

April 17, 2005

The Body Region Connection Calculus
 Analyzing anatomical ontologies with the RCC-8 model

Songmao Zhang
Olivier Bodenreider
Lister Hill National Center for Biomedical Communications

Bethesda, Maryland - USA

Outline

- Objectives
- RCC8
- Anatomical relations in the FMA
- Mapping anatomical relations to FMA
- Results
- Discussion
- Conclusions

Objectives

- To investigate consistency in the FMA
- Complementary to ontological analyses such as:
- Zhang S, Bodenreider O.

Law and order: Assessing and enforcing compliance with ontological modeling principles.
Computers in Biology and Medicine 2005:(in press).

- Focus on anatomical relations
- Assigned manually
- Little enforcement possible in Protégé

General idea Overview

Lister Hill National Center for Biomedical Communications
4

General idea Details

Foundational Model of Anatomy

- Dec. 2, 2004
- 71,202 classes
- 220 slots
- 7 part_of slots
- 81 slots for associative relations (branch of, contains)
- 101,200 partitive relations
- 33,685 associative relations

Region Connection Calculus (RCC)

- Axiomatic theory of spatial relations
- Spatial reasoning
- 8 topological relations (JEPD)
- DC Disconnection
- EC External Connection
- PO Partial Overlap
- TPP Tangential Proper Part (+ inverse)
- NTPP Non-Tangential Proper Part (+ inverse)
- EQ Equality

RCC 8 topological relations

Disconnection

Tangential Proper Part

Tangential
Proper Part (inv)

Partial
Overlap

Equality

Non-Tangential
Proper Part

Non-Tangential Proper Part (inv)

Composition table for the 8 RCC relations

$\underset{R 1(a, b)}{R 2(b, c)}$	DC	EC	PO	TPP	NTPP	TPPi	NTPPi	EQ
DC	T	DR,PO,PP	DR,PO,PP	DR,PO,PP	DR,PO,PP	DC	DC	DC
EC	DR,PO,PPi	$\begin{array}{\|l\|} \hline \text { DR,PO } \\ \text { TPP,TPi } \end{array}$	DR,PO,PP	EC,PO,PP	PO,PP	DR	DC	EC
PO	DR,PO,PPi	DR,PO, PPi	T	PO,PP	PO,PP	DR,PO,PPi	$\begin{aligned} & \hline \mathrm{DR}, \mathrm{PO} \\ & \mathrm{PPi} \\ & \hline \end{aligned}$	PO
TPP	DC	DR	DR,PO,PP	PP	NTPP	$\begin{aligned} & \hline \text { DR,PO } \\ & \text { TPP,TPi } \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline \mathrm{DR}, \mathrm{PO} \\ \mathrm{PPi} \end{array}$	TPP
NTPP	DC	DC	DR,PO,PP	NTPP	NTPP	DR,PO,PP	T	NTPP
TPPi	DR,PO,PPi	EC, PO, PPi	PO, PPi	PO,TPP, TPi	PO,PP	PPi	NTPPi	TPPi
NTPPi	DR,PO,PPi	PO,PPi	PO,PPi	PO,PPi	0	NTPPi	NTPPi	NTPPi
EQ	DC	EC	PO	TPP	NTPP	TPPi	NTPPi	EQ

[Bennett, 1997]

Lister Hill National Center for Biomedical Communications

Mapping FMA relations to RCC (1)

Mapping FMA relations to RCC (2)

Mapping FMA relations to RCC (3)

$\left.\begin{array}{l}\begin{array}{l}\text { drains } \\
\text { drains to } \\
\text { venous drainage of } \\
\text { venous drainage } \\
\text { lymphatic drainage of } \\
\text { lymphatic drainage }\end{array} \\
\hline\end{array}\right]$ DC $\vee \mathrm{EC}$

| EC Lung \| venous drainage | Bronchial vein |
| :--- |
| bounded by |
| bounds |

| DC Right paratracheal lymph node \| drains to | |
| :--- |
| Right bronchomediastinal lymphatic trunk |

\(\left.\begin{array}{l}surrounded by

surrounds\end{array}\right] \mathrm{EC} \vee \mathrm{EQ} \quad\)| EQ Surface of thorax \| bounds | Thorax |
| :--- |
| EC Wall of right side of heart \| surrounds | |
| Cavity of right atrium |

Mapping FMA relations to RCC (4)

TPP Right coronary artery | arterial supply of | Heart
DC Gastric branch of right vagus nerve | nerve supply of | Stomach
DC Spinal cord | arterial supply | Vertebral artery
contains $\mathrm{PO} \vee \mathrm{TPPi} \vee$ NTPPi $\vee \mathrm{EQ}$ contained in $\mathrm{PO} \vee \mathrm{TPP} \vee \mathrm{NTPP} \vee \mathrm{EQ}$
TPP Posterior compartment of arm|contains|Triceps brachii
$\left.\begin{array}{l}\text { location+adjacent(false) } \\ \text { attributed continuous with+adjacent(false) }\end{array}\right]$ DC

Lister Hill National Center for Biomedical Communications13

Example (direct)

Lister Hill National Center for Biomedical Communications
14

Example (indirect)

$R R 2(b, c)$		
$R 1(a, b)$	DC	EC
DC	T	$\mathrm{DR}, \mathrm{PO}, \mathrm{PP}$
EC	$\mathrm{DR}, \mathrm{PO}, \mathrm{PPi}$	DR, PO $\mathrm{TPP}, \mathrm{TPi}$

Quantitative results

- Conversion
- 84,284 pairs with RCC relations
- 18,112 with only one relation
- 66,172 with multiple relations
- 64,354 consistent
- 1,818 inconsistent
- Composition
- 707,284 pairs

698,588

Quantitative results

- Composition
- 698,588 pairs specific to composition
- 28,042 with only one relation
- 670,546 with multiple relations
- 669,026 consistent
- 1,520 inconsistent
- Inconsistent
- Conflicting relations
- Inaccurate conversion rules

Lister Hill National Center for Biomedical Communications17

Example of inconsistency

| Surface of brain \| bounds | Brain |
| :--- |
| Surface of brain \| bounds | Forebrain |

Forebrain | regional part of \mid Brain
$\left.\begin{array}{l}\text { bounded by } \\ \text { bounds }\end{array}\right]$ EQ?

Lister Hill National Center for Biomedical Communications18

Advantages

- Supports consistency analysis of spatial relations
- Almost fully automatic
- Except for establishing the mapping between FMA and RCC relations
- Analysis requires domain knowledge

Limitations

- Loss in expressiveness
- Different FMA relations are converted into the same RCC relation
(e.g., continuous with and adjacent to into EC)
- Interpretation
- Inconsistent is not necessarily wrong
- Consistent is not necessarily valid
- Granularity issues
- Issue with shared parts

Shared part issue

Esophagogastric junction \mid regional part of \mid Abdominal part of esophagus	TPP \vee NTPP
Abdominal part of esophagus \mid regional part of \mid Esophagus	TPP \vee NTPP
Esophagogastric junction \mid part of \mid Stomach	
Stomach \mid continuous with \mid Esophagus	TPP NTPP

Lister Hill National Center for Biomedical Communications21

Conclusions

- RCC relations
- Less expressive than FMA relations
- Enable reasoning
- Useful for detecting inconsistency
- Disjunctions can be reduced by comparing direct relations to composed relations
- Usage in FMA
- Detect potentially inconsistent representation
- Focus the effort of experts
- Refine conversion rules

Lister Hill National Center for Biomedical Communications

References

- D A Randell, Z Cui, and A G Cohn. A spatial logic based on regions and connection. In Proc. 3rd Int. Conf. on Knowledge Representation and Reasoning, pages 165--176, San Mateo, 1992. Morgan Kaufmann
- B. Bennett. Spatial reasoning with propositional logics. In J Doyle, E Sandewall, and P Torasso, editors, Principles of Knowledge Representation and Reasoning: Proceedings of the 4th International Conference (KR94), San Francisco, CA., 1994. Morgan Kaufmann

Lister Hill National Center for Biomedical Communications

References

- Bennett, B. (1998). Determining consistency of topological relations. Constraints, 3, 213--225.
- Schulz S, Hahn U, Romacker M. Modeling anatomical spatial relations with description logics. Proc AMIA Symp. 2000;:779-83.

Medical Ontology Research

Contact: olivier@nlm.nih.gov Web: mor.nlm.nih.gov

Olivier Bodenreider
Lister Hill National Center for Biomedical Communications Bethesda, Maryland - USA

