Nonlinear Microscopy with Shaped Laser Pulses – Shedding New Light on Tissue

Martin C. Fischer

Center for Molecular and Biomolecular Imaging Warren S. Warren (Director) Department of Chemistry, Duke University

Outline

- Linear and nonlinear optical microscopy
- Novel contrast mechanisms
 - Two-photon absorption (loss modulation / modulation transfer)
 - Self-phase modulation (spectral hole refilling)
- Applications / Progress
 - > Melanin imaging
 - Melanoma
 - Hemoglobin imaging
 - Angiogenesis
 - Tissue oxygenation

Functional neuroimaging

Linear Optical Microscopy

Z

Optical Microscopy:

Requirement:

- High spatial resolution
- High temporal resolution
- Non-invasive
- Deep penetration
- Structural contrast
- Functional contrast

Contrast in deep tissue ???

Penetration Limitation in Tissue

- Scattering is major limitation
- Large penetration Good contrast

Nonlinear Microscopy: Two-Photon Fluorescence

- Localized excitation (signal $\propto P$)
- High-efficiency collection
- Contribution to background from scattered light is small
- Long wavelength "indirect" excitation → small extinction
- Good penetration (~ 1 mm)
- \Rightarrow Contrast other than fluorescence ?

Brad Amos, Cambridge, UK

Two-Photon Absorption (TPA)

- Two-photon fluorescence <u>without</u> fluorescence
- Intensity-dependent absorption: $\alpha = \alpha_0 + \alpha_2 I$
- Measures resonant interaction

 Melanin (distribution, type)
 HbO/Hb (Oxygenation level)

 But: Small effect on large background

 ⇒Move small nonlinear signal away from
 - large background

P. Tian and W.S. Warren, Opt. Lett. 27, 1634-1636 (2002)

TPA in Human Melanoma Lesion

Human Melanoma Lesion (grafted on mouse)

Multi-Color Absorption

 Different nonlinear absorption processes contribute to the signal with different phases

- Melanins show different absorption dynamics
 - Excited state absorption / bleaching
 - Opposite phase

Two-Color TPA in Melanosomes

 $ESA \longleftarrow 0 \longrightarrow Bleach$

Differentiation of melanin type

Reconstructed from 10 layers with 1µm step size

Ex Vivo Imaging of Blood Vessels in a Black Mouse Ear

650 nm pump (2.4 mW) 775 nm probe (1.4 mW) 210 × 210 μm

60um

Other Contrast Mechanism?

- Self phase modulation (SPM)
 - > Nonlinear phase contrast
 - > Intensity-dependent refractive index $n = n_0 + n_2 I$
 - Resonant and non-resonant interaction
 - > Structural component
- But: Loss Modulation insensitive to SPM
- Solution:

Phase Measurement

- Absorptive
- Out of phase with main parts of pulse

SPM:

- Dispersive
- In quadrature with main parts of pulse

TPA+SPM:

 Measure phase to distinguish

Fischer, Warren, et al., Opt. Lett. 30, 1551 (2005)

Interference between LO and hole refilling

Pulse Shaping

- Pulse widths ≈ 100 fs ⇒ too fast for "direct" shaping
- Shaping in the frequency domain:

⇒ Arbitrary "fast" laser pulse shape by shaping "slow" RF waves

TPA/SPM Measurements

- 100 fs pulses at 20 kHz
- 400 µW (20 nJ/pulse)
- Phase rotation at 1 kHz

Rhodamine 6G:

Hemoglobin:

Melanin:

- Simultaneous SPM/TPA measurements
- Signals in biomarkers

TPA/SPM Cell Imaging

- Cultured B16 melanoma cell
- 100 fs pulses at 20 kHz
- 100 µW (5 nJ/pulse)

- High resolution measurements
- TPA dominated by melanin; mounting medium shows SPM
- SPM/TPA contrast difference

Functional Contrast

- Imaging of neuronal activity
 - > 3-dimensional images with good penetration
 - High spatial and temporal resolution
 - > Non-invasive, intrinsic contrast
- Current measurement methods:
 - Electrodes
 - Localized, invasive
 - EEG/MEG (electro/magneto-encephalography)
 - Low spatial resolution
 - Functional MRI
 - Low resolution, slow
 - Optical diffusion tomography
 - Low resolution, slow
 - Voltage/Calcium-sensitive dyes
 - Absorption, TPF, SHG measurements
 - Invasive (exogenous contrast)
 - Scattering / absorption / birefringence
 - Low contrast

• Combine intrinsic optical signatures with nonlinear imaging ?

Localization of Signal Change

- Strong nonlinear signal change during activation
- Small transmission (scattering) change
- Localized around cell body layer
- Suppress activation
 with tetrodotoxin
 (TTX)

Coming Soon ...

- SPM in neurons
 - Electrophysiology, compare to exogenous contrast
- > TPA in Hb/melanin
 - Wavelengths, delay
- Refine technique
 - > Epi-mode
 - Faster acquisition
- Move towards clinically relevant samples

Future directions

- Pulse-shaped Raman
 - Optimize generation of coherence / detection using shaped pulses
- 2D optical spectroscopy

Collinear configuration (with phase cycling)

Conclusion

- Femtosecond pulse shaping offers new nonlinear contrast for tissue imaging
 - Structural
 - Metabolic
 - Functional
- Imaging technique
 - ➤ Fast
 - High resolution (µm scale)
 - 3D capability (optical biopsy)
 - > Non-invasive
 - Intrinsic contrast

Acknowledgements

Duke (Chemistry): Henry Liu Dan Fu Tom Matthews Gunay Yurtsever Prof. Tong Ye Dr. Ivan Piletic Dr. Hong Lian Prof. John Simon

Duke (Med):

Prof. Ryohei Yasuda (Neurobiology) Prof. James Grichnik (Dermatology) Prof. Benny Chen (Cancer Center) Prof. Mark Dewhirst (Radiation Oncology)

UPenn:

Dr. Bill Lee Jeff Tsai Dr. Lisa Ziemer Dr. David Elder Patricia VanBelle

Shari Wynn / Carlus Walters (Admin)

Prof. Warren Warren (Director CMBI)

\$\$\$ NIH, Duke University

<u>More info:</u> Email: <u>Martin.Fischer@duke.edu</u> Web: <u>cmbi.duke.edu</u>