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Abstract

Weak convergence of random variables is characterized by pointwise conver-
gence of the Fourier transform of the respective distributions, and in some cases
can also be characterized through the Laplace transform. For some distributions,
the Laplace transform is easier to compute and provides an alternative approach to
the method of characteristic functions that facilitates proving weak convergence.
We show that for a bivariate distribution, a joint Fourier-Laplace transform always
characterizes the distribution when the second variate is positive almost surely.

Disclaimer This report is released to inform interested parties of research and to

encourage discussion. The views expressed on statistical issues are those of the authors

and not necessarily those of the U.S. Census Bureau.

The joint Fourier-Laplace transform of bivariate random variables can sometimes be

an analytically convenient metrization of weak convergence. Given the existence in a

suitable interval of the Laplace transform of the second variate’s distribution, which is

up to sign the moment generating function of the variable, such a function characterizes

the distribution and can be used to prove weak convergence of a sequence of variables.

We focus on the joint Fourier-Laplace transform, which is essentially a characteristic

function in the first variable and a moment generating function in the second. Below,

we present the main analytical result that justifies the use of such transforms. We

briefly mention some applications.

It sometimes occurs in statistical problems that the joint convergence of sample

mean and sample variance must be determined. In this case we have a pair of random

variables for which the second variate (when uncentered) is positive with probability

one. Therefore the Laplace transform is typically well-defined for the second variate,

and a joint Fourier-Laplace transform may be easier to calculate then a straight Fourier

transform. See McElroy and Politis (2006a, 2006b) for some examples.
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We now consider a pair of random variables (X, Y ) such that Y ≥ 0 almost surely.

The joint Fourier-Laplace (FL) transform of X and Y is defined for t ∈ R and u ∈
U = [0,∞) by

φ(t, u) := E[exp(itX − uY )].

In some cases, the moment generating function u 7→ φ(0, u) is defined for U = (−s0, s0)

or U = [0, s0) for some s0 > 0, but we will focus on the case U = [0,∞). The following

theorem summarizes the important properties of the FL transform as concerns weak

convergence.

Theorem 1 (i) The joint distribution of (X, Y ) is uniquely determined by the Fourier-

Laplace transform φ.

(ii) If (Xn, Yn) is a sequence of random pairs with Yn ≥ 0 almost surely for each

n, then (Xn, Yn) converges weakly (to some pair (X,Y )) provided the sequence (φn)

of Fourier-Laplace transforms converges pointwise on R × [0,∞) to a function φ on

R × [0,∞) that is continuous at (0, 0). In this case, Y ≥ 0 almost surely, and the

Fourier-Laplace transform of (X,Y ) is φ.

Remark 1 By an example in Mukherjea, Rao, and Suen (2006), the converse of the

second statement of Theorem 1 need not be true, i.e., there exist sequences of distribu-

tions whose characteristic functions converge, but whose moment generating functions

do not.

Proof of Theorem 1. (i) For fixed real t and x, define

f(y, z) = eitxe−zy, y ≥ 0, z ∈ W,

where W = {z ∈ C |Re(z) > 0}. Then f(y, ·) is analytic in the open set W , with

derivative ∂
∂zf(y, z) = −yf(y, z). Notice that | ∂

∂zf(y, z)| = ye−Re(z)y ≤ [eRe(z)]−1,

since Re(z) > 0. Also, f(·, z) is measurable and the magnitude of f is bounded

by 1. It follows from these observations and exercise 16.6 of Billingsley (1995) that

z 7→ E[exp(tX − zY )] is analytic on W . Moreover, by the Dominated Convergence

Theorem, the extension Φ(t, z) := E[exp(tX−zY )] of φ is continuous on R×W , where

W = {z ∈ C |Re(z) ≥ 0} is the closure of W .

Now suppose that (X∗, Y ∗) is a second pair of random variables (such that Y ∗ ≥ 0

almost surely) with FL transform equal to φ on all of R× [0,∞). Then for each real t,
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the two expectations E[exp(itX − zY )] and E[exp(itX∗− zY ∗)] are analytic functions

of z ∈ W and coincide (with φ(t, ·)) on the axis {z ∈ W | Im(z) = 0}. It follows that

E[exp(itX − zY )] = E[exp(itX∗ − zY ∗)], (t, z) ∈ R×W.

By the continuity noted earlier this equality extends to R×W . Thus, writing z = −iv

for complex z with Re(z) = 0,

E[exp(itX + ivY )] = E[exp(itX∗ + ivY ∗)], ∀(t, v) ∈ R2.

Thus (X, Y ) and (X∗, Y ∗) have the same bivariate characteristic function, hence the

same distribution.

(ii) The assumptions imply that the limits

lim
n

E[exp(itXn)] = lim
n

φn(t, 0) = φ(t, 0), t ∈ R,

and

lim
n

E[exp(−uY )] = lim
n

φn(0, u) = φ(0, u), u ≥ 0,

exist and are continuous at the origin. It follows that both (Xn) and (Yn) converge in

distribution. (See Theorem 2, page 431, in Feller (1971).) This in turn implies that

both (Xn) and (Yn) are tight. Consequently, the bivariate sequence (Xn, Yn) is tight.

Since φ(t, u) = limn φ(t, u) for all (t, u) ∈ R × [0,∞), all subsequential weak limits

of (Xn, Yn) have the same FL transform (namely φ), hence the same distribution,

by assertion (i). It follows from the corollary on page 381 of Billingsley (1995) that

(Xn, Yn) converges in distribution to a limit (X,Y ) with FL transform φ, and clearly

Y ≥ 0 almost surely. 2
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