

Anomalies in Heavy Flavor Jets at CDF

G. Apollinari-Fermilab

For the CDF Collaboration

Les Rencontres de Physique de la Vallée d'Aoste LaThuile March 5th,2004

1

Anomaly in W+2,3 jet Events at CDF PRD 65, 052007(2002)

 CDF Data sample used in to measurements 	p quark		180	• SLT tags
$p\overline{p} \rightarrow t\overline{t} + X \rightarrow WbW\overline{b} \rightarrow l\nu +$	3,4 <i>jets</i>		\$140 HUAA 120 DD	$\sigma_{t\bar{t}} = 5.1 \text{ pb}$
• Heavy Flavor Ident. (taggir	ng) metho b	ds c	Number of tagg 001 001 001 001 001 001 001 001 001 001	
 SECVTX 	43%	9%	40	
• JPB	43%	30%	20 0 1	2 3
 Soft Lepton Tagging 	6.4%	4.6%	10	Number of jets
•Supertag (or superjet): jet a SECVTX and an SLT tag. Primary Lepton	Containing E _T SE	g both ECVTX LT	9 8 - 8 - 8 - 8 - - - - - - - - - - - - -	Events with superjets

La Thuile – March 2004

2

data top di-Bosons single top Wc Wbb, Wcc Z + h.f. mistags non-W

4

data Top Other

4

Number of jets

- The kinematic of the anomalous W+2,3 jets events has a 10⁻⁶ probability of being consistent with the SM simulation - PRD 64, 032004 (2002)
- Superjets modeled by postulating a low mass, strong interacting object which decays with a semileptonic branching ratio of ~1 and a lifetime of ~1 ps - hep-ph/0109020
- No limit on the existence of a charge -1/3 scalar quark with mass smaller than 7 GeV/c² (the supersymmetric partner of the bottom quark, b_s, is a potential candidate) - PRL 86, 4463 (2001).
- This analysis is intended to search for evidence either supporting or disfavoring this hypothesis.

- hep-ph/0007318 and hep-ph/0401034 use it to resolve the discrepancy between the measured and predicted values of R for 5 < √s < 10 GeV and for 20 < √s < 209 GeV at e⁺ e⁻ colliders
- If light b_s existed, Run I has produced 10⁹ pairs; why didn't we see them ?

- PRL 86, 4231 (2001) uses it in conjunction with a light gluino which decays to b b_s to explain the difference of a factor of 2 between the measured single-b production cross section and the NLO prediction.
- Necessary but not sufficient condition
 - NLO not robust

However

• Some interesting CDF & DØ disagreements between Data and Simulation:

• b+ μ Production Cross-Section: $\sigma_{b\overline{b}} \cdot BR$

• Data are 1.5 times larger than NLO calculation, LO and NLO calculations are comparable

• PRD 53, 1051 (1996)

• $b\bar{b} \rightarrow \mu^{+}\mu^{-}$ Correlations: $\sigma_{b\bar{b}} \cdot BR^{2}$

• Data are 2.2 times larger than NLO calculation, LO and NLO calculations are within a few percent

• PRD 55, 2547 (1997)

•Phys.Lett. B 487, 264 (2000)

• Hint: Data-Simulation discrepancy could increase with the number of leptons in the final state

Other necessary but not sufficient condition

(GeV/c)

Situation

- The NLO calculation of $p \ \overline{p} \rightarrow b_s \overline{b}_s$ predicts $\sigma_{bs} = 19.2 \ \mu b$ for a squark mass of 3.6 GeV/c² (Prospino MC generator program).
 - σ_{bb} = 48.1 μb (NLO)
 σ_{cc} = 2748.5 μb (NLO)
- We have used a generic jets data sample with $E_T > 15$ GeV and $|\eta| < 1.5$ (corresponding to partons with E_T larger than 18 GeV) to calibrate the simulation by using measured rates of SECVTX and JPB.
- Can easily "bend" any Heavy Flavor generator or NLO calculation to explain in terms of SM processes an additional 10% production of scalar quarks

PRD 64, 032002 (2001)

 $\sigma_{bs} = 84 \text{ nb (Prospino MC)}$ $\bullet \sigma_{bb} = 298 \text{ nb (NLO)}$ $\sigma_{cc} = 487 \text{ nb (NLO)}$

Strategy

		σ (nb)			b _s (%)	tuned QCD			σ/ σ _{QCD}	
		b	c	b _s	total		b	c	total	
	generic jets tuned	298	487	84	869	10%	382	487	869	1
#2	g. j. t. x BR	110	102	84	296	28%	141	102	243	1.2 CS
	g. j. t. x BR ²	41	22	84	147	57%	52	21	73	2
#4	g .j. x BR tuned (or lep-trig. evts)	110	102	84	296	28%	194	102	296	1
#5	lep-trig. evts. x BR	41	22	84	147	57%	72	21	93	1.5 SS

The Control Sample is used to calibrate the SLT efficiency in the simulation and a comparison between the S.S. and the C.S. could have a discrepancy of ~30%.

Models to predict Heavy Flavor Production HERWIG vs Exact NLO Calculation

Gluon splitting *Parton shower*

Scattering produces a gluon recoiling against 1 or 2 b-hadrons in the final state

Flavor Excitation *Structure function*

HERWIG vs Exact NLO Calculation

Generic Jet Control Sample

- The simulation of the SLT algorithm uses efficiencies derived from the data (conversions, Z's and ψ mesons decays).
- Use generic-jet data to calibrate and cross-check the efficiency for finding SLT tags and supertags.
- Efficiency for finding supertags empirically corrected by 15%

		σ (nb)			b _s (%)	tuned QCD			σ/σ_{QCD}	
		b	c	b _s	total		b	c	total	
	generic jets tuned	298	48 7	84	869	10%	382	487	869	1
#2	g. j. t. x BR	110	102	84	296	28%	141	102	243	1.2
	g. j. t. x BR ²	41	22	84	147	57%	52	21	73	2

Signal Sample

- Use sample enriched in Heavy Flavor content
 - Events with 2 or more jets with $E_T > 15$ GeV and at least two SVX tracks (taggable, $|\eta| < 1.5$)
 - one electron with E_T > 8 GeV or one muon with p_T > 8 GeV/c contained in one of the jets
- Counting Experiment:
 - Determine the b- and c-quark composition of the data by counting the number of SECVTX, and JPB tags on both the leptonand away-jets
 - Check the semileptonic branching ratio of Heavy Flavor hadrons by counting the number of a-jets with a SLT and in the data and in the simulation

Tuning the Simulation to the data

- "Kitchen Dirty Work" :
 - Mistags evaluated with parameterization (10%)
 - SECVTX-JPB tagging efficiencies measured in data (6%)
 - SLT Efficiency uncertainty (10%)
 - Simulated supertag efficiency (SECVTX+SLT or JPB+SLT) is corrected for the data-to-simulation scale factor measured in the genericjet sample (85±5%).
 - Take care of tagging rates in the fraction of lepton-trigger events with no h.f. using a parameterized probability of finding a tag due to heavy flavor in generic-jet data.

Tuned HERWIG

Kinematic Variables Data-Simulation Comparison

a-jet

a-jet with SECVTX tags

La Thuile – March 2004

14

Comparison of a-jets with SLT tags in the data and the tuned simulation

Supertags

- Data-Simulation comparison for the yield of R (R'), the ratio of number of jets with a SECVTX (JPB) and SLT tag - supertags - to that with a SECVTX (JPB) tag in the generic jet sample and in the Lepton-trigger sample.
 - The tuned QCD Simulation predicts the same yield of supertags in generic jet and lepton-trigger jets
 - Data show a ~30% discrepancy between supertags in generic jets and lepton-trigger jets.
 - Systematic uncertainties in the SLT simulated efficiency would shift in the same direction the yield R in the generic jets sample and lepton-trigger sample.

Uncertainty on Mistags and SLT Tagging Efficiency on Heavy Flavors

- SLT mistags and tagging efficiency have been determined historically on data (PRD - 64, 032002) with conservative errors of 10%.
- The availability of a tuned simulation can be used to reduce the previous estimate of the SLT mistags and tagging efficiency systematic errors.
- Fit observed rates of SLT tags in generic jets with *P_f x fakes +P_{hf} x h.f.*
- The fit returns $P_f = 1.017 \pm 0.013$ and $P_{hf} = 0.981 \pm 0.045$, $\rho = -0.77$
- Using this result the SLT expectation in the SS away-jets is 1362 ± 28 whereas 1757 ± 104 are observed (3.8 σ)
- This discrepancy cannot come from obvious prediction deficiencies

	observed	pred. fakes.	pred. h.f.
SLT's in g. jets	18885	15570±1557	3102 ± 403
SLT's in g. jets with SECVTX	1451	999 ± 60	508 ± 51
SLT's in g. jets with JPB	2023	856 ±86	1175 ±71
SLT 's in a-jets (lep-trig.)	1757	619 ±62	747 ± 75

- We have measured the heavy flavor content of the inclusive lepton sample by comparing rates of SECVTX and JPB tags in the data and the simulation
- We find good agreement between the data and the simulation tuned within the experimental and theoretical uncertainties
- We find a 50% excess of a-jets with SLT tags due to heavy flavor with respect to the simulation; the discrepancy is a 3 σ systematic effect due to the uncertainty of the SLT efficiency and background subtraction. However, comparisons of analogous tagging rates in generic-jet data and their simulation do not support any increase of the efficiency or background subtraction beyond the quoted systematic uncertainties

Conclusions

- A discrepancy of this kind and size is expected, and was the motivation for this study, if pairs of light scalar quarks with a 100% semileptonic branching ratio were produced at the Tevatron
- The data cannot exclude alternate explanations for this discrepancy
- Previously published measurements support the possibility, born out of the present work, that approximately 30% of the presumed semileptonic decays of heavy flavor hadrons produced at the Tevatron are due to unconventional sources

Tuning the Simulation to the data

		Fit parameters	Constraints	Error
SECVTX	lenton side	c dir norm	b dir/c dir ≈ 1	14%
		b flav exc norm	<i>b/c</i> 0.5	20%
away side Both	away side	c flav exc norm	<i>B/C ≈0.5</i>	2010
	Both	b gluon split norm	1.40	0.19
	├	c gluon split norm	1.35	0.36
JPB	lepton side	Ke norm		
	awav side	Kμ norm		
	Doth	SECVTX scale factor, b	1.0	6%
	ВОТП	SECVTX scale factor, c	1.0	28%
		JPB scale factor	1.0	6%

- Use 6 fit parameters corresponding to the direct, flavor excitation and gluon splitting production cross sections evaluated by Herwig for b- and c-quarks
- K_e and K_u account for the luminosity and *b*-direct production
- The parameters bf, bg, c, cf, cg account for the remaining production cross sections, relative to the b-direct production

Fit results

		f sæde	VTX			S	F_b			0.97 ± 0.03	
		f sæde	VTX			S	F_c			0.94 ± 0.22	
		fækiltebr				S	F _{BJP}			1.01 ± 0.02	
		e nor	e norm.				e e			1.02 ± 0.05	
	χ ² /DOF=4.6/9	μ nor	m.			K	- - μ			1.08 ± 0.06	
		$c \operatorname{dir}$	d.pro			c				1.01 ± 0.10	
		b flav. exc.				bf				1.02 ± 0.12	
		c flav	. exc.			c_j	f			1.10 ± 0.29	
		$g \rightarrow b$	bb			bg	<u></u>			1.40 ± 0.18	
		$g \rightarrow f$	cē			Ce	<i>)</i>			1.40 ± 0.34	
											:
			σ (nb)		b _s (%)	tu	ned ()CD	σ/ σ ₀	QCD
#4	g .j. x BR tuned (or lep-trig. evts)	110	102	84	296	28%	194	102	296	1	
	lep-trig. evts. x BR	41	22	84	147	57%	72	21	93	1.5	SS

_22

b-purity (cross-check)

- *I-D⁰*: 126.0 ± 15.5 in the data and 139.9 ± 15.0 in the simulation
- I-D[±] : 73.7 ± 17.8 (data) and 68.5 ± 14.1 (simulation).
- J/ψ: 90.8 ± 10.1 (data) and 101.9 ± 11.4 (simulation)
- Ratio of the b-purity in the simulation to that in the data is 1.09 ± 0.11
 - Discrepancy between observed and predicted number of a-jets with SLT tags due to heavy flavor is not due to an underestimate of the bb contribution

$$D^0 \rightarrow K^- \pi^+$$

b-purity (cross-check)

- 2.6 < m_{ee}< 3.6 GeV/c²
- 2.9 < m_{μμ}< 3.3 GeV/c²
- SS dileptons (with 10% error) used to estimate and remove bkg. to OS dileptons due to misidentified leptons.
- 259 ± 17.2 and 209.2 ± 23.7 (before tagging)
- 89.7 ± 10.5 and 100.5 ± 12.4 (SECVTX)
- 90.8 ± 10.1 and 101.9 ± 11.4 (JPB)

J/w mesons from B-decays

- In generic-jet data we do not have any excess of jets with SLT tags or supertags
- We do observe an excess after enriching the b-purity of the QCD data by requiring a lepton-jet
- We study a sample of jets recoiling J/ψ mesons from B-decays. We use the same J/ψ *μμ data set and selection used for the measurement of the J/ψ lifetime and fraction from B-decays
- 1163 J/ψ over a background of 1179 events estimated from the side-bands (SB)

J/y lifetime

- The number of J/ψ mesons from B-decays is N_ψ= (ψ⁺-ψ⁻)-(SB⁺-SB⁻) =561, which is 48% of the initial sample
- In the 572 away-jets we find 48.0 ± 15.1SECVTX, 61.7 ± 17.3 JPB tags, and -9.4 ± 14.4 SLT tags
- In the simulation we expect 8.1
 ± 1.1 SLT tags
- The observed number of SLT tags is 1.2 σ lower than the prediction rather than 50% larger as in the inclusive lepton sample.

Data

	elec	ctron data		muon data			
ttag eyp			P_{DGQC}			P_{IGQC}	
$N_{l-\mathbf{j}e}$	68544			14966			
$N_{a-\mathbf{j}e}$	73335			16460			
$T^{SEC}_{l-{\rm J}\!{\rm e}}$	10115.3 ± 101.7	(10221/105.7)	0	3657 ± 60.8	(3689/31.7)	0	
T^{BJP}_{l-je}	11165.4 ± 115.8	(11591/425.6)	0	4068.6 ± 66.2	(4204/135.4)	0	
$T^{SEC}_{a-{\rm J}\!{\rm e}}$	4353.3 ± 68.5	(4494/140.7)	1.56%	1054.6 ± 33.3	(1094/39.4)	1.67%	
T^{BJP}_{a-je}	5018.9 ± 98.9	(5661/642.1)	2.45%	1265.2 ± 41.1	(1427/161.8)	2.63%	
DT^{SEC}	1375.2 ± 37.6	(1405/29.8)	0	452.6 ± 21.6	(465/12.4)	0	
DT^{BJP}	1627.8 ± 43.7	(1754/126.2)	0	546.4 ± 25.1	(600/53.6)	0	

		ele	ectron simula	tion		
ttag eyp	<i>b</i> -dir	c-dir	<i>b</i> -f.exc	<i>c</i> -f.exc	<i>b</i> -gsp	$c ext{-gsp}$
HF_{l-ye}	5671	947	10779	2786	5263	1690
HF_{a-je}	5848	977	11280	2913	6025	1877
h.f./light	5407/441	899/78	1605/9675	367/2546	707/5318	145/1732
$I\!\!I F \ _{l-ye}^{SEC}$	1867	52	3624	194	1732	147
$I\!\!I F \begin{array}{c} B\!\!I P \\ l - j e \end{array}$	2392	163	4531	602	2106	356
$I\!\!I F \ ^{SEC}_{a-je}$	2093	91	480	68	222	15
$I\!\!TF \ {}^{B\!JP}_{a-j\!e}$	2622	203	584	136	276	58
HDF SEC	678	5	157	4	78	1
IDF BIP	1083	43	303	25	168	18
		r	nuon simulat	ion		
ttag eyp	<i>b</i> -dir	c-dir	<i>b</i> -f.exc	c-f.exc	$b ext{-gsp}$	c-gsp
HF_{l-ye}	1285	298	2539	942	1455	747
HF_{a-je}	1358	313	2705	994	1708	816
h.f./prompt	1206/152	278/35	422/2283	124/870	171/1537	48/768
$I\!\!I F \ _{l-ye}^{SEC}$	569	34	1131	83	652	92
$I\!\!TF \ {}^{BJP}_{l-je}$	707	77	1386	229	830	202
$I\!\!TF \ ^{SEC}_{a-stell}$	498	29	132	13	54	11
$I\!\!TF \begin{array}{c} B\!JP \\ a-je \end{array}$	627	62	173	34	60	21
HDF SEC	218	3	59	2	20	1
HDF BIP	347	12	105	7	50	6

Heavy flavors in the simulation are identified at generator level

Fit of the simulation to the data

- Use 6 fit parameters corresponding to the direct, flavor excitation and gluon splitting production cross sections evaluated by Herwig for b and c-quarks
- K_e and K_{μ} account for the luminosity and b-direct production
- The parameters bf, bg, c, cf, cg account for the remaining production cross sections, relative to the b-direct production
- The ratio of b to c direct production constrained to the default value (about 1) within 14%
- the ratio of b to c flavor excitation constrained to the default value (about 0.5) with a 28% uncertainty
- bg constrained to (1.4±0.19)
- cg constrained to (1.35±0.36)
- The tagging efficiencies are also fit parameters, and are constrained to their measured values within their uncertainties (6% for b-quarks, 28% for c-quarks)

Fit result-parameter corr. coeff.

	SF_{c}	SF_{JPB}	K _e	С	bf	cf	bg	cg	K_{μ}
SF_b	-0.073	0.718	-0.747	0.054	0.346	0.297	-0.062	0.066	-0.715
SF_c		0.358	-0.238	-0.002	0.038	0.147	-0.071	0.086	-0.306
SFJPB			-0.810	0.010	0.363	0.127	-0.009	-0.049	-0.802
K _e				-0.092	-0.641	-0.302	0.071	0.077	0.933
С					0.053	0.020	0.008	0.002	-0.098
bf						0.245	-0.680	-0.199	-0.526
cf							-0.321	-0.164	-0.274
bg								-0.029	-0.019
cg				For					-0.018

NLO and Herwig calculations

- However, in this specific analysis we are interested in comparing rates of a-jet with heavy flavor (signaled by SLT or SECVTX tags) in events in which the 1-jet has also heavy flavor
- These jet have $|\eta| < 1$ and corresponds to partons with $E_T > 18 \text{ GeV}$
- In this case Herwig evaluates that the gluon splitting+flavor excitation contribution are 40% of the Born contribution and not a factor of 3 higher
- For this type of kinematics, the ratio of the NLO to Born calculations is also of the order of 1.1-1.3. In addition, for this topology, the NLO calculation depends little on the choice of µ, and it appears to meet general criteria of robustness.

NLO and Herwig calculations

- Herwig ignores interference terms between the Born approximation and the NLO diagrams, and evaluates a gluon splitting+flavor excitation contribution which is a factor of 3 larger than the Born approximation.
- In the NLO calculation the contribution of the Born cross section and of the gluon splitting+flavor excitation are approximately equal using the renormalization scale μ ; when using the scale the scale $\mu/2$, the NLO calculation gets closer to Herwig.
- The fact that the ratio between NLO and Born is about two and is not stable as a function of the renormalization scale is taken by the experts as an indication that NNLO corrections are important
- The relevance of the Herwig result, which models the data, is the indication that the effect of NNLO correction should be that of canceling the interference terms

away-jets with SLT tags

	\mathbf{el}	ectron data		n	muon data			
ttag eyp			P_{HGQC}			P_{IGQC}		
$T^{SL}_{a-{ j} e}$	1063.8 ± 47.0	(2097/1033.2)	$) \qquad 0.49\%$	308.6 ± 34.7	(562/253.4)	0.54%		
$T_{a-i\!\!\!/ e}^{SL} \cdot ^{SEC}$	356.3 ± 22.8	(444/87.7)	0.08%	69.3 ± 9.9	(92/22.7)	0.09%		
$T^{SL}_{a-rac{b}{2}e}{}^{BJP}$	401.3 ± 25.3	(513/111.7)	0.13%	112.3 ± 12.3	(143/30.7)	0.14%		
		Electro	ns		Muons			
fTage yp	D	ata	Simulatior	n Dat	a Si	mulation		
$T\!\!HF \;\; {{s}L \atop a-je}$	865.1 t	± 114.8 59	$97.6 \pm 69.$.3 272.7 \pm	34.9 149	0.3 ± 21.0		
$T\!HF \ {}^{SL}_{a-je}$	t_t^{SEC} 322.6	$\pm 23.3 24$	42.4 ± 22.4	$.5$ $63.3\pm$	9.9 53	3.8 ± 8.7		
$\mathbf{I}_{\text{La Thuile}-\text{March}} \mathbf{S}_{260\overline{4}}$	t_t^{JPB} 350.2	± 26.3 2	51.5 ± 21.5	.7 103.2 \pm	12.4 65	5.0 ± 8.9		

33