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ABSTRACT
In this paper we describe the design and implementation
of a static array-bound checker for a family of embedded
programs: the flight control software of recent Mars mis-
sions. These codes are large (up to 280 KLOC), pointer
intensive, heavily multithreaded and written in an object-
oriented style, which makes their analysis very challenging.
We designed a tool called C Global Surveyor (CGS) that
can analyze the largest code in a couple of hours with a pre-
cision of 80%. The scalability and precision of the analyzer
are achieved by using an incremental framework in which
a pointer analysis and a numerical analysis of array indices
mutually refine each other. CGS has been designed so that
it can distribute the analysis over several processors in a
cluster of machines. To the best of our knowledge this is
the first distributed implementation of static analysis algo-
rithms. Throughout the paper we will discuss the scalability
setbacks that we encountered during the construction of the
tool and their impact on the initial design decisions.

Categories and Subject Descriptors
F.3.2 [Logics and Meanings of Programs]: Semantics
of Programming Languages—Program Analysis

General Terms
Algorithms, Languages, Verification

Keywords
Abstract interpretation, program verification, pointer anal-
ysis, array-bound checking, difference-bound matrices

1. INTRODUCTION
It is well-known that runtime errors plague the develop-

ment of large mission-critical software. In 1996, the explo-
sion of Ariane 501 shortly after launch was due to an over-
flow in an arithmetic conversion. This failure cost over $500
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millions to the European space program. Classical verifi-
cation techniques based on development process, code re-
viewing and testing were unable to detect that defect. This
overflow could have been detected by employing static anal-
ysis techniques which can automatically inspect the text of a
program and check the safety of all operations. As a matter
of fact, the failure of Ariane 501 gave birth to a commer-
cial static analysis tool called PolySpace Ada Verifier [22].
This tool can perform precise static analysis of large Ada
programs (over 1 MLOC) and find runtime errors. In a pre-
vious article [5], we have reported our experience with C
Verifier (the C version of Ada Verifier) on real NASA soft-
ware. Unfortunately, we found that C Verifier does not scale
as well as its Ada counterpart. In short, we had to limit our
analysis to code pieces of 20 to 40 KLOC and we obtained
20% of warnings after 8 to 12 hours of analysis. This level
of performance was not enough to convince NASA software
developers to adopt the technology.
We analyzed the reasons for these limitations and we de-

cided to address them by prototyping our own static analysis
tool called C Global Surveyor (CGS). We believe that it is
extremely hard to build a static analyzer that works well
for any C programs. The precision of a static analysis tool
is measured in terms of the percentage of operations in the
program that can be decided as safe (or unsafe). Precision
is the main metric for judging the quality of a static ana-
lyzer. Therefore, designing a static analyzer for any type of
C programs forces the tool implementer to make tradeoffs
that sacrifice scalability. We extensively experienced with
PolySpace C Verifier on a variety of NASA programs and we
observed that precision remained consistently around 80%.
However, there was a huge discrepancy between execution
times, from a couple of hours to days. Our driving philos-
ophy is that designing a tool for specific coding style and
software architecture allows us to make different tradeoffs
that optimize execution time for the software family we tar-
get.
Cousot et al. [3] used a similar approach to build a static

analyzer that is specialized for software developed by Airbus;
it can analyze 75,000 lines of C code without producing any
warnings. Our goal with CGS is not as ambitious. Whereas
the software analyzed in [3] is safety-critical, single-threaded
and uses a very restricted subset of C, we have to analyze
programs that are multithreaded and use the full power of
pointer arithmetic. Our main purpose is to achieve a level
of precision comparable to that of PolySpace C Verifier with
much lower execution times, since in our case this is the de-
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cisive factor for having the technology adopted by missions
at NASA. C Global Surveyor checks for one type of runtime
errors: out-of-bounds array accesses. This is probably the
most critical category of runtime errors because it silently
corrupts the memory, causing nondeterministic behaviors
during the mission. CGS is specialized for the NASA soft-
ware following the Mars Path Finder (MPF) legacy, which
we call the MPF family. The flight software for the Deep
Space One mission (DS1) and the Mars Exploration Rover
mission (MER) all belong to the MPF family.
The programs of the MPF family share a unique feature

in the field of embedded applications: they are written in an
object-oriented style. This means that these programs con-
tain a myriad of small generic functions which are passed
pointers to the segments of data on which they shall oper-
ate. This has two consequences on the structure of the an-
alyzer. First, context-sensitivity should be enabled in order
to distinguish between hundreds of calls to the same func-
tion. Second, interprocedural propagation should be very
efficient. All decisions made in the design of CGS originate
from these two observations. We do not claim that the ar-
chitecture of CGS represents the optimal solution to this
problem. The experiments showed that some of our choices
were justified and some others were questionable. This pa-
per should be seen as the critical report of a practical expe-
rience in implementing a large scale static analyzer
The paper is organized as follows. In Sect. 2 we intro-

duce the abstract interpretation framework underlying the
architecture of CGS. In particular we define the semantic
model of the memory in which the symbolic information pro-
duced by the pointer analysis interacts with the numerical
invariants produced by the flow-sensitive analysis of loops.
Section 3 defines the abstract semantics of memory accesses
and the generation of semantic equations that are used dur-
ing the interprocedural propagation phase. In Sect. 4 we
describe the architecture of CGS and our implementation
choices. Section 5 summarizes the experimental results ob-
tained for the MPF and DS1 codes on a cluster of PC work-
stations. We give a critical interpretation of these results
with respect to the design decisions. We discuss related
work in Sect. 6 and we end the paper with concluding re-
marks.

2. ABSTRACT INTERPRETATION FRAME-
WORK

Abstract Interpretation [7, 8, 10] is a theoretical frame-
work for the systematic construction of provably correct
static analyzers. Classically, the abstract interpretation of a
program consists of attaching to each program point an ab-
stract memory configuration that is a conservative approxi-
mation of the actual memory configuration for all executions
of the program that reach that point. This information can
be automatically inferred by associating an abstract seman-
tic transformer to each basic operation of the program and
computing the composition of these transformers along all
possible executions paths in the control-flow graph. This
is achieved in practice by constructing a system of abstract
semantic equations that describes the flow of information
in the program and by applying appropriate fixpoint algo-
rithms for computing the solution of the system, usually
with the help of widening/narrowing operators in order to
ensure termination and/or rapid convergence.

In our case we are interested in discovering all possible
addresses that can flow through each pointer variable in
the program. Thus, we can check whether every memory
read or write operation of the program occurs within the
bounds of a memory block. We are not interested in check-
ing whether a pointer is NULL or contains an undetermined
value. This is a different problem that has to be treated
with a separate analysis. Therefore, in our abstract seman-
tic model the denotation of a pointer always contains NULL
and any undetermined value. We can nevertheless flag an
illegal memory access with certainty whenever our analysis
discovers an empty points-to set.
The C language authorizes creating a pointer to an object

inside a compound data structure, for example to the ele-
ment of an array. This construct is heavily used in the MPF
and DS1 codes, since data are organized in large structures
which are modified via pointer references passed to generic
functions. Therefore, our abstract memory model should
represent references as a triple (a, π, s) where a is the ad-
dress of a memory block, π is an access path into the block
and s is the size of the block. An address is either the ad-
dress of a variable &A, a constant character string string�

that appears in the program at the program location �, or
the dynamic allocation of a block malloc� at the program lo-
cation �. Our model does not distinguish between instances
of a malloc in a loop simply because this situation never
occurs in the class of programs that we are considering, al-
though techniques exist that can cope with this problem [29,
26].
Without access path information it is impossible to per-

form any precise array bound checking. We could use the
type information contained in the C program for represent-
ing access paths symbolically. Unfortunately, the aggressive
type casting mechanism of C combined to pointer arithmetic
ruins this idea. Consider for example the following fragment
of code:

struct MsgHeader {

int id;

int length;

};

struct Msg_X {

struct MsgHeader header;

Data_X data;

};

/* Thread 1 */

struct Msg_X *msg = malloc (...);

...

sendMsg (Thread_2, msg);

...

/* Thread 2 */

struct MsgHeader *msg = readMsg (...);

if (msg->id == ID_OF_X) {

Data_X *data = (DataX *)(msg + 1);

...

This is in essence how the message passing mechanism for
thread communication is implemented in the MPF family.
All messages start with the same header which contains an
id that uniquely determines the type of the message. The
data are stored right after the header. The actual type of
the data is only known after the message id has been read,
which explains this seemingly odd construction. This piece
of code illustrates the overall object-oriented design of the
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MPF family software. Messages are considered as objects
and this is nothing more than a manual encoding of virtual
method dispatch. However, this makes the manipulation
of symbolic access paths extremely difficult since we must
keep track of the actual layout of structure components in
memory in order to cope accurately with pointer arithmetic.
Our solution to this problem consists of choosing a uniform
offset-based representation of structure components instead
of symbolic access paths. A reference is then represented by
a triple (a, o, s) where o is an offset from the beginning of the
block expressed in bytes. With this numerical model, type
casting is no more an issue and becomes transparent for the
analysis. All architecture-dependent problems entailed by
this representation like memory alignment and padding are
completely resolved by the C front-end. Therefore, there is
no extra complexity in implementing this model.
For ensuring computability we approximate a set {(ai, oi,

si) | i ∈ I} of memory references by an abstract memory
reference ({ai | i ∈ I}, O, S) where O and S are the smallest
intervals such that ∀i ∈ I : oi ∈ O & si ∈ S. This corre-
sponds to the notion of attribute-independent or cartesian
approximation [9]. We can gain precision by considering the
reduced product [8] between the powerset lattice of addresses
and the lattice of intervals. The size of memory blocks is
known at compile time for the address of a static memory
block, i.e. an address of type &A or string. We denote by
sz(a) the size of the block at address a. If a is the address
of a dynamically allocated block we set sz(a) = [−∞,+∞].
The reduced product consists of refininig the expressiveness
of each lattice by bringing information from the other one.
In practice this is performed by applying a reduction opera-
tion σ defined as follows:

σ(A,O, S) =

(
{a ∈ A | sz(a) ∈ S}, O, S ∩

(
∪

a∈A
sz(a)

))

The effect of this operation is to remove spurious references
and reduce the size range, which results in better accuracy.
The reduction should always be performed on an abstract
memory reference before any operation is applied to it. In
practice reduction turned out to be very important, because
in many cases the numerical information was too coarse to
represent the size precisely.
An abstract memory configuration is thereby a couple

(E, H) where E is an abstract environment mapping each
local pointer variable of a function to an abstract memory
reference and each local integer variable to an interval, and
H is an abstract heap. An abstract heap is a set of points-to
relations 〈(a, O) �→ (a′, O′, S)〉 where a,a′ are addresses and
O, O′, S are intervals. Such a relation expresses that there
may be references in the block a within the range of offsets
O to the elements within the range of offsets O′ in the block
a′, the size of which lies in the interval S. Furthermore, we
impose that there are no two distinct points-to relations in
H with the same addresses a and a′. We perform two ad-
ditional approximations that are crucial for the tractability
of this model:

1. Abstract environments are field-insensitive, i.e. we do
not distinguish between the values of fields within a
compound local variable.

2. Local variables that are address-taken (i.e. modified
through a pointer reference) are globalized, i.e. they
are represented in the abstract heap H . This means

that we cannot distinguish the value of such a variable
between different execution contexts.

These approximations ensure that the domain of an abstract
environment E only contains variable names without any
offset information, and that any modification of the value of
a variable v in E may only be performed by an assignment
operation in which v explicitly appears. Even though local
structures and address-taken variables are quite common in
the MPF family, they rarely concern variables that carry
pointers. Thus the impact of these approximations on the
precision is low whereas they greatly simplify the design of
the analyzer.
As is, the classical abstract interpretation framework that

assigns an abstract memory configuration (E, H) at each
control point is not applicable to heavily multithreaded pro-
grams, since this requires considering all possible thread in-
terleavings. A solution would be to use a flow-insensitive
analysis, which can obviously cover all possible thread inter-
leavings at a low cost. However, the array bound checking
absolutely requires precise loop invariants, which cannot be
obtained without flow-sensitivity. Our solution consists of
using a mixed framework similar to that of [26] in which the
abstract environment E is computed in a flow-sensitive way
whereas the abstract memory heap H is constructed in a
flow-insensitive way.
More precisely, let H be an abstract heap that is a conser-

vative approximation of all possible heaps that can be gen-
erated by the program at any point of any execution. We
perform a flow-sensitive analysis by keeping the second com-
ponent of the abstract memory configurations equal to H .
In this case we do not have to consider any thread interleav-
ing at all since the variables in the domain of the abstract
environments are thread-local. We simply analyze the pro-
gram as if it were sequential, the initial states being given
by all the thread entry points. During the analysis memory
reads are always performed on H and memory writes are
never taken into account. More precisely, if p = *q is a read
operation that fetches a pointer from the heap, we get the
abstract memory reference (A,O, S) associated to q at this
stage of the computation. The result of the read operation
is the join of all memory references ({a′}, O′, S′) for which
there exists a points-to relation 〈(a,O′′) �→ (a′, O′, S′)〉 in
H such that a ∈ A & O ∩ O′′ �= ∅.
At the end of the analysis, we consider all memory write

operations of the program. For each such operation *p = q

that may carry a pointer we retrieve the abstract memory
reference (A, O, S) associated to p and the abstract memory
reference (A′, O′, S′) associated to q at this point. For each
a in A and each a’ in A′, we generate a points-to relation
〈(a, O) �→ (a′, O′, S′)〉. We gather all the points-to relations
generated this way to form a new abstract heap H ′. The
abstract heap H ′ satisfies two properties:

1. H ′ is a conservative flow-insensitive approximation of
all actual heaps of the program.

2. H ′ refines H , denoted by H ′ � H : for all 〈(a, O1) �→
(a′, O′

1, S1)〉 in H ′, there is a points-to relation 〈(a, O2)
�→ (a′, O′

2, S2)〉 such that O1 ⊆ O2, O
′
1 ⊆ O′

2 & S1 ⊆
S2.

This provides us with a process for incrementally refining
the abstract heap. We start with a coarse flow-insensitive
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approximation of the heap H0 and we construct a decreas-
ing sequence H0 � H1 � · · · � Hn of abstract heaps with
respect to the refinement order. We can use the pointwise
extension of the narrowing of intervals to define a narrow-
ing operation over abstract heaps. We can then automate
this process, using the narrowing to enforce stabilization.
Automatic stabilization is not implemented in the current
version of CGS, the user must explicitly give the number of
refinement steps that shall be computed.
To illustrate this mechanism, consider for example a pro-

gram working on an array A of two pointers, a pointer vari-
able P and two integer variables I and J, and made of three
simple threads defined as follows:

void task1() { void task2() { void task3() {

A[0] = &I; P = A[0]; A[1] = &J;

} } }

Imagine that we are provided with a conservative field-in-
sensitive approximation H0 of the memory graph as follows:

H0 =




〈&A, [−∞,+∞], [8, 8]〉 �→ 〈&I, [−∞,+∞], [4, 4]〉,
〈&A, [−∞,+∞], [8, 8]〉 �→ 〈&J, [−∞,+∞], [4, 4]〉,
〈&P, [−∞,+∞], [4, 4]〉 �→ 〈&I, [−∞,+∞], [4, 4]〉,
〈&P, [−∞,+∞], [4, 4]〉 �→ 〈&J, [−∞,+∞], [4, 4]〉




assuming pointers and integers occupy four bytes in mem-
ory on the architecture considered. After one step of itera-
tion, the elements at indices 0 and 1 of array A are entirely
determined, however the value of P is computed from the
points-to information contained in H0. Therefore we obtain
the following memory graph:

H1 =




〈&A, [0, 0], [8, 8]〉 �→ 〈&I, [0, 0], [4, 4]〉,
〈&A, [4, 4], [8, 8]〉 �→ 〈&J, [0, 0], [4, 4]〉,
〈&P, [0, 0], [4, 4]〉 �→ 〈&I, [−∞,+∞], [4, 4]〉,
〈&P, [0, 0], [4, 4]〉 �→ 〈&J, [−∞,+∞], [4, 4]〉




Note that the offset in the memory block &P has been solved
because the assignment P = A[0] writes its lefthand side at
the offset 0. After one more iteration step, the assignment
to P in task 2 can be precisely solved, since the memory
layout of A has been completely determined at the previous
iteration step. We finally obtain:

H2 =




〈&A, [0, 0], [8, 8]〉 �→ 〈&I, [0, 0], [4, 4]〉,
〈&A, [4, 4], [8, 8]〉 �→ 〈&J, [0, 0], [4, 4]〉,
〈&P, [0, 0], [4, 4]〉 �→ 〈&I, [0, 0], [4, 4]〉




It now remains the problem of bootstrapping the itera-
tive process, i.e. obtaining the first approximation H0. We
first used Steensgaard’s analysis [24] enhanced with Das’
one-level flow edges optimization [13]. However the result-
ing abstract heap was too coarse, and there were spurious
points-to relations introduced at that stage that remained
in all subsequent refinement steps. One source of impreci-
sion was due to the way message queues are allocated. The
unique malloc call that creates a queue is nested within
several function calls. Since in our memory model alloca-
tions can only be distinguished by the syntactic location of
the corresponding malloc, all message queues were merged,
resulting in an unrecoverable loss of precision. Adding an
option to CGS allowing to inline the corresponding functions
solved this problem. The idea is to treat isolated sources of
imprecision manually in this way rather than complicating
the pointer analysis in order to cover all special cases. The

drawback is that this kind of instrumentation can only be
done by a high-end user who perfectly knows the internals
of the analysis and how to cope with this kind of situation
(see also [3] for a discussion of this issue).
A substantial amount of the remaining spurious points-to

relations was due to brutal unification operations in Steens-
gaard’s analysis caused by pointers stored in global vari-
ables. The solution consisted of extending Das analysis in
order to be able to handle n-level flow edges without sac-
rificing efficiency. We believe that scalable versions of An-
dersen’s analysis [2] could have been considered as well for
the bootstrap [18]. We unfortunately did not have the time
to implement an inclusion-based analysis and compare the
results.
This ends the presentation of the abstract interpretation

framework implemented in CGS. We now have to present
the details of the abstract semantic equations.

3. ABSTRACT SEMANTICS
The symbolic and numerical parts of an abstract memory

reference are independent, which means that we can com-
pute these two pieces of information separately. We just
need to perform a reduction operation σ whenever there is
a context change (function call) or an interaction with the
abstract heap (memory read). The choice of performing a
cartesian approximation for the abstract memory references
was mainly motivated by this simplifying assumption in the
abstract semantics.
We generate two separate sets of semantic equations for

each function in the program, one for the symbolic part in
the form of inclusion constraints between points-to sets, the
second as a system of numerical constraints between offset
and size variables. The resolution of these equations follows
the call graph by propagating call contexts made of points-to
sets and intervals. The symbolic and numerical systems as-
sociated to a function f are solved separately for all possible
call contexts of f (depending on whether context-sensitivity
is enabled for this function or not). The resolution of these
two systems of equations is interleaved, interactions occur-
ring whenever some information is retrieved from the en-
vironment, i.e. by a memory read. In this case we have
to combine the numerical and symbolic information in or-
der to query the memory graph H used at this step of the
resolution.

3.1 Points-to Inclusion Constraints
Given a function f of the program, we associate a metava-

riable Ap to each local variable p of f that may carry a
pointer (either a pointer variable itself or a compound vari-
able with pointer-valued fields). These metavariables repre-
sent the first component of an abstract memory reference,
i.e. a set of symbolic addresses. Following the model defined
in [26] we associate an anchor metavariable A� to each loca-
tion � of a memory read operation or a function call that may
return a pointer. The metavariable A� represents the set of
addresses returned by the read operation or the function call.
We similarly assign a special anchor metavariable Ax@f to
each formal parameter x of f that may carry a pointer. This
anchor denotes the points-to set of the argument passed to
the function and is used during interprocedural propagation.
Following Andersen’s model [2] we use inclusion constraints
of the form Ap ⊇ Aq to relate the metavariables.
The generation of inclusion constraints is quite straight-
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forward. For all assignments p = q, p = q + n (pointer
arithmetic) or p = (T *)q (type cast), we generate a con-
straint Ap ⊇ Aq. For all memory read operation p = *q or
function call p = f (...) at a location � in the program
we generate a constraint Ap ⊇ A� and we record a semantic
operation read(A�, Aq) which is used during interprocedu-
ral propagation for querying the abstract memory graph. A
memory write operation *p = q is not assigned an inclu-
sion constraint, it is simply assigned a semantic operation
write(Ap, Aq) which is used at the end of an analysis pass to
generate a new abstract heap, as described in the previous
section. Similarly a return p statement is recorded sepa-
rately as return(Ap) and is used for the construction of the
transformers in the backward propagation phase described
in Sect. 3.3. We must also add the constraints corresponding
to the implicit binding relations between formal and actual
parameters as follows: Ax ⊇ Ax@f, for all formal parameter
x of f.
The resolution of these constraints differs from Ander-

sen’s algorithm [2] since read operations retrieve data from
the abstract memory graph H and require some information
about the offset at which the memory block is read. Our al-
gorithm consists of a local fixpoint iteration that computes
a set of symbolic addresses for each metavariable of f and
launches the resolution of numerical constraints on demand
whenever a memory read is encountered. For efficiency the
resolution algorithm implemented in CGS first computes the
directed acyclic graph of strongly connected components of
the dependency graph of the system of inclusion constraints.
The iterations are then performed locally on each strongly
connected component following a weak topological ordering
of the metavariables [4].

3.2 Numerical Constraints
Classically, when building an abstract interpretation of

numerical computations, the abstract semantic equations
follow the program structure [12]. A loop statement in the
body of a function will appear as a recursive dependency in
the equations. Solving the system precisely usually requires
computing two fixpoint iterations, the first one with widen-
ing the second with narrowing. These calculations should
be performed on the whole program, i.e. hundreds of thou-
sands lines of C, at each step of the heap refinement pro-
cess described in the previous section. In practice, we mea-
sured that at least five global iterations over the program are
needed to achieve a good level of precision. It was unrealis-
tic to perform a full-strength fixpoint iteration at each step;
it would severely impair the efficiency of the analyzer. We
decided to first compute a summary of each function of the
program by using a relational numerical lattice as described
in [11].
As for the points-to inclusion constraints, given a function

f of the program, we associate two numerical metavariables
Op and Sp to each local variable p of f that may carry a
pointer. The metavariables Op and Sp represent respectively
the offset and size ranges of the abstract memory reference
carried by the variable. We also associate a metavariable
In to each integer valued local variable n. Recall that local
variables that are address-taken are globalized and never oc-
cur in an abstract environment. We also attach two anchor
metavariables O� and S� to each location � of a memory
read/write operation or a function call that may return a
pointer. The metavariables O� and S� represent respectively

the offset and size ranges of the abstract memory reference
returned by the operation at that point. We similarly at-
tach special anchors Ox@f and Sx@f (resp. Ix@f) to each
pointer-valued (resp. integer-valued) formal parameter x of
f. .
We could also attach anchor metavariables I� to each lo-

cation � of a memory read operation or a function call that
returns an integer. CGS actually has command-line options
to generate such anchors. The representation of integer val-
ues in the abstract heap is identical to that of pointers, i.e.
it consists of mapping a memory location 〈a, O, S〉 to an in-
terval [a, b]. Some extra care is required when reading an
integer from the heap in order to ensure that the offset of
the read operation is aligned with the offset of the integer
in the memory block, otherwise this would result into re-
turning a truncated value. Similarly we have to make sure
that the sizes match, for example if we try to read a byte
from the location of an integer, otherwise the results would
be inconsistent. We address these issues in a very simple
way: whenever we encounter a read operation of an integer
of size s from the address a at the offset O′ and there is
a mapping 〈a, O, S〉 �→ [a, b] in the abstract heap, we re-
turn the interval [a, b] if and only if O and S are singletons
and O = O′, S = [s, s]. We return [−∞,+∞] otherwise.
Surprisingly enough, the experiments showed no noticeable
gain in precision on the MPF family with this option of CGS
enabled.
Now we need to choose a relational abstract domain for

representing relationships between the numerical metavari-
ables. Consider for example the following function which is
representative of the matrix computations performed in the
programs of the MPF family:

void equate (double *p, double *q, int n) {

int i;

for (i = 0; i < n; i++)

p[i] = q[i];

}

In the abstract syntax tree of this function the body of the
loop is represented by the three following statements:

a = p + i;

b = q + i;

c = *b;

*a = c;

The variables a, b and c are internal names generated by
the front-end. If we assume that the size of a double is 8
bytes, the exact loop invariant is given by



Sa = Sp@equate

0 ≤ Oa − Op@equate ≤ 8 ∗ In@equate − 8
Sb = Sq@equate

0 ≤ Ob − Oq@equate ≤ 8 ∗ In@equate − 8

where we have eliminated all metavariables associated to
local integer variables of the function, since they are just
used for storing the result of intermediate computations. It
immediately appears in this simple example that we need
general linear inequalities in order to be precise. The only
abstract domain that is expressive enough for representing
this kind of invariants is the lattice of convex polyhedra [12].
Unfortunately, because of the complexity of the underlying
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algorithms this lattice cannot be used for representing rela-
tionships between more than 20 variables in practice. The
functions in the codes of the MPF family can be quite large
and use many pointers simultaneously. We found that in
some functions more than 30 pointers were active in the
body of a loop. Moreover, the abstract syntax tree rep-
resentation provided by the front-end introduces numerous
internal variables since all statements are broken down into
a 3-address format.
Some numerical relational lattices have been developed

recently that showed good promises of scalability [20, 21].
However they are not expressive enough for representing the
kind of linear inequalities in which we are interested. They
can only express linear inequalities between two variables
and the coefficients of these variables may only be 1 or -1.
Our solution consists of modifying the form of our numerical
constraints by introducing additional variables so that the
overall expressiveness of a system of numerical constraints
is kept constant, whereas the class of numerical relations
required to achieve this expressiveness is simpler.
More precisely, it appears that the main source of com-

plexity comes from the byte-based representation of offsets.
An array access p[i] is transformed into an arithmetic ex-
pression in which we multiply the index by the size of an
array element expressed in bytes. We extend the represen-
tation of a pointer p by attaching additional metavariables
δ1(p), . . . , δk(p) and u1(p), ..., uk(p) for a fixed k. A pair
(δi(p), ui(p)) represents an offset expressed in a different unit
than the byte. δi(p) is the relative offset and ui(p) is the
base. The actual offset in bytes denoted by this representa-
tion is given by the following formula:

Op +
k∑

i=1

δi(p) ∗ ui(p)

We call the representation Wp = 〈Op, (δ1(p), u1(p)), . . . ,
(δk(p), uk(p))〉 a sliding window. We call Op the base offset.
The associated sliding operation slide(Wp, δ, u) is defined as
follows:

slide(Wp, δ, u) = 〈Op + δ1(p) ∗ u1(p), (δ2(p), u2(p)), . . . ,
(δk−1(p), uk−1(p)), (δ, u)〉

The initial values of the sliding window for metavariables
associated to inputs of the function, i.e. the parameters and
the return values of a memory read or a function call, are
set to 0 except for the base offset and uk. The base offset is
the one associated to the metavariable and uk is the size of
the element pointed to by the variable as it appears in the
type inferred by the C front-end.
The sliding operation is used for handling a type cast op-

eration p = (T∗)q. When analyzing this operation we first
retrieve the range of uk(q) from the current system of in-
equalities. If it is a singleton and it is equal to the size t
of T then Wp = Wq, otherwise Wp = slide(Wq, 0, t). This
way uk always represents the size of the element currently
pointed-to by the variable. Whenever a pointer arithmetic
operation p = q+ n is analyzed, the sliding window Wp is
equated to Wq except for δk(p) for which the constraint
δk(p) = δk(q) + In is generated. Now if we analyze the
function equate with sliding windows of size k = 2 and the
abstract numerical domain of difference-bound matrices [20],
we obtain the following system of constraints for the loop

invariant:


Sa = Sp@equate

Oa = Op@equate

δ1(a) = u1(a) = 0
0 ≤ δ2(a) ≤ In@equate − 1
u2(a) = 8

Sb = Sq@equate

Ob = Oq@equate

δ1(b) = u1(b) = 0
0 ≤ δ2(b) ≤ In@equate − 1
u2(b) = 8

We can express the exact loop invariant with a less powerful
abstract lattice and more variables.
We chose the domain of difference-bound matrices [20]

(DBMs for short) for expressing numerical constraints be-
tween variables. In this domain a constraint may only have
the form x − y ≤ c where c is an integer. The fundamen-
tal operation on a DBM is the normalization that refines
constraints by repeated application of the following rule:

x − y ≤ c
y − z ≤ c′

x − z ≤ c′′


 ⇒ x − z ≤ min(c + c′, c′′)

Our choice was motivated by the observation that DBMs
have a sufficient expressiveness for our purpose and by the
existence of an efficient quadratic algorithm devised by John-
son [6] for the normalization of sparse systems of constraints.
We assumed indeed that the systems of constraints would
be rather sparse, since it would be very unlikely to have all
variables in a function related at the same time. Our first im-
plementation used Floyd-Warshall’s algorithm [6] for com-
puting the normalization operation. The execution times
were catastrophic. A simple function independently manip-
ulating 20 pointer variables within a loop took more than
15 minutes to analyze. The execution time did not change
at all when we tried Johnson’s algorithm.
After a careful inspection of the results it appeared that

the system of inequalities was always dense, i.e. all variables
were related. Therefore the cubic worst case execution time
was always attained. The reason was to be found in the
way simple range constraints of the form a ≤ x ≤ b are
represented. A DBM always contains a dummy zero variable
Z which has the value 0. Range constraints are translated
into constraints of the form a ≤ x − Z ≤ b. Therefore all
variables introduced in a DBM during the analysis become
implicitly related as soon as a range constraint is involved, in
other terms always. Thus completely independent variables
become related from the moment they receive a constant
(during initialization for example). This was a surprising
and disappointing result.
Our response to this situation was to explicitly pack com-

putationally dependent variables together, so that the ana-
lyzer works on a collection of smaller DBMs. A similar sit-
uation has been independently reported in [3]. In that work
the authors pack variables in small groups using a syntac-
tic criterion (all variables that appear within a same state-
ment). In our case, such a simple criterion does not work.
Pointer variables and loop counters can become related in
a nontrivial way via the sliding window representation. We
could not even use a dependency analysis because the ap-
plication of the slide operation depends on the range of uk

which can only be known during the fixpoint iteration. Any
dependency analysis performed beforehand would relate all
variables of the sliding windows which would still lead to a
high workload.
Our solution consisted of dynamically computing the de-

pendency relation between metavariables during the execu-
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tion of the analysis. We start with all metavariables being
unrelated and we incrementally merge the DBMs whenever
two of their variables become related by an operation of the
program. We also merge the associated zero variables. We
should also take care of implicit dependencies, i.e. the in-
visible dependencies between variables which are modified
within a loop. If we do not consider these relations we lose
all relations between array indices and loop counters for ex-
ample. Therefore we first perform a rapid analysis of every
loop in order to check the variables that can be modified in
the body and we explicitly relate them before analyzing the
loop. We are then able to infer all invariants that can be
expressed with our abstraction. The function that took 15
minutes with the classic DBM domain could now be ana-
lyzed in about 10 seconds.
The domain of adaptive DBMs that we have constructed

in that way is an order of magnitude of complexity beyond
the original one. Fortunately it can be simply described
as an instance of a cofibered domain [27, 28]. Cofibered
domains were initially introduced to construct complex do-
mains for pointer analysis. They enable the manipulation
of dependent abstract domains, i.e. families of abstract do-
mains indexed by the elements of a lattice. The domain of
adaptive DBMs is exactly a cofibered domain: the indexing
lattice is the set of all partitionings of the set of variables
ordered by the refinement relation, and the abstract domain
associated to one partitioning of the variables is the prod-
uct of the family of DBM domains based upon each set in
the partitioning. We measured that the average size of a
partition of correlated variables was five elements. It would
actually be an interesting experiment to use convex polyhe-
dra instead of DBMs in the cofibered domain, since five is a
tractable dimension for polyhedra, and compare the gain in
precision.

3.3 Interprocedural Propagation
Function pointers are widely used in embedded programs

for efficiency reasons. There are plenty of them in codes of
the MPF family. We realized that a simple control-flow anal-
ysis based on Steensgaard’s algorithm [24] was sufficient to
solve exactly almost all computed calls. As a matter of fact,
recent experimental evaluations showed that simple pointer
analyses were sufficient to resolve computed calls in most
applications [19]. We perform this simple control-flow anal-
ysis at the bootstrap prior to launching the interprocedural
propagation phases. Having all computed calls resolved at
bootstrap makes the design of the interprocedural propaga-
tion algorithms tremendously simpler. In order to achieve
efficiency we break down the interprocedural propagation
into two phases:

1. A backward propagation phase computes transformers
relating the parameters of a function with its return
value. These transformers are expressed using the do-
main of adaptive DBMs.

2. A forward propagation phase uses the transformers
computed in the previous phase to propagate abstract
memory references and ranges using the lattice of in-
tervals.

The transformers computed during the backward propaga-
tion phase are used during the forward propagation to solve
a function call without having to analyze the body of the

called function. The return operations are used at this
moment to propagate the constraints between the return
value and the arguments of the call. A coarse version of the
transformers are computed during the bootstrap in order to
enable the first forward propagation phase. Using a classi-
cal resolution scheme would have implied iterating over in-
terprocedural cycles induced by the two-way dependencies
between a caller and a callee (function parameters/return
value), which is completely unrealistic for large programs.
The interprocedural propagation phase of CGS can be

context-sensitive. We implemented call-site sensitivity, i.e.
the invariants of a function are duplicated depending on the
syntactic call site. This level of context-sensitivity is suffi-
cient for the MPF family, since it handles the common situ-
ation where a pointer to some part of a big structure (typi-
cally an array of double representing a vector or a matrix) is
transmitted to a mathematical function. Context sensitivity
is not applied uniformly, but only to functions which have
a pointer in their signature, since this is the only situation
where the analysis is able to distinguish between different
call contexts. Context-sensitivity is extremely important for
precision. Arrays of double, which are the main data struc-
tures manipulated by the MPF family codes, are usually
transmitted together with an integer parameter containing
the size of the array like in the equate example above. Since
the numerical call contexts computed by CGS only are made
of intervals, they cannot express a relation between the size
of the array and the integer parameter. The only way to
capture this information is to enumerate all call contexts.
Hence, without context-sensitivity the tool would be unable
to perform any precise array bound checking on this large
family of functions.

4. ARCHITECTURE OF CGS
The algorithmic core of C Global Surveyor consists of

20,000 lines of C code. The tool is architected around three
main phases:

1. The build. This phase computes the points-to con-
straints and the numerical inequalities for each func-
tion in the program.

2. The bootstrap. This phase performs a flow-insens-
itive pointer analysis and a coarse context-independent
resolution of the numerical inequalities, in order to
obtain a first approximation of all memory accesses.
These results are used to construct the call graph and
an initial approximation of the heap.

3. The solve. This phase consists of performing a for-
ward or backward interprocedural propagation of nu-
merical invariants. The results obtained at the end of
this phase are used to compute a new abstract heap
that refines the previous one. This phase should be re-
peated until a satisfactory level of precision has been
attained.

There are two additional satellite phases:

• The initialization. This phase is performed at the
very beginning and collects general information about
the program, like the table of global variables, the table
of functions, etc.
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• The array-bound check (abc). This phase can be
executed at any time after the bootstrap and checks
the safety of all memory accesses from the results of
the analysis available at this moment. The precision
computed at the end of this phase is the main criterion
for deciding whether to continue refining the results or
stop at this point.

A very important decision in the initial design of a static
analyzer is the choice of the front-end. We chose the Edi-
son Design Group’s C/C++ front-end [15], a commercial
front-end which supports a large variety of C dialects. More-
over, the Green Hills’ compiler [17], which is widely used at
NASA especially for developing flight software, is based on
this front-end. This is a relevant factor when considering the
application of the tool to other types of programs developed
inside NASA.
CGS has been designed from the beginning with a dis-

tributed model of computation in mind. Therefore, we tried
to parallelize all phases for which this makes sense, i.e. the
build and the refinement, the nature of the algorithms used
in the bootstrap precluding any attempt of parallelization.
We chose the Parallel Virtual Machine (PVM) for imple-
menting the distribution layer [16]. A major problem con-
sisted of storing the artifacts of the analysis and transmitting
them to the processes running on parallel. We decided to use
a relational database for both the storage and the commu-
nication between processes of the artifacts, the PVM com-
munication mechanism being merely used for sending com-
mands to processes. We chose the PostgreSQL [25] database
to work with CGS. The architecture of CGS is illustrated in
Fig. 1. Note that each phase launches a master PVM pro-
cess that in turn launches slave processes. Slave processes
operate on each C file of the program for the initialization,
the build and the array-bound check, whereas they operate
on functions in the solve phase. The bootstrap is the only
sequential phase.
It is not surprising to say that the cost of communications

is the major limiting factor in designing a distributed ap-
plication. CGS follows the same communication pattern for
each job: all needed artifacts are retrieved from the database
at the beginning of the job, the results are stored in internal
memory until the job completes, then the results are writ-
ten into the database. Two important algorithmic issues
in designing the distribution of jobs in CGS are the gran-
ularity (which jobs should be executed in parallel) and the
scheduling (in which order jobs should be executed).
The granularity of the build phase is the file: one PVM

process is launched for generating the semantic equations
of each source file. The scheduling of tasks in the build
follows a metric calculated during the initialization phase
which estimates the complexity of the fixpoint computation
for each function of the program. Complex files are executed
in priority in order to prevent the computation from being
blocked by a big job that has been scheduled at the end
of the worklist. The function-level granularity gave poor
results because the analysis time of a single function is so
short that the database becomes overwhelmed by numerous
concurrent accesses.
The granularity of the solve phase is the function: one

PVM process is launched for computing the invariant of each
function. The scheduling follows a weak topological order-
ing [4] given by the call graph in each way (forward/back-
ward): a function is added to the worklist whenever all its

Phase MPF (140 KLOC)
1 cpu 2 cpus 4 cpus 6 cpus 8 cpus

init 232 187 113 78 67
build 1253 791 538 372 327
bootstrap 416 383 412 419 426
fwd solve 873 545 438 354 344
bwd solve 897 529 413 343 331
fwd solve 867 548 435 348 346
abc 274 211 374 697 880

Figure 2: Average analysis times (in seconds) per
phase for MPF

Phase DS1 (280 KLOC)
1 cpu 2 cpus 4 cpus 6 cpus 8 cpus

init 457 357 264 230 208
build 3678 1979 1480 1313 1155
bootstrap 711 663 780 777 686
fwd solve 1689 1075 914 860 771
bwd solve 1811 1062 885 803 688
fwd solve 1666 1080 954 853 767
abc 537 484 413 824 1022

Figure 3: Average analysis times (in seconds) per
phase for DS1

predecessors have been analyzed. We have limited control on
the granularity and scheduling of the solve phase because of
it is entirely bound to the structure of the call graph. The
choice of the next function to schedule from the worklist
turned out to be critical. In our first experiments we used
simple heuristics that all led at some point to an almost se-
quential execution. Therefore, we should find a scheduling
strategy that tries to maximize the parallelism. We chose
a heuristic that consists of picking up the next function to
schedule from the worklist that has the largest number of
calls to functions which are not in the worklist yet. This
heuristic is simple to compute and gives good results in
terms of distribution.

5. EXPERIMENTAL RESULTS
This section shows two types of performance measures for

CGS. First, we study the improvement of analysis times (for
each phase) in function of the number of available CPUs.
Note that all CPUs are identical (2.2 MHz with 1 GB of
memory). Second, we show how the precision evolves with
each solve phase. We distinguish between forward and back-
ward interprocedural propagation in the solve phases. All
experiments are conducted using two NASA mission soft-
ware systems, i.e., the flight software of the Mars Path
Finder missions (about 140 KLOC) and the Deep Space One
mission (about 280 KLOC). Both are written in C and follow
the same architectural and programming principles.

5.1 Analysis Time Measures
Figure 2 and 3 show the results of the evolution of the av-

erage analysis times of each phase for MPF and DS1 when
the number of available processors varies. We distinguish
between successive solve phases because the input data at
each iteration are different. Fig 4 gives a synthetic view of
these times on a graph plot. These number are averages over
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Figure 1: Architecture of C Global Surveyor

several measurements. We sometimes noticed a significant
variation between trials which can be imputed to the net-
work load at that moment, since we do not have a dedicated
cluster of machines for running our experiments. Note that
the differences between execution times for the bootstrap
phase are not relevant since this phase is purely sequential.
The main conclusion is that contrarily to our expectations,

parallelizing the algorithms does not bring a substantial pay-
off. Four CPUs seems to be the threshold beyond which
the communication cost counterbalances the parallelization
benefits. The execution times consistently decrease for all
parallel phases except for the array-bound check. The expla-
nation is that each slave process for the array-bound check-
ing performs very simple computations over a large amount
of data (the numerical invariants associated to all memory
accesses in a C file), hence the execution time is dominated
by the I/O with the database. This phase should definitely
be made sequential like the bootstrap.

5.2 Precision Measures
First, we study the precision in terms of ABC checks.

All runs have been performed with context-sensitivity en-
abled. We count the number of ABC checks performed and
compute the percentage of these checks that are not warn-
ings (i.e. array-bound checks that could have been decided
by CGS), which provides us with a measure of the preci-
sion of the analysis. We display the results in Fig. 5. Note
that we group the solve phases by pairs backward-forward,
since a backward interprocedural propagation which com-
putes function transformers is of no use if there is no follow-
ing forward propagation phase that uses the transformers to
analyze function calls more precisely. Two passes seem to
be the optimal configuration.

# solves MPF
total checks warnings precision

1 37044 13248 64%
2 37044 9216 75%
3 37044 9216 75%

# solves DS1
total checks warnings precision

1 72152 18878 74%
2 72152 15103 79%
3 72152 15103 79%

Figure 5: Evolution of the precision after successive
pairs of backward-forward solve phases for MPF and
DS1

We also study the precision in terms of the number of
points-to relations in the abstract heap computed for the
program. As described in Sect. 2, each points-to relation
carries three numerical invariants representing the offsets
from the pointer and into the pointee, as well as the size
of the memory block being pointed to. In Fig. 6 we dis-
play the evolution of the number of points-to relations after
successive pairs of backward-forward solve phases for MPF.
We also show the number of imprecise numerical invariants
(i.e. intervals which have one of their bounds equal to ±∞)
for the pointer/pointee/size information respectively. The
last column represents the number of alias relations with an
imprecise numerical invariant for either the pointer, or the
pointee, or the size of the pointed memory block.
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# solves relations pointer pointee size any

1 306 23 71 72 111
2 306 23 48 51 90
3 306 23 47 43 89

Figure 6: Evolution of the points-to relations after
successive pairs of backward-forward solve phases
for MPF

We notice that the number of points-to relations is con-
stant. The major improvement concerns the numerical in-
variants. Although the points-to table may seem very small
compared to the size of the code, the points-to relations
recorded there are pervasively used throughout the code.
During the development of the tool we noticed that improv-
ing the precision of few critical entries in this table could
resolve thousands of checks at once.

6. RELATED WORK
There are two bodies of work that are directly related to

our work. The first one is the commercial tool PolySpace C
Verifier [22]. At the time of writing, the tool is available in
three versions: C, C++ and Ada. We do not have any infor-
mation about the C++ version. The Ada version seems to
scale quite well, even though we do not have any practical
experience with it. The C version however does not really
scale. Our experiments, using PolySpace C Verifier, on MPF
and DS1 showed that the tool could only process the code
in chunks no bigger than 40 KLOC. Still, PolySpace Verifier
was useful and found quite a few bugs (mainly uninitial-
ized variables, out-of-bound array accesses, and overflows).
Unfortunately, it also produced a large amount of warnings
which deters developers.
The second body of work precisely addresses the prob-

lem of generating too many warnings. In [3] the authors
describe a static analyzer (also based on abstract interpre-
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tation) that can analyze 75,000 lines of C code in a couple
of hours with a high level of precision (11 false alarms on
the code used for their experiment). Like for CGS, the au-
thors specialized their algorithms for a family of software
with the following characteristics: many global and static
variables, no recursive functions nor gotos, and simple data
structures. Furthermore, the authors mentioned than the
alias information is trivial in the code they analyze.
There are many analyses that can now scale to large pro-

grams [24, 2, 1, 14, 18], but none of those offer the level
of precision that can meet our requirements. For example,
none of those analyses can track offsets (in arrays or com-
plex data structures) with sufficient precision. Moreover, all
these analyses have been designed for sequential programs.
More precise analyses, such as those used in shape analysis
[23], exist but they fail to scale to large programs. In fact, it
is extremely difficult to design an analysis that scales with
high precision for any C program. However, as we demon-
strate here, high precision can be achieved on large programs
that share the same basic structure.

7. CONCLUSION
We have shown in this paper that the array bound check-

ing of large C programs can be performed with a high level
of precision (around 80%) in nearly the same time as compi-
lation. The key to achieve this result is the specialization of
the analysis towards a particular family of software. Most
importantly, this experience emphasizes the importance of
specializing the algorithms (the domain of adaptive DBMs)
and dismisses the use of general solutions (parallelization).
This approach has a major drawback however: developing a
specialized static analyzer is a huge effort that requires an
important expertise, which limits the impact of these tech-
niques in the software industry.
CGS is currently being applied to other kinds of NASA

software. It has been recently run with success on several
pieces of software operating in the International Space Sta-
tion. This is an interesting process that will give us informa-
tion on how a specialized analyzer behaves on programs that
do not belong to its primary scope. The first results show
noticeable variations in the precision. However, the scala-
bility of the tool remains remarkably intact and CGS is able
to analyze small programs of 20 KLOC in few minutes.
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