mathrm{p}}, \mathrm{Y}_{\mathrm{V}}=-0.117-0.0118 \mathrm{~N} \beta$.

Figure 3.- Limits of normal accelerations and airspeeda covered by analysis.

Figure 5.- Variation of the maximum angle of sidesiip with $\left(\Delta \mathrm{O}_{l} / \mathrm{Cl}_{l}\right)\left(\mathrm{O}_{l} / \mathrm{o}_{\mathrm{n} \beta}\right)$ for different values of $\mathrm{C}_{\mathrm{n} \beta \mathrm{o}}$ and $C_{l p o}$. Configurations 11,12 in Table I.

Time to reach
maximum control
deflection, sec

Figure 6.- Effect of independent changes in several variables on the maximum stdeslip angle.

Figure 7.- Effect of nonlinear variations of O_{n} with β° on the maximum sideslip angle.

FIGURE 8.- TWO-VIEW DRAWINGS OF THE AIRPLANES

Figure 10.- Comparison of calculated values of $\Delta \beta 0$ with values measured in rolling pulloutmaneuvers in fight on several airplane configurations.

