

Coaxial Helicity Injection

R. Raman, T.R. Jarboe, D. Mueller, M.J. Schaffer, R. Maqueda, B.A. Nelson, S. Sabbagh, M. Bell, R. Ewig, D. Gates, J. Hosea, H. Ji, S.M. Kaye, H. Kugel, R. Maingi, J. Menard, M. Ono, D. Orvis, S. Paul, M. Peng, C. H. Skinner, J. Wilgen, S. Zweben and the NSTX Research Team *University of Washington / PPPL*

NSTX Research Forum 2000

January 31 to February 2, 2000 Princeton Plasma Physics Laboratory

R. Raman, NSTX Research Forum 2000

Presentation Outline

- Motivation for CHI
- Summary of experimental runs
- Remaining Phase I activities
- Future plans

Motivation for CHI on NSTX

- ST designs can be simplified by removing solenoid
 - Demonstrate non-inductive creation of seed plasma
 - Sustain seed plasma using non-inductive methods
- Edge current drive during sustained phase
- Save V.s for Ohmic plasmas

- ABSORBER: Upper divertor plate region
- INJECTOR CURRENT: Current supplied by PS (no absorber arc)
- TOROIDAL CURRENT: Plasma current + open field line current

CHI Requirements for ST

• Injector region where voltage can be applied along poloidal flux penetrating two insulated electrodes in the presence of a toroidal field.

• Confinement region in which the CHI produced plasma can be maintained in equilibrium using PF coils.

CHI on HIT and NSTX

- Injector and absorber regions different
- NSTX volume 30 x HIT-II
- NSTX used high current DC power supplies vs. capacitors on HIT
- ECH Pi on NSTX vs. electron gun and 6kV capacitor on HIT

Inner

Conductor

NSTX and HIT-II

Experimental Runs: November 9, 1999 (1 day)

- Operated with 75mOhm series resistor & 2 PS in parallel
- Started with 16mTorr vessel pressures
- Produced stable 40ms discharges

R. Raman, NSTX Research Forum 2000

CHI discharge evolution (R. Maqueda, LANL)

22ms

R. Raman, NSTX Research Forum 2000

Current multiplication

20ms

CHI systems successfully introduced on NSTX

First measurement of CHI produced current on NSTX

Current multiplication of 4 achieved

R. Raman, NSTX Research Forum 2000

Injector impedance at low pressure

- ° Fast gas puff system injects gas in the injector region
- ° Small change in current as pressure is lowered
- 4mTorr pressure compatible with divertor operation
- ° Further improvements possible

R. Raman, NSTX Research Forum 2000

December 1999 (2.5 days)

- Operated with one PS, removed 75mOhm resistor
- 80ms discharges @ 16mTorr (Dec. 17)
- 50kA of toroidal current @ 4mTorr (Dec. 17)
- 40kA of toroidal current @ 2mTorr (Dec. 20)
- Initiated experiments on vertical position control (Dec. 20)
- Obtained discharges @ 1mTorr (Dec. 21)

- Operated with 2 PS and no resistor
- Eliminated spurious absorber arcs
- Produced 130kA of toroidal current using 20kA of injector current
 @ 3mTorr
- Produced 130ms discharges

Long pulse discharge (Jan 21)

- ° Start with high Injector flux
- ° Reduce Injector flux
- Increase Injector voltage
- ° Vessel pressure ~ 3mTorr

R. Raman, NSTX Research Forum 2000

MFIT analysis (M. Schaffer and L. Lao, GA)

• MFIT

- Calculates best fit to measured magnetic data using plasma ring currents, vessel currents and external coil currents.
- Does not require closed magnetic surfaces.
- EFIT
- Fits a Grad-Shafranov toroidal equilibrium to magnetic and other data.
- Most of the toroidal current must be on closed magnetic surfaces to get a fit.

R. Raman, NSTX Research Forum 2000

R. Raman, NSTX Research Forum 2000

MFIT, EFIT plans (M. Schaffer, L. Lao)

• MFIT will be modified for easy between-shot use by operating personnel.

- EFIT will first be used on "Ohmic + CHI" plasmas.
- EFIT will be modified for "CHI-only" plasmas, through more accurate representation of SOL current.

Comparison of Shots 102082 and 101704

R. Raman, NSTX Research Forum 2000

MHD analysis (H. Ji, PPPL) MHD fluctuations localized in lower half of vessel but toroidally uniform

R. Raman, NSTX Research Forum 2000

Distinct features for low and high current phases (H. Ji)

- Current < 50kA: MHD activity is localized in outer bottom
- Current >100kA: MHD activity more uniform except for outboard

Low frequency (9kHz) coherent mode only during high current phase (H. Ji)

• Mode only in outer Mirnov's

R. Raman, NSTX Research Forum 2000

Vacuum flux plots for SN 101704 and 102082 (B.A Nelson)

SN 102082

R. Raman, NSTX Research Forum 2000

Remaining Phase I objectives

- Improve vertical position control
- Extend discharges to vessel pressure < 0.5mTorr
- Improve flux closure at higher current
- Initiate experiments on Ohmic + CHI

- Obtained 20kA injector current for ~ 500V applied
- Obtained 130kA toroidal current
- Obtained current multiplication up to 10
- MFIT shows evidence for flux closure for $\sim 20\%$ toroidal current
- Produced stable high current, long pulse (130ms) discharges
- Demonstrated discharges at 1mTorr
- Operated with both PS without safety resistor