

MAPPING THE HUMAN BODY

Buffalo, NY

April 17, 2005

The Body Region Connection Calculus Analyzing anatomical ontologies with the RCC-8 model

Songmao Zhang Olivier Bodenreider

Lister Hill National Center for Biomedical Communications Bethesda, Maryland - USA

Outline

- **♦** Objectives
- ◆ RCC8
- ◆ Anatomical relations in the FMA
- ◆ Mapping anatomical relations to FMA
- **♦** Results
- **♦** Discussion
- **♦** Conclusions

Objectives

- ◆ To investigate consistency in the FMA
- ◆ Complementary to ontological analyses such as:
 - Zhang S, Bodenreider O.
 Law and order: Assessing and enforcing compliance with ontological modeling principles.
 Computers in Biology and Medicine 2005:(in press).
- ◆ Focus on anatomical relations
 - Assigned manually
 - Little enforcement possible in Protégé

General idea Overview

General idea Details

Foundational Model of Anatomy

- ◆ Dec. 2, 2004
- **♦** 71,202 classes
- **♦** 220 slots
 - 7 part_of slots
 - 81 slots for associative relations (branch of, contains)
- ◆ 101,200 partitive relations
- ◆ 33,685 associative relations

Region Connection Calculus (RCC)

- ◆ Axiomatic theory of spatial relations
- ◆ Spatial reasoning
- ◆ 8 topological relations (JEPD)
 - DC Disconnection
 - EC External Connection
 - PO Partial Overlap
 - TPP Tangential Proper Part (+ inverse)
 - NTPP Non-Tangential Proper Part (+ inverse)
 - EQ Equality

RCC 8 topological relations

Disconnection

External Connection

Partial Overlap

Equality

Tangential Proper Part

Tangential Proper Part (inv)

Non-Tangential Proper Part

Non-Tangential Proper Part (inv)

Composition table for the 8 RCC relations

R2(b,c)	DC	EC	PO	ТРР	NTPP	TPPi	NTPPi	EQ
DC	Τ	DR,PO,PP	DR,PO,PP	DR,PO,PP	DR,PO,PP	DC	DC	DC
EC	DR,PO,PPi	DR,PO TPP,TPi	DR,PO,PP	EC,PO,PP	PO,PP	DR	DC	EC
РО	DR,PO,PPi	DR,PO,PPi	Τ	PO,PP	PO,PP	DR,PO,PPi	DR,PO PPi	РО
TPP	DC	DR	DR,PO,PP	PP	NTPP	DR,PO TPP,TPi	DR,PO PPi	TPP
NTPP	DC	DC	DR,PO,PP	NTPP	NTPP	DR,PO,PP	\vdash	NTPP
TPPi	DR,PO,PPi	EC,PO,PPi	PO,PPi	PO,TPP,TPi	PO,PP	PPi	NTPPi	TPPi
NTPPi	DR,PO,PPi	PO,PPi	PO,PPi	PO,PPi	o	NTPPi	NTPPi	NTPPi
EQ	DC	EC	PO	ТРР	NTPP	TPPi	NTPPi	EQ

[Bennett, 1997]

Mapping FMA relations to RCC (1)

part of
general part of
constitutional part of
systemic part of
clinical part of
regional part of
2D part of
custom partonomy of

TPP V NTPP

part
general part
constitutional part
systemic part
clinical part
regional part
2D part
custom partonomy

TPPi v NTPPi

Tangential Proper Part

Non-Tangential Proper Part

attributed part attributed constitutional part attributed regional part

TPPi v NTPPi

Mapping FMA relations to RCC (2)

adjacent to
continuous with
continuous with proximally
continuous with distally
branch of
branch
tributary of
tributary

muscle origin muscle insertion muscle attachment location+adjacent(true) attributed continuous with+adjacent(true)

EC

Mapping FMA relations to RCC (3)

drains
drains to
venous drainage of
venous drainage
lymphatic drainage
lymphatic drainage

DC v EC

EC Lung | venous drainage | Bronchial vein

DC Right paratracheal lymph node | drains to | Right bronchomediastinal lymphatic trunk

bounded by bounds

EQ

EQ Surface of thorax | bounds | Thorax

surrounded by surrounds

 $EC \vee EQ$

EQ Pleural sac | surrounds | Lung

EC Wall of right side of heart | surrounds | Cavity of right atrium

Mapping FMA relations to RCC (4)

arterial supply of venous supply of nerve supply of

arterial supply venous supply nerve supply

DC v PO v TPPi v NTPPi

TPP Right coronary artery | arterial supply of | Heart

DC Gastric branch of right vagus nerve | nerve supply of | Stomach

DC Spinal cord | arterial supply | Vertebral artery

contains

PO v TPPi v NTPPi v EQ contained in PO v TPP v NTPP v EQ

TPP Posterior compartment of arm|contains|Triceps brachii

location+adjacent(false) attributed continuous with+adjacent(false) DC

Example (direct)

Example (indirect)

Quantitative results

♦ Conversion

- 84,284 pairs with RCC relations
 - 18,112 with only one relation
 - 66,172 with multiple relations
 - 64,354 consistent
 - 1,818 inconsistent

♦ Composition

• 707,284 pairs

Quantitative results

♦ Composition

- 698,588 pairs specific to composition
 - 28,042 with only one relation
 - 670,546 with multiple relations
 - 669,026 consistent
 - 1,520 inconsistent

♦ Inconsistent

- Conflicting relations
- Inaccurate conversion rules

Example of inconsistency

Advantages

- ◆ Supports consistency analysis of spatial relations
- ◆ Almost fully automatic
 - Except for establishing the mapping between FMA and RCC relations
 - Analysis requires domain knowledge

Limitations

- **♦** Loss in expressiveness
 - Different FMA relations are converted into the same RCC relation
 (e.g., continuous with and adjacent to into EC)
- **♦** Interpretation
 - Inconsistent is not necessarily wrong
 - Consistent is not necessarily valid
- **♦** Granularity issues
- ◆ Issue with shared parts

Shared part issue

Esophagogastric junction | regional part of | Abdominal part of esophagus | TPP V NTPP | Abdominal part of esophagus | regional part of | Esophagus | TPP V NTPP | TPP V NTPP

Esophagogastric junction | part of | Stomach Stomach | continuous with | Esophagus TPP v NTPP

EC

Conclusions

- **♦** RCC relations
 - Less expressive than FMA relations
 - Enable reasoning
 - Useful for detecting inconsistency
- ◆ Disjunctions can be reduced by comparing direct relations to composed relations
- ◆ Usage in FMA
 - Detect potentially inconsistent representation
 - Focus the effort of experts
- **♦** Refine conversion rules

References

- ◆ D A Randell, Z Cui, and A G Cohn. *A spatial logic based on regions and connection*. In Proc. 3rd Int. Conf. on Knowledge Representation and Reasoning, pages 165--176, San Mateo, 1992. Morgan Kaufmann
- ◆ B. Bennett. Spatial reasoning with propositional logics. In J Doyle, E Sandewall, and P Torasso, editors, Principles of Knowledge Representation and Reasoning: Proceedings of the 4th International Conference (KR94), San Francisco, CA., 1994. Morgan Kaufmann

References

- ◆ Bennett, B. (1998). *Determining consistency of topological relations*. Constraints, 3, 213--225.
- ◆ Schulz S, Hahn U, Romacker M. *Modeling* anatomical spatial relations with description logics. Proc AMIA Symp. 2000;:779-83.

Medical Ontology Research

Contact: olivier@nlm.nih.gov

Web: mor.nlm.nih.gov

Olivier Bodenreider

Lister Hill National Center for Biomedical Communications Bethesda, Maryland - USA