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Abstract-A comparison of signal-to-noise ratios and rise 
times was performed on  several myoelectric filters used 
for muscle-force estimation and prosthesis control. Lin- 
ear, averaging, and adaptive filters were compared using 
single as well as multiple electrode pairs (spatial filtering). 
The filters were matched for having the same rise tirne 
(0-95%) and the signal-to-noise ratios were measured 
off-line using the same myoelectric signal recording. The 
linear filter was a low-pass filter with a time constant of 
80 ms. The averaging filter had an averaging time of 250 
ms. The adaptive filter was the same as is used in the 
Utah Artificial Arm. The adaptive filter varied its time 
constant according to the rate of change of the signal 
mean. If the rate was high, the time constant was set low. 
If the rate was low, the tirne constant was set high. 
Spatial filtering is where the myoelectric signals from four 
cutaneoils sites over the same muscle were summed, that 
is, spatially filtered, and the resultant signal was 
smoothed by the linear, averaging, or adaptive filter. 
Significant improvement in the signal-to-noise ratio has 
been shown over conventional linear or averaging filters 
when using spatial and adaptive filtering, both when used 
separately and when used together. 

Key words: myoelectric fillers, prosthesis control, signal- 
io-noise ratios, uppeplimb prosthetics. 

INTRODUCTION 

Electromyographlic (EMG) signals have been 
used for many years to estimate muscle forces 
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during various activities as well as to control 
prosthetic limbs. Prosthetic control systems utilize 
either a simple on-off control, as in the Otto Bock 
Hand system, or proportional control, as in the 
Utah Arm system (1). For proportional control of a 
prosthesis with a high-speed response, a fast-re- 
sponding signal with a high signal-to-noise ratio is 
required. 

The EMG signal, when used for proportional 
control, is usually treated as an amplitude modu- 
lated signal. The mean amplitude of the rectified 
cutaneous myoelectric signal is used as the control 
signal and is the desired output from the myoelectric 
processor. The cutaneous myoelectric signal at some 
contraction level, the frequencies of which are 
between 10 Hz and 1,000 Hz, functions as the 
"carrier" (2). However, the use of myoelectric 
signals as control signals poses a fundamental 
problem: the EMG spectrum of frequencies overlaps 
the frequencies of desired control. This makes the 
separation of the desired control signal (amplitude) 
from the noise (EMG carrier) difficult. Jacobsen (3) 
observed a fundamental filtering paradox whereby, 
with a stationary (fixed time-constant) filter, it is 
possible to have either a fast response or a high 
signal-to-noise ratio, but not both. Several methods 
of myoelectric filtering have been investigated (4,5), 
including simple, first-order linear filters, averaging 
filters, and adaptive filters. The latter has been 
shown to have the highest signal-to-noise ratio as 
well as the fastest response of any present-day 
filtering system (6). The processed ENIC signaf is 
usually compared to the measured muscle force or 
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- Spatial and Adaptive Filtered EMG 

Figure 1. 
Control signal (measured force) and spatially adaptive filtered 
EMG demonstrating that EMC "noise" scales with the control 
signal amplitude. 

joint torque in evaluating the signal-to-noise ratio, 
as prosthesis controllability is subjective and qualita- 
tive (7). 

Another method that has been shown to im- 
prove the signal-to-noise ratio of myoelectric signals 
is spatial filtering, in which multiple sensors are used 
to detect the myoelectric signal of one muscle (8). 
Herein, we will present the results of an investiga- 
tion of a combined adaptive and spatial filter 
system, comparing the rise times and signal-to-noise 
ratios of the spatial-adaptive filter with averaging 
and linear filters. A brief description of myoelectric 
processing in general is given, followed by a descrip- 
tion of adaptive filtering and spatial filtering. 

METHODS 

Myoelecirric processing 
For prosthesis control, the EMG signal is 

detected from the surface of the skin throughhe 
use of stainless steel electrodes without any skin 
preparation. This requires very high performance 
preamplifiers* with high common-mode rejection 
and high input impedance for the signal detection 
near the site of the electrodes. 

We desire a usable proportional control signal 

from the unprocessed EMG and therefore make 
some assumptions about the character of the ""raw" 
EMG signal. We treat the EMG signal as an 
amplitude modulated "carrier" with multiplicative 
noise. Logically, the assumption of multiplicative 
noise is satisfying because as muscle-force level 
increases, so does the firing and the recruitment of 
motor units near the sensors. Figure 1 shows a 
""stair-step" control signal (measured load-cell out- 
put or isometric muscle force) and the correspond- 
ing processed EMG signal demonstrating the in- 
crease in "noise9' with EMG signal amplitude 
increase. The raw EMG is processed much like AM 
radio demodulation. First, bandpass filtering re- 
moves unrelated signals and prevents aliasing if a 
digital filtering system is used. Second, rectification 
produces a non-zero-mean signal. Last, the signal is 
smoothed with a low-pass filter (4.3). Figure 2 
shows the general flow of the signal. The nature of 
the low-pass filter has been extensively researched, 
and many definitions of the optimal filter for 
myoelectric processing have been proposed 
(8,9,10, 11,12,13,14). 

Many researchers have designed filters based 
upon static (isometric, constant force) contractions 
of the muscles (8). Some have investigated dynamic 
(isometric, varying force level) contractions (5,12). 
When only static contractions are considered, varia- 
tional calculus techniques can be employed to find 
an optimal filter. The result of the assumption leads 
to an averaging filter as the optimal filter. The 
output of an averaging filter is the arithmetic mean 
of a fixed time history of the signal. The resulting 
filter is not optimal for dynamic conditions, how- 
ever. A better approach is to use a variable 
time-constant filter in which the time constant 
changes with the signal, that is, an adaptive filter 
(3910,11915916). 

Several researchers have investigated the use of 
multiple detectors on a single muscle to improve the 
signal-to-noise ratio (6,8,13,14). Multiple detectors 
(spatial filters) require additional hardware and are 
complex to implement in clinical prosthetic devices. 
Therefore, methods to simplify spatiat filters in the 
clinical setting are needed if those filters are to be 
used clinically. 

* In the work presented in this paper, we used preamplifiers manufac- Adaptive filtering 
tured by IOMED, Inc., of Salt Lake City, Utah. The common-mode 
rejection ratio is over 110 dB and the input impedance is on the order of The basic idea behind overcoming the EMG 

. . 

10" ohms. filter paradox is to vary the time constant of the 
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1 ing flow. 

Figure 2 .  
General proportional 
rnyoelectric procerr- 

filter according to the rate-of-change of the EMG 
signal. The rate-of-change of the EMG signal relates 
to the rate-of-change of the muscle contraction. The 
rate-of-change of the signal is determined by the 
derivative of the smoothed signal. When the signal is 
changing rapidly (high amplitude of the derivative) 
during rapid motions, the time constant is low, 
allowing fast response but with more noise. When 
the signal is steady (derivative amplitude is low) 
during slow, precise motions, the time constant is 
high, allowing a high signal-to-noise ratio, but slow 
response. Figure 3 shows the signal flow of the 
adaptive filter. The assumption is that an amputee 

Muscle 

~ c t i v i ~ ~  

i * 

can tolerate noise when moving the prosthesis 
rapidly, but will not tolerate delays in control; and 
when holding the prosthesis steady, the amputee will 
tolerate slow response as long as there is low noise. 
In this way, the adaptive filter can overcome the 
EMG filter paradox of the fixed time-constant filter. 
The response time and the signal-to-noise ratio 
depend, then, not upon the time constant but rather 
upon the adaption logic. The adaption logic is 
defined by Equation [I] and is shown graphically in 
Figure 4. 

The adaptive filter system is basically two filters 
in parallel. The derivative of the output of one filter 
with a time constant 7, (Equation [3]) is used to 
control the time constant, rnl of the other filter 
(Equation [2]). Several parameters can be adjusted 
to control the response of the filter: the time 
constant, r,, of the parallel filter; the maximum and 

-+ Detector 

Figure 3 .  
Adaptive filter signal flow. 

minimum time constants of the adaptive filter, 7, 

and r,, respectively; and the gain, a, of the adaption 
logic. The relationships between the parameters for 
the adaption logic and the rise time, signal-to-noise 
ratio, and squared error can be defined and are 
shown in Figure 5 (1 1,16). 

where: rn, is the adaptive time constant in seconds 
T, is the maximum time constant of the adaptive 

filter 
7-$ is the minimum time constant of the adaptive 

filter 
Z, z are the smoothed EMG signal and its 

derivative 
E is the rectified unsmoothed EMG signal 
Y, Y are the output (control) signal and its 

derivative 
a is a gain factor for the adaption logic 
T= is the time constant of the parallel filter. 

Spatial filtering 
Spatial filtering is the use of multiple sensors 

(differential electrode pairs) to "pre-whiten" the 
EMG spectrum. Pre-whitening increases the ran- 
domness of the signal, thus making the signal 

Bandpass filter Rectifier --OD -+ Smoother 
Proportional 
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Figure 4. Time-constant function. 

spectrum "whiter." It is postulated that limited 
spatial sampling (not enough active muscle motor 
units being detected) produces a low-frequency 
artifact (from the low-frequency firing and relax- 
ation of motor units near the sensor), and that by 
combining the signals of several sensors, more of the 
total muscle is monitored and the low-frequency 

artifact disappears. The process is basically a 
weighted least-squares estimate filter (17). Hogan (8) 
has shown that multiple sensor systems have higher 
signal-to-noise ratios than single sensor systems, yet 
both have the same rise time. 

Each sensor channel is weighted by a constant, 
and all the channels are summed, forming one signal 
which is then smoothed by a low-pass filter. The 
weighting of each channel is defined by the 
eigenvalues and the eigenvectors determined from a 
time series of EMG data by the following procedure: 
1) time series of four channels of EMG data are 
collected for a constant isometric contraction of a 
muscle; 2) the eigenvalues and eigenvectors for each 
channel are computed for these data; 3) the 
eigenvectors "transform" each channel to create 
four "new" channels, which are linear combinations 
of the original channels, to maximize independence; 
and, 4) each of the "new" channels is weighted 
according to the eigenvalues and summed, produc- 
ing a single signal that is then smoothed. In other 

Rise 

'Ti = 1000 msec 

Ts = 50 msec 

Rise Time (msec) 
, Signal-to-Noise Ratio 

........................ Squared Error 

Time 175 200 250 300 350 400 500 

20. 1 Squared Error 

Figure 5. Signal-to-noise ratio and rise time as functions of adaption parameters 
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Figure 6. 
Spatial filter signal flow. 

words, each channel contributes to the summation In this paper, we call the eigenvalue/eigenvector 
according to its eigenvalue. A channel with no weights the optimal weightings. We have explored 
difference in eigenvalues (no additional information) unity weighting in addition to the optimal weights. 
is essentially ignored. This procedure maximizes the Unity weighting would set all of the EMC weight 
independence of each channel, increasing the ran- coefficients equally so that the spatial filter would 
domiess of the final signal. This is known as 
pre-whitening the signal. The final result of this 
procedure is the generation of a weighting coeffi- 
cient for each EMC channel when the channels are 
summed. The spatial filter is defined by Equation 
[4]. Hogan (8) used an averaging filter to smooth the 
combined signal. A schematic of this is shown in 
Figure 6. 

E = hT T~ M 141 
Where: E is the summed EMG signal (scalar) 

h is the vector of eigenvalues 
T is a matrix whose colurnns are the 

eigenvectors 
M is the vector of the EMG channels. 

One difficulty with this approach is the require- 
ment to find the weights for each measured muscle 
of each individual. Additionally, the eigenvalues 
change with electrode placement and with recruit- 
ment patterns of the muscle for different contrac- 
tion actions such as flexion/extension and 
abduction/adduction (18). This would require calcu- 
lating these weightings for every subject and for 
every electrode configuration and would make the 
system impractical for prosthetic use because it 
would require every prosthetist to have a data 
collection system and computer to calculate the 
weighting coefficients during the fitting procedure. 

be a simple summation amplifier. The removal of 
the necessity to determine the optimal weighting 
(recording of a time series of EMG signals and 
calculation of the eigenvalues and eigenvectors) 
would simplify the use of multiple sensors and also 
simplify the fitting and circuitry of a prosthesis so 
long as the signal-to-noise ratio is not degraded 
significantly. 

The spatial-adaptive filter 
Since the adaptive filter has an overall higher 

signal-to-noise ratio than the averaging filter, an 
improved signal-to-noise ratio should result from 
using an adaptive filter rather than an averaging 
filter for the final stage after a spatial filter. In order 
to test this idea, a multichannel, adaptive filter was 
designed, built, and tested. 

Signal and filter comparison 
Since muscle contractions are time varying and 

difficult to duplicate, comparisons cannot be made 
between different filtering systems if different EMG 
signal traces (recordings) are used with each of the 
filters. Therefore, the same EMG recording is 
processed by all of the systems and comparisons can 
then be made between the filtering systems. 

It is also important that actual myoelectric 
signals be used to compare the systems rather than 
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tion experiments described below, the EMG signals 

12 mm dia. of one muscle were used for the filter comparisons. 
Other muscles were monitored to ensure their 
minimal activity. 

Figure 7. 
The electrode array for spatial E M G  filtering. 

myoelectric models. However, when using actual 
EMG signals, the definition of the actual or original 
signal to be used in the calculation of the signal-to- 
noise is difficult. One must determine what part of 
the output is the desired, volitional control signal 
and what part is noise. It has been well-established 
(2,8) that the amplitude of the EMG signal relates to 
the isometric muscle force. Although force or torque 
control is not always used for prosthesis control, 
isometric muscle force is typically the signal used to 
calculate signal-to-noise of EMG signal processors. 
However, the muscle force is not directly accessible 
in an intact human arm so that the moment about a 
joint is usually monitored. Several muscles are 
recruited to apply a torque about a joint. Unless all 
of the muscles that act on the joint in question are 
monitored, how a particular muscle's myoelectric 
signal relates to the overall measured torque cannot 
be assumed with complete assurance. In the evalua- 

Experimental procedure 
Three nondisabled, healthy males were used as 

subjects in this study. The third digit of the subject's 
right hand was isometrically flexed. The force at the 
finger tip and the cutaneous myoelectric signals were 
simultaneously recorded by a computer. 

The flexor carpi radialis and flexor digit 
superficialis muscles were monitored. Four pairs of 
stainless steel electrodes attached to EMG 
preamplifiers were placed on the skin directly over 
the muscles with no skin preparation. Figure 7 
shows the electrode array. A square array was used, 
as it was the only configuration that could be fit on 
the muscle belly without a modification of the 
electrodes or the preamplifiers. Hogan (8) used 
other configurations. Ours was an attempt to see 
what could be done with "off-the-shelf" electrodes 
and preamplifiers that a prosthetist could use. Each 
electrode of a pair was separated by 35 mm. Each 
electrode pair was separated from the adjacent pair 
by 20 mm. The EMG signal was rectified and 
anti-alias filtered at 250 Hz, then digitized to 12-bit 
resolution, and finally recorded by the computer. 

The force at the finger tip was monitored by a 
strain gauge load cell. The arm and wrist were laid 
on a rest to prevent unwanted movements and 
muscle activity. The subject watched a monitor and 
was presented a target on the monitor. The subject 
pulled on the load cell and the applied force was 
displayed on the same monitor as was the target. 
The subject simply tried to keep the two points on 
the display together. 

In the experimental data collection set-up, the 
subject pulled against a load cell as fast as he could 
to a specified force level. The load cell was stiff so 
that movement of the finger was constrained. The 
force and the unprocessed EMG signals from each 
of the four preamplifiers were recorded by a 
computer at a sample rate of 500 samples/s for 10 s. 
The force was applied between 5 and 6 s, and the 
signal-to-noise ratio was calculated using the EMG 
and force data between 8 and 9 s (Figure 8). A force 
of 50 percent of maximum voluntary contraction 
(MVC) was used in all cases. Tests were conducted 
with a minimum of 10 min between each data 
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Figure 8. Figure 9. 
Example of the data used to calculate the signal-to-noise ratio in Step response of the linear, averaging, and adaptive filters given 
the interval from 8 to 9 seconds. a 0-95-percent rise time of 0.24 seconds. 

collection period to minimize fatigue effects. The 
recorded data were then processed by all of the 
filtering techniques off-line. 

Both rise time and signal-to-noise ratio are of 
interest for comparisons between the different filter 
systems. In order to simplify the comparisons, the 
signal-to-noise ratios were compared for the differ- 
ent systems adjusted to have the same rise time (0 
percent-95 percent) of 240 ms as shown in Figure 9. 

The signal-to-noise ratios and rise times were 
calculated using Equation [5]  for each of the filter 
types: linear, averaging, and adaptive low-pass 
filters using single sensors and multiple sensors 
weighted by the optimal (eigenvalues and 
eigenvectors) values as well as unity weighting. The 
signal-to-noise ratio was calculated over 1 s. 

EMGl 

Individual I 
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Averaskg 

Linear 

EMG2 

!MG sensor 

EMG3 

'sand unitj 

w 4  

and optin 

Unity 

iaUy surnm, 
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Signal - - C ( ~ o r c e ) ~  Figure 10. 

Noise (Force - E M G ) ~  Mean signal-to-noise ratios (in decibels) of all tests showing the 
[51 relative performance of the adaptive, averaging, and linear 

filters. 

RESULTS 

The average signal-to-noise ratios for 11 differ- 
ent constant-force muscle recordings are given in 
Table 1, Table 2, and Table 3. A summary of the 
signal-to-noise ratios of each of the low-pass filters 
and for each EMG channel, unity-weighted, and 
optimal-weighted spatial filters is given in Table 4. 
Figure 18 shows a graphical summary of Table 4. 

Of importance for prosthesis control is how 
well the resulting control signal from each system 

can follow the varying contractions of the moni- 
tored muscle, not just a step function input. This is 
best illustrated visually in Figures 11-17, in which 
the output of each processing system is shown as 
well as the measured muscle force. The same data 
were used in all cases. The data are from Subject 2, 
who was not following any specified trajectory, but 
kept the force levels at 60 percent MVC or below. 
These data were not used in the signal-to-noise ratio 
calculations of Tables 1, 2, and 3. 
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Table 1. 
Signal-to-noise ratio (in dB) of the adaptive filter 
parameters: T, = 1.0 S, T~ = 0.05 s, T, = 0.2 S, a = 3.65 
s2/v2. 

4 Channel 
Individual EMG Channels Spatial Filter 

Weightings 
Data File EMG1 EMG2 EMG3 EMG4 Unity Optimal 

Subject 1 16.159 15.556 19.616 17.860 21.258 18.348 

Subject 1 16.602 17.740 15.372 18.262 17.846 21.367 

Subject 1 14.333 14.230 16.230 17.461 16.100 17.068 

Subject 1 26.175 19.002 18.345 18.386 22.584 24.049 

Subject 2 17.163 18.504 17.101 20.681 20.933 16.639 

Subject 2 13.460 17.734 20.470 21.906 20.089 20.477 

Subject 2 21.065 22.196 23.107 23.405 25.534 27.352 

Subject 2 20.014 20.248 22.148 21.885 23.594 25.650 

Subject 3 21.042 22.443 20.135 20.792 22.171 27.397 

Subject 3 21.290 20.667 17.574 20.307 20.548 23.778 

Subject 3 22.812 23.464 21.927 23.800 24.912 25.089 

Mean 19.101 19.253 19.275 20.431 21.415 22.474 

Stand. 
Dev. 3.696 2.758 2.435 2.110 2.690 3.749 

Figures 11, 12, and 13 show the outputs of 
single-channel linear, averaging, and adaptive fil- 
ters, respectively. A visual comparison shows that 
the adaptive filter has the least noise of the three. 
Figures 14, 15, and 16 show the outputs of the 
optimal spatial filter with linear, averaging, and 
adaptive smoothing filters, respectively. In the par- 
ticular example shown, the averaging filter per- 
formed better than the adaptive. Generally, how- 
ever, the adaptive filter performs better than the 
averaging filter as indicated in Tables 1, 2, and 3. 
This particular data set is interesting in that the 
uniformly weighted spatial filter performs better 
using a visual comparison than the optimally 
weighted filter, as indicated by Figure 17, showing 
the output of a unity-weighted spatial filter and an 
adaptive smoothing filter. The same force and EMC 
data were used for Figures 11-17. 

An analysis of variance (ANOVA) was per- 
formed on the signal-to-noise ratio results of Tables 
1, 2, and 3 to test for significance of any differences 
between the variables, that is, the different filter 

Figure 11. 
Force and single-channel, linear-filtered (7 = 0.08 s) EMG. 

types and the different spatial weighting techniques. 
Additionally, a Tukey analysis (19) was computed 
for differences found significant by the ANOVA to 
find which variables caused the significance (i.e., 
which filter was significantly different from the 

Table 2. 
Signal-to-noise ratio (in dB) of the averaging filter 
(Averaging time = 250 ms). 

4 Channel 
Individual EMG Channels Spatial Filter 

Weightings 
Data File EMGl EMG2 EM63 EM64 Unity Optimal 

Subject 1 

Subject 1 

Subject 1 

Subject 1 

Subject 2 

Subject 2 

Subject 2 

Subject 2 

Subject 3 

Subject 3 

Subject 3 

Mean 18.339 18.722 18.687 19.669 20.202 21.063 

Stand. 
Dev. 3.056 2.493 2.081 1.753 2.373 2.896 
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others). The results of the Tukey analysis for 
significance of the low-pass filters are shown in 
Table 5. The Tukey honestly significant difference 
(HSD) level was 0.5148. Each low-pass filter was 

Table 3. 
Signal-to-noise ratio (in dB) of the linear filter 
(time constant = 80 ms). 

4 Channel 
Individual EMG Channels Spatial Filter 

Weightings 
Data File EMGl EM62 EMG3 EM64 Unity Optimal 

Subject 1 

Subject 1 

Subject 1 

Subject 1 

Subject 2 

Subject 2 

Subject 2 

Subject 2 

Subject 3 

Subject 3 

Subject 3 

Mean 15.959 16.442 16.774 17.272 18.018 18.670 

Stand. 
Dev. 2.132 1.814 1.379 1.166 1.603 2.354 

found to be significantly different. The significances 
of each individual EMG channel, the unity-weighted 
spatial filter, and the optimally weighted spatial 
filter are shown in Table 6. The Tukey HSD level 
was 1.179. Both spatial filters are significantly 
different than the individual channels, but the 
unity-weighted spatial filter is not significantly dif- 
ferent from the optimally weighted spatial filter. 

The results of the statistical analysis can be 
summarized as follows: 

1. The use of multiple sensors (spatial filtering) 
significantly improved the signal-to-noise ratio. 

2. There was no statistically significant difference 
between optimally weighted (using eigenvalues 
and eigenvectors) and uniformly weighted spa- 
tial filters. 

3.  Adaptive filtering was significantly better than 
averaging filtering, which was significantly bet- 
ter than linear filtering. 

CONCLUSIONS 

Comparisons were made of the signal-to-noise 
ratios of three types of EMG filters with and 
without multiple sensor arrays. These filters have 
been used to estimate muscle forces from EMG 
signals and to proportionately control prosthetic 
limbs. The purpose of the investigation was to 
quantify the ability of each filter to provide high 
signal-to-noise ratios as well as fast response (short 

Figure 12. Figure 13. 
Force and single-channel, averaging-filtered EMG (averaging Force and adaptive-filtered EMG (7, = 1 .0 s, 7, = 0.05 s, 7, = 

time = 0.25 s). 0.2 s, a = 3.65). 
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Figure 15. 
Figure 14. Force and optimal-spatial, averaging-filtered EMG (averaging 
Force and optimal-spatial, linear-filtered EMG (7 = 0.08 s). time = 0.25 sf. 

- Force - Spatial and Adaptive Filtered EMG 

Figure 16. Figure 17. 
Force and optimal-spatial, adaptive-filtered EMG (7, = 1.0 s, T, Force and uniform-spatial, adaptive-filtered EMG (7, = 1.0 S ,  7, 

= 0.05 s, 7, = 0.2s, a = 3.65). = 0 . 0 5 s , ~ ,  = 0 . 2 s , a  = 3.65). 

rise time) with regard to prosthetic limb control and 
force estimation applications. In order to simplify 
the comparisons, the rise time of each filter was 
matched so that only signal-to-noise ratios needed to 
be compared. We postulate that the inverse compar- 
ison is valid-that matching signal-to-noise ratios 
and measuring rise time would yield the same 
results. 

It was found that the signal-to-noise ratio of the 
adaptive filter described in the paper was 20 percent 
higher than the ratio of a linear filter with the same 
rise time, with each filter using a single EMG sensor 
over the muscle. Also, the adaptive filter had a 12 
percent higher signal-to-noise ratio than that of an 

averaging filter. Using an array of four EMG 
sensors further increased the ratio of the adaptive 
filter by 7 percent without affecting the rise time. 

The choice of what technique to use for a 
particular purpose depends upon the weighing of 
several factors. Among these are: How important is 
the improvement of the signal-to-noise ratio? What 
is the cost of the filter? How easy is the filter to 
implement? Both the adaptive filter and the averag- 
ing filter (approximated by a third-order Paynter 
filter) cost little more than and are almost as easy to 
implement as the linear filter (8). In fact, the 
adaptive filter has been successfully used in the Utah 
Artificial Arm since 1982 (1,20). The question 
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Table 4. 
Summary of mean signal-to-noise ratios (in dB) of all 
filters. 

4 Channel 
Individual EMG Channels Spatial Filter 

Weightings 
Data File EMG1 EM62 EM63 EMG4 Unity Optimal 

Adaptive 19.101 19.253 19.275 20.431 21.415 22.474 

Averaging 18.339 18.722 18.687 19.669 20.202 21.063 

Linear 15.959 16.442 16.774 17.272 18.018 18.670 

remains, How important is the use of multiple 
sensors? The EMG sensors are the highest cost 
components of the EMC system. The improvement 
in signal-to-noise ratio using multiple sensors is 
minor (7 percent). Furthermore, if multiple sensors 
are used, it does not seem necessary to find sensor 
gains through the calculation of the eigenvectors and 
eigenvalues as has been proposed by Hogan (8). No 
significant difference was found in the signal-to- 
noise ratio using unity-weighted sensor gains versus 
eigenvalue/eigenvector-weighted sensor gains. 

It would seem that multiple sensors should 
significantly improve muscle force estimation from 
EMG signals. However, our study has shown that 
the benefits of multiple sensors are marginal. For 
both prosthetics and muscle-force estimation uses, 
adaptive filtering is easily implemented and provides 
superior results. Unless a radically new signal- 
processing technique is developed, further attempts 
at improving the signal-to-noise ratio of EMG signal 
processors are probably not warranted for practical 
applications. The authors are currently investigating 
improvements in fatigue measurements and fatigue 
compensation of EMG/force estimation. Fatigue 
causes large errors between the EMG and rnuscle- 
force estimates. If a reliable, real-time fatigue 
estimator were developed, it could be used to 
compensate the EMC/force estimation, removing 
the error caused by the fatigue. 
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Table 5. 
Tukey analysis of low pass filters 
(ANOVA significance > 1 Yo). 

Adaptive Averaging Linear 
(Mean) (20.32) (19.45) (17.18) 

Adaptive - 3.145" .879* 

Averaging - 2.267" 

Linear - 

*greater than d, = .5148 

Table 6. 
Tukey analysis of spatial filters 
(ANOVA significance > 1 %). 

Spatial 
Individual EMG Channel (4 channel) 

1 2 3 4 Unity Optimal 
(mean) (17.178) (18.139) (18.254) (19.124) (19.876) (20.762) 

1 - .361 .476 1.345* 2.097" 2.964" 

2 - .I15 .985 1.736" 2.603" 

3 - ,869 1.621" 2.488" 

4 ,752 1.618" 

Unity - ,867 

Optimal - 

*greater than d, = 1.179. 
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