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Course Goals
Understand the reasons for developing and applying an 
LC-MS-based approach to proteomics 
Discuss considerations of experimental design for larger 
scale experiments
Develop a sense of the source of information, its relative 
complexity and the algorithms required to make use of 
this approach
See (and participate) in a demonstration of the critical 
tools applied to “real” data
Learn where to get more information



Pacific Northwest National Laboratory

Washington Wine Country

Environmental Molecular Sciences Laboratory



Pacific Northwest National Laboratory and EMSL

W.R. Wiley 
Environmental 

Molecular Sciences
Laboratory

The Guest House at PNNL for EMSL Users

PNNL performs basic and applied research to deliver energy, 
environmental, and national security solutions for our nation.

EMSL Mission
The W.R. Wiley Environmental Molecular Sciences 
Laboratory (EMSL), a national scientific user facility
at Pacific Northwest National Laboratory, provides 
integrated experimental and computational resources 
for discovery and technological innovation in the 
environmental molecular sciences to support the needs 
of DOE and the nation.

To find out more and request access to the resource: 
www.emsl.pnl.gov



“Realizing the promise of the genome 
project for human health”

A collaboration among MIT, Harvard, and affiliated teaching hospitals

Programs

• Cellular Circuits
• Medical Genetics
• Chemical Biology
• Cancer Research

Initiatives

• Metabolic Disease
• Infectious Disease
• Psychiatric Disease
• Inflammatory Disease

Platforms

• Sequencing
• Genotyping
• Chemical Synthesis and 

Screening
• Proteomics and 

Metabolite Profiling
• Image Analysis

• Scientific mission: Create comprehensive, broadly available tools for genomic 
medicine; pioneer applications toward disease understanding and treatment

• Organizational mission: Enable collaborative projects not readily done in 
individual labs; empower scientists through access to tools and approaches



History/Evolution of PNNL Proteomics

Key point: early access and experience with
higher resolution LC and MS with ~1 ppm mass accuracy
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Peer-Reviewed Applications, Reviews, and Software
Specific to the AMT tag Approach
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PRISM Data Trends

1 TBData in SQL Server databases
115 TBData Files
>277,000Automated Software Analyses
>105,000LC-MS(/MS) Analyses
>50,000Prepared Samples
115Organisms
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Proteomics Informatics Architecture
modular and loosely coupled for flexibility

MTSDMS

Data 
Capture

Integrated & 
Automated LC-

MS(/MS) Control

Data
Archive

Manager

VIPER

Peak 
matching

Manager

ICR-2LS

De-isotoping

Manager

SEQUEST
X!Tandem
Peptide ID

Manager

MASIC

SICs

Manager

NET 
Manager

Elution time 
alignment

STARSuite
Extractor

Q Rollup 
Export

Export tools

MTS 
Explorer

Web interface

PRISM: G.R. Kiebel et. al. Proteomics 2006, 6, 1783-1790.



Motivations for LC-MS Based Proteomics 

Throughput, sensitivity, and sampling efficiency
Compared to LC-MS/MS based approaches

Shortcomings with chemical/labeling methods
Multiple species need to be sampled for each 
“peptide”
Potentially more sample preparation steps or 
increased cost
Multiple analyses still required for statistical 
assessment

New challenges for experimental design
Blocking and randomization needs



X!Tandem or 
SEQUEST
w filtering
& archive

Upstream
separations

Complex 
mixture 
of 
proteins

Tandem
MS spectra

Parent
MS spectra

CID
LC-MS/MS

Shotgun or MuDPIT Proteomics
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An example need for increased throughput
Analysis of Regulatory Mutants

Hypothesis: Knock-out regulatory proteins involved in 
pathogenesis and the commonly regulated proteins 
represent the best targets for therapeutics

WT

M1

M2

M3

M4

M5

WT = wild type
M = mutant



Understanding Biological Regulation of Salmonella:
Demonstrates the need/use for increased throughput

smpBWT HfqMutant

Biological Rep.

Cell Fraction

Analytical Rep.

X4 Contrasting Conditions

Sample Prep

himD phoP/QslyA hnrrpoE crp Etc…

…

…

…

…

1080 analyses for 15 mutants
using biological pooling 360 analyses

Replicate analysis to account for
natural biological and normal analytical variation



High-throughput LC-FTICR-MS Analysis (AMT) tag

Accurate Mass and Time Tag Approach

SEQUEST and/or X!Tandem results
• Filtering
• Calculate exact mass
• Normalize observed rlution time

μLC- FTICR-MS Peak-Matched Results

Complex 
samples

Compare abundances
across samples

Example: V.A. Petyuk, et al. Genome Research. 2007, 17 (3), 328-336.
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New Concerns with Larger Comparisons

Column effects (PNNL operates 4 column systems)
Elution time variability, potential for carryover, and 
stationary phase life span

Electrospray emitters
Alignment, wear, clogging, etc.

Mass Spectrometer
Calibration, detector response, tuning, etc.

Samples
Oxidation, degradation, and other chemical 
modifications



Accurate Mass and Time (AMT) Tag Data Processing Pipeline

Automated sample 
processing

Sample blocking

Sample blocking
& randomization

LCMSWarp

SLiC
QA/QC 
trends

QA/QC 
trends

SEQUEST
X!Tandem

MASIC 
DeconMSn

Decon2Ls
VIPER 

MultiAlign

DAnTE

Mini-
proteome

J.S. Zimmer et. al. Mass. Spectrom. Rev. 2006, 25 (3), 450-482.



NIAID: Salmonella infecting host cells; small sample 
quantities whole proteome coverage

Analysis of purified viral particles of Monkeypox and 
Vaccinia viruses

Analysis of “Voxels” from mouse brains to reveal protein 
abundance patterns in brain structures

Jake Jaffe will expand on a couple of examples such as 
primary tissue example; quantities too small for labeling 

Recent Examples of Successful Applications using 
LC-MS Proteomics Approaches 

J.N. Adkins, et. al. Mol. Cell. Proteomics. 2006, 5 (8), 1450-1461.

N.P. Manes, et. al. J. Proteome Res. 2008, 7 (3), 960-968.

V.A. Petyuk, et al. Genome Research. 2007, 17 (3), 328-336.



Course Related Software & Data
AMT tag Pipeline Software

http://ncrr.pnl.gov

http://www.proteomicsresource.org

Salmonella typhimurium data resource

http://www.broad.mit.edu/cancer/software/genepattern/

PEPPeR, software within GenePattern

http://omics.pnl.gov

PNNL’s LCMS-based data repository
Currently in open beta-testing
>1 Terabyte available
More coming soon!



Other Software Resources
http://www.ms-utils.org/ (Magnus Palmblad)

http://open-ms.sourceforge.net/index.php (European consortium)

http://tools.proteomecenter.org/SpecArray.php (ISB)

http://fiehnlab.ucdavis.edu/staff/kind/Metabolomics/Peak_Alignment/
(Tobias Kind with Oliver Fiehn)

http://www.proteomecommons.org/tools.jsp
(Phil Andrews and Jayson Falkner)



Example Data for the AMT tag Pipeline Demo

Salmonella typhimurium, LC-MS/MS
Grown in LB (Luria-Bertani) up to log phase
Soluble portion of cell lysis
“Mini-AMT tag” database, composed of 25 SCX fractions 
analyzed by LC-MS/MS
Mass and time tag database composed from searches using 
X!Tandem (Log E_Value ≤ -2)
Linear alignment of datasets for AMT tag database

LC-MS
Different sample, grown and prepared in the same conditions

LC-FTICR-MS analysis (11T FTICR)
Non-linear alignment and peak matching to the database

DAnTE data
Similar experiment with new growth condition



Course Outline
Introduction (Adkins)
Part I: Overview of Label-Free Quantitative Proteomics (Jaffe)

When and why to use label free quantitative proteomics
Overview of the generic ‘label free’ pattern-based approach with 
guidelines
Discussion of alternate pipelines

Part II: Feature discovery in LC-MS datasets (Monroe and Jaitly)
Part III: PEPPeR, GenePattern and Real-world examples (Jaffe)
Break
AMT tag Pipeline Demo (general)
Panel Discussion

Questions
Future Directions



Part I: An Overview of Label-
free quantitative proteomics

Jacob D. Jaffe
The Broad Institute of Harvard and MIT

Proteomics Platform



Section Outline
When and why to use label free quantitative 
proteomics

Overview of the generic ‘label free’ pattern-based 
approach with guidelines



A picture is worth 1000 parameters…
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LCMS Information Funnel – Total Peaks
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Definition of Label-free Quantitative Proteomics

Use of raw mass spectral signal intensity (peaks) as a 
surrogate for the abundance of a peptide and/or protein

Signal intensity from the same analyte is compared 
across multiple experimental conditions as the basis for 
quantitation

When coupled to LC, peaks have dimensions in 
retention time and well as m/z and intensity

Careful experimental processing and computational 
methods are required to extract quantitative information 
in label-free proteomics



Motivations for Label-free Quantitative Proteomics 

Microarray envy
Well-defined experiment, well-defined tools

Differential detection and quantification of proteins
Biomarker discovery and pattern recognition
Biological insight into the real actors in the cell: proteins
Time course analysis

MS2 independent but friendly
SILAC and iTRAQ (labeling methods) require MS2 ID for entry
Comprehensive!  Quantify all the spots!  Even the faint ones!

Minimal sample workup
Primary tissue OK
No artifacts from labeling efficiency



The Generic ‘Label-free’ Workflow

( )



Best Practices: Getting Started
Team approach

LCMS expert experimentalist
Computer scientist/programmer
Statistician

Planning
Statistical power of study (consult statistician)
Identification of reliable sample sources
Instrument / Computational / Storage infrastructure

Execution
Patience
Consistency



Best Practices: Samples
BEST POSSIBLE SAMPLES AND CONTROLS

Relevant to disease or study target
Proximal to the source of differential markers
Consistent in composition
Controls appropriately matched (same subject if possible)
Enriched in likely differential markers
GARBAGE IN, GARBAGE OUT

Sample processing pipeline TESTED and CONSISTENT
Abundant protein depletion (serum proteomics)?
Fractionation required?
Measure yields – are they consistent?
CLEAN!!!

Collect more than you need – outlier removal!



Best Practices: Data Acquisition
Resolution! Resolution! Resolution!

FTICR or Orbitrap recommended > 60,000 resolution
More ‘channels’

Accuracy! Accuracy! Accuracy!
Calibrate mass often
Downstream recognition of “same” feature easier
Statistical confidence

Consistency
LCMS methods and instrumentation
LC column and length

Common Sense
MS1 sampling rate -> chromatographic resolution
Tolerances and dynamic exclusion for MS2 sampling
Carry over testing and sample randomization
SAVE THE SAMPLES!!!!!



Best Practices: Feature Picking
Understand the method

No method is demonstrably ‘best’
Consult with expert help
All methods have parameters and tolerances that have to be 
tailored to your operating characteristics
There is no magic ‘black box’

Patience
You will spend a long time collecting data; expect to spend at 
least as much time extracting and analyzing data
Budget time and resources to explore parameters on a subset of 
your data before doing feature picking en masse



Best Practices: Experiment Alignment
Consistency in experimental execution

Makes life easier, less computational correction

Pay attention to output of aligners
Methods may have metrics of alignment quality
Large corrections may signal outlier experiments

Consider discarding

Intensity normalization
Total ion current (TIC)?
TIC of all features?
Subset of ‘housekeeping’ features?
Medians, means, etc?



Best Practices: Feature Assignment and Matching

Assignment: annotation of an LCMS feature with a peptide 
identity (sequence)

Derived from external or embedded MS2 data that has been 
searched against a database (i.e. Sequest, Mascot, etc)
AMT-based assignment (importance of mass accuracy)
Look for statistics!

Matching: recognition that a feature is the same across 
multiple experiments irrespective of an identity assignment

Assignments can help
Accuracy and alignment are paramount
Take care with user-adjustable tolerances
Look for statistics!



Best Practices: Statistical Analysis
Intensity normalization of features must be done prior to 
statistical analysis

Also address handling of missing values

Understand what you are doing or seek assistance
Know your p-values from your q-values (and FDRs)

Have a well-formulated statistical question
Most statistical tests are measured vs. the ‘null’ hypothesis
Decide in advance what levels of false discovery are acceptable
Significance level ≠ priority for follow-up

There are many tools available
Some are more proteomics-amenable

Handling of intensity normalization
Handling of proteins as combinations of peptides



Best Practices: Following-up
Targeted reinterrogation of samples for identification of 
‘unidentified’ features

Literature mining
Possible connections to your biological questions
Helps with prioritization

Targeted assessment of interesting features in 
alternative matrices

I.e., discovered in tissue, but is it present in blood?
Methods other than mass spec, too!



Reference Chart of Label-free Platforms
 PNNL Pipeline PEPPeR msInspect SuperHirn CRAWDAD 
Lab PNNL Broad Institute FHCRC IMSB (Swiss) Univ. Wash. 
Feature Picker Decon2LS/Viper Mapquant 

(or any other) 
msInspect SuperHirn CRAWDAD 

Method Spectrum de-
isotoping then 

clustering 

Image Analysis 
then de-
isotoping 

Wavelet 
decomposition 

then de-
isotoping 

Spectrum de-
isotoping then 

merging 

m/z channel 
binning 

RT Alignment Normalization, 
then linear or 
LCMSWARP 

Relative, then 
linear, or 

LOESS (exp) 

Iterative non-
linear 

transformation 

LOESS 
modeling 

Dynamic time 
warping 

m/z recalibration Yes (dynamic) Yes (quadratic) No No No 
Assignment of 
IDs to features 

AMT database, 
normalized 

elution times 

AMT database, 
relative elution 

order 
(Landmarks) 

AMT database 
through user 
interaction 

Yes, but not 
well 

documented at 
present 

Yes, for 
differences only 

if they exist 

Statistical 
Evaluation of 
assignment 

Mass shift decoy 
and/or Bayesian 

Statistics 

Bayesian 
Statistics 

No No No 

Unidentified 
Feature 
Recognition 

Stored in 
database for 
later analysis 

Data-dependent 
tolerance-based 

clustering 

User specified 
tolerance-based 

clustering 

Tolerance-based 
merging, 
heuristics 

Difference 
mapping only 

Runs on Windows with 
GUI 

Web-based 
(Linux or 

Windows install 
bases) 

Java with GUI Linux Linux/Windows 

 



Part II: LC-MS Feature Discovery
Introduction (Adkins)
Part I: Overview of Label-Free Quantitative Proteomics (Jaffe)
Part II: Feature discovery in LC-MS datasets (Monroe and Jaitly)

Structure of LC-MS Data
Feature discovery in individual spectra (deisotoping)
Feature definition over elution time
Identifying LC-MS Features using an AMT tag DB
Extending the AMT tag approach for feature based analyses
Estimating confidence of identified LC-MS features
Downstream quantitative analysis with DAnTE

Part III: PEPPeR, GenePattern and Real-world examples (Jaffe)
Break
AMT tag Pipeline Demo (general)
Panel Discussion

Questions
Future Directions



Part II: Feature discovery in 
LC-MS datasets

Navdeep Jaitly and Matthew E. Monroe

Pacific Northwest National Laboratory



Structure of LC-MS Data
Mass spectra capture the changing composition of 
peptides eluting from a chromatographic column

Complex peptide mixture on a column is separated by liquid 
chromatography over a period of time
Changing composition of the mobile phase causes different 
peptides to elute at different times
The components eluting from a column are sampled 
continuously by sequential mass spectra
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Structure of LC-MS Data
Each compound is observed as an isotopic pattern in a 
mass spectrum

The pattern is dependent on the compound’s chemical 
composition, charge, and resolution of instrument

Peptide: VKHPSEIVNVGDEINVK

Parent Protein: gi|16759851 30S 
ribosomal protein S1

Charge: 2+
m/z: 939.0203
Monoisotopic Mass: 1876.0054 Da

Peptide: VKHPSEIVNVGDEINVK

Parent Protein: gi|16759851 30S 
ribosomal protein S1

Charge: 2+
m/z: 939.0203
Monoisotopic Mass: 1876.0054 Da

Theoretical Profile
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Structure of LC-MS Data
A mass spectrum of a complex mixture contains overlaid 
distributions of several different compounds
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Structure of LC-MS Data
With LC as the first dimension, each compound is 
observed over multiple spectra, showing a three-
dimensional pattern of m/z, elution time and abundance

Salmonella typhimurium dataset

Peptide: VKHPSEIVNVGDEINVK

Parent Protein: gi|16759851 30S 
ribosomal protein S1

Charge: 2+
m/z: 939.0203
Monoisotopic Mass: 1876.0054 Da

Elution range: Scans 1539 - 1593

Peptide: VKHPSEIVNVGDEINVK

Parent Protein: gi|16759851 30S 
ribosomal protein S1

Charge: 2+
m/z: 939.0203
Monoisotopic Mass: 1876.0054 Da

Elution range: Scans 1539 - 1593



Feature Discovery in LC-MS data
Goal: Infer (mass, elution time, intensity) of compounds 
that are present in data obtained from an LC-MS dataset

Compounds are termed LC-MS features since they are inferred 
from a three dimensional pattern, yet identity is unknown

2D view of an LC-MS analysis of Salmonella typhimurium
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Feature Discovery in LC-MS data
Sequential process of finding features in each mass 
spectrum is followed by grouping of features over 
multiple spectra together

2D views of an LC-MS dataset in different stages of processing

raw data
Collapsed 

monoisotopic
features in all spectra

LC-MS featuresdeisotoping Elution profile discovery
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Feature discovery in individual spectra
Deisotoping

Process of converting a mass spectrum (m/z, intensity) into a list 
of species (mass, abundance, charge)

Deisotoping a mass spectrum of 4 overlapping species

charge Monoisotopic MW abundance
2 1546.856603 533467
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2 1548.799612 426939

m/z

in
te

ns
ity



Deisotoping an Isotopic Distribution
Decon2LS deisotoping algorithm compares theoretical isotopic 
patterns with observed patterns

avg. mass = 1876.02

Charge 
detection
algorithm2

Fitness value

Averagine3

estimated empirical 
formula: 

C83 H124 N23 O25 S1
Mercury4

charge = 2

Observed 
spectrum

1. Horn, D.M., Zubarev, R.A., McLafferty, F.W. Automated Reduction and Interpretation of High Resolution Electrospray Mass Spectra of Large 
Molecules. J. Am. Soc. Mass Spectrom. 2000, 11, 320-332.
2. Senko, M. W.; Beu, S. C.; McLafferty, F. W. Automated assignment of charge states from resolved isotopic peaks for multiplycharged ions. J. Am. 
Soc. Mass Spectrom. 1995, 6, 52–56.
3. Senko, M. W.; Beu, S. C.; McLafferty, F. W. Determination of monoisotopic masses and ion populations for large biomolecules from resolved 
isotopic distributions. J. Am. Soc. Mass Spectrom. 1995, 6, 229–233.
4. Rockwood, A. L.; Van Orden, S. L.; Smith, R. D. Rapid Calculation of Isotope Distributions. Anal. Chem. 1995, 67, 2699–2704.

Theoretical 
spectrum



Deisotoping an Isotopic Distribution
Patterson (Autocorrelation) algorithm
to detect charge of a peak in a 
complex spectrum

Mercury algorithm used to guess an
average empirical formula for a 
given mass

Fitness (fit) functions to quantitate
quality of match between theoretical 
and observed profiles

For additional details, see the slides 
presented at 2007 US HUPO, available 
at http://ncrr.pnl.gov/training/workshops/
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16O/18O Mixtures
Overlapping isotope patterns are separated by 4 Da

Creates challenges for deisotoping, particularly for charge states 
of 3+ or higher
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Isotopic Composition
Deviation from natural abundances
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composition of atoms is different 
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Isotopic Composition
Decon2LS supports changing the isotope composition
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Feature definition over elution time
Deisotoping collapses original data into data lists

Goal: Given series of deisotoped mass spectra, group 
related data across elution time

Look for repeated monoisotopic mass values in sequential 
spectra, allowing for missing data
Can also look for expected chromatographic peak shape

46.740.01561872.86621871.8631873.0910.0296936.938945100721500
80.40.01051512.75331512.7531513.7620.0706757.885450399321500

111.20.00651181.65411181.6541182.3790.0198591.834356989621500
57.520.00881376.71451376.7151377.640.0446689.364563065721500
39.060.0096729.1045729.1045729.54610.024730.111766147711500
109.010.00761282.63411282.6341283.4170.0253642.324366395421500
92.090.0091374.76951374.771375.6940.0384688.39273407021500
79.220.00862023.05492022.0522023.3750.02675.024698876131500
120.360.0165942.9742942.9742943.55180.1025943.9815121360711500
77.940.0061124.6361124.6361125.3220.012563.3253229782221500
74.750.0137863.4846863.4846864.00730.0156864.4919242282911500
74.040.02221102.0261102.0261102.6980.11111103.033261491311500
718.830.0106758.0576758.0576758.52220.0716759.0649277293311500

signal noisefwhm
most abu.

mw
monoiso

mwaverage mwfitmzabundancechargescan num



Can visualize deisotoped data in two-dimensions

Feature definition over elution time

• Plotting monoisotopic mass
• Color is based on charge of the 

original data point seen
• Monoisotopic Mass =

(m/z x charge) - 1.00728 x charge

Time

M
as

s



Zoom-in view of species
Same species in multiple spectra need to be grouped together

Feature definition over elution time

Related peaks found using a 
weighted Euclidean distance; 
considers:

Mass
Abundance
Elution time
Isotopic Fit

Determine 6 
separate groups



Feature definition over elution time
Feature detail

Median Mass: 1904.9399 Da (more tolerant to outliers than average)
Elution Time: Scan 1757 (0.363 NET)
Abundance: 1.7x107 counts (area under 2+ SIC)

See both 2+ and 3+ data
Stats typically come from the most abundant charge state

Scan number

Monoisotopic Mass

1,904.850
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1,904.930

1,904.950

1,904.970

1,740 1,745 1,750 1,755 1,760 1,765 1,770 1,775 1,780 1,785 1,790

5 ppm

1 2 3Charge:

Selected Ion 
Chromatograms
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2.0E+6
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3+ data



Second example
LC-MS feature eluting over 7.5 minutes

Feature definition over elution time

Clustering algorithm allows for missing 
data, common with chromatographic tailing



Second example, feature detail
Median Mass: 2068.1781 Da
Elution Time: Scan 1809 (0.380 NET)
Abundance: 8.7x107 counts (area under 3+ SIC)

This example has primarily 3+ data; previous had even mix of 2+ and 3+ data

Feature definition over elution time

Scan number

Monoisotopic Mass

2,068.075

2,068.095

2,068.115

2,068.135

2,068.155

2,068.175

2,068.195

1,775 1,800 1,825 1,850 1,875 1,900 1,925 1,950 1,975 2,000 2,025 2,050

1 2 3Charge:

5 ppm
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1.0E+6

2.0E+6

3.0E+6

4.0E+6
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Both
2+ data
3+ data
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Chromatograms



Feature definition over elution time
Example: S. typhimurium dataset on 11T FTICR

• 100 minute LC-MS analysis (3360 mass spectra)
• 67 cm, 150 μm I.D. column with 5 μm C18 particles
• 78,641 deisotoped peaks
• Group into 5910 LC-MS Features



Isotopic Pairs Processing
Paired features typically have identical sequences, with and without 
an isotopic label

e.g. 16O/18O pairs have 4 Da spacing due to two 18O atoms

LC-FTICR-MS

Control
(16O water)

Perturbed
(18O water)



Paired feature example: 16O/18O data

Isotopic Pairs Processing

Monoisotopic Mass

Scan number

1,235.0

1,236.2

1,237.4

1,238.6

1,239.8

1,241.0

1,242.2

1,243.4

1,244.6

1,245.8

1,247.0

2,688 2,700 2,712 2,724 2,7360.0E+00

5.0E+04

1.0E+05

1.5E+05

2.0E+05

2700 2710 2720 2730

Pair #424; Charge used = 2AR = 1.78 (LightArea÷Heavyarea); or
AR = 1.34 ± 0.2 (scan-by-scan)

4.0085 Da

Scan number

Monoisotopic Mass

1,279.0

1,280.2

1,281.4

1,282.6

1,283.8

1,285.0

1,286.2

1,287.4

1,288.6

1,289.8

1,291.0

3,010 3,026 3,042 3,058

4.0085 Da

0.0E+00

1.0E+06

2.0E+06

3.0E+06

4.0E+06

3010 3020 3030 3040 3050 3060 3070

Pair #460; Charge used = 2AR = 0.13 (LightArea÷Heavyarea); or
AR = 0.12 ± 0.02 (scan-by-scan)

Compute AR using ratio of areas, or 
Compute AR scan-by-scan, then average AR values (members must co-elute)



Feature definition over elution time
Numerous options in VIPER for clustering 
data to form LC-MS features and 
for finding paired features
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Accurate Mass and Time (AMT) tag
Unique peptide sequence whose monoisotopic mass and 
normalized elution time are accurately known
AMT tags also track any modified residues in peptide

AMT tag DB
Collection of AMT tags

AMT tag approach articles
R.D. Smith et. al., Proteomics 2002, 2, 513-523.
J.S. Zimmer, M.E. Monroe et. al., Mass Spec. Reviews 2006, 25, 
450-482.
L. Shi, J.N. Adkins, et. al., J. of Biological Chem. 2006, 281, 
29131-29140.

Assembling an AMT tag DB



What can we use an AMT tag DB for?
Query LC-MS/MS data to answer questions

How many distinct peptides were observed passing filter criteria?
Which peptides were observed most often by LC-MS/MS?
How many proteins had 2 or more partially or fully tryptic peptides?

Correlate LC-MS features to the AMT tags
Analyze multiple, related samples by LC-MS using a high mass 
accuracy mass spectrometer

e.g. Time course study, 5 data points with 3 points per sample
Characterize the LC-MS features

Deisotope to obtain monoisotopic mass and charge
Cluster in time dimension to obtain abundance information

Match to AMT tags to identify peptides
Align in mass and time dimensions
Match mass and time of LC-MS features to mass and time of AMT tags

Assembling an AMT tag DB



Assembling an AMT tag DB
Characterizing AMT tags

Analyze samples by LC-MS/MS
10 minute to 180 minute LC separations
Obtain 1000's of MS/MS fragmentation spectra for each sample

Analyze spectra using SEQUEST, X!Tandem, etc.
SEQUEST: http://www.thermo.com/bioworks/ 
X!Tandem: http://www.thegpm.org/TANDEM/

Collate results

List of 
peptide

and protein
matches



AID_STM_019_110804_19_LTQ_16Dec04_Earth_1004-10 #11195 RT: 44.76 AV: 1 NL: 2.79E5
T: ITMS + c NSI d Full ms2 626.19@35.00 [ 160.00-1265.00]
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Assembling an AMT tag DB
AMT tag example

R.VKHPSEIVNVGDEINVK.V
Observed in scan 11195 of dataset #19 in an SCX fractionation 
series

3+ species
Match 30 b/y ions
X!Tandem hyperscore = 80
X!Tandem Log(E_Value) = -5.9
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Assembling an AMT tag DB
AMT tag example

R.VKHPSEIVNVGDEINVK.V
Observed in scan 11195 of dataset #19 in an SCX fractionation 
series

3+ species
Match 30 b/y ions
X!Tandem hyperscore = 80
X!Tandem Log(E_Value) = -5.9



Assembling an AMT tag DB
Align related datasets using elution times of observed 
peptides

One option: utilize NET prediction algorithm to create theoretical 
dataset to align against

NET prediction uses position and ordering of amino acid residues to 
predict normalized elution time

0.76488.043-6.5R.TFAISPGHMNQLRAESIPEAVIAGASALVLTSYLVR.C

0.58973.961-8.9R.KVAAQIPNGSTLFIDIGTTPEAVAHALLGHSNLR.I

0.43862.803-11.6K.KTGVLAQVQEALKGLDVR.E

0.51962.583-7.3K.RFNDDGPILFIHTGGAPALFAYHPHV.-

0.41553.003-8.2R.GIIKVGEEVEIVGIK.E

0.22436.915-8.8R.LVHGEEGLVAAKR.I

0.16733.958-6.1R.AARPAKYSYVDENGETK.T

Predicted 
NET

Elution 
Time

X!Tandem
Log (E_Value)Peptide

K. Petritis, L.J. Kangas, P.L. Ferguson, et al., Analytical Chemistry 2003, 75, 1039-1048. 
K. Petritis, L.J. Kangas, B. Yan, et al., Analytical Chemistry 2006, 78, 5026-5039.
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Example: 506 unique peptides used for alignment; Log(E_Value) ≤ -6

Assembling an AMT tag DB
Align related datasets using elution times of observed 
peptides

One option: utilize NET prediction algorithm to create theoretical 
dataset to align against

NET prediction uses position and ordering of amino acid residues to 
predict normalized elution time

Alignment yields NET values based on observed elution times
Observed NET = Slope×(Observed Elution Time) + Intercept

VKHPSEIVNVGDEINVK
Elution time: 44.923 minutes
Predicted NET: 0.292
Observed NET: 0.303



Assembling an AMT tag DB
AMT tag example

R.VKHPSEIVNVGDEINVK.V
Observed in 7 (of 25) LC-MS/MS datasets in the SCX 
fractionation series

Analysis 1, scan 11195 3+, hyperscore 80, Obs. NET 0.303 

Compute monoisotopic mass: 1876.0053 Da
Average Normalized Elution Time: 0.3021 (StDev 0.0021)

Analysis 2, scan 9945 3+, hyperscore 69, Obs. NET 0.298

Analysis 3, scan 10905 2+, hyperscore 74, Obs. NET 0.301

Analysis 4, scan 9667 2+, hyperscore 77, Obs. NET 0.302



Assembling an AMT tag DB
Mass and Time Tag Database

Repository for AMT tags
Mass, elution time, modified residues, and supporting information 
for each AMT tag

Allows samples of unknown composition to be matched quickly 
and efficiently, without needing to perform tandem MS
Assembled by analyzing a control set of samples, cataloging 
each peptide identification until subsequent analyses no longer 
provide new identifications

0.0050.5572533.23048MYGHLKGEVA…QER36843675

0.0110.4592590.281511WVKVDGWDN…FER36715875

0.0020.3791960.06025HRDLLGATNP…TLR36609588

0.0050.2351175.61463SSALNTLTNQK17683899

0.0000.1431338.68261MTGRELKPHDR1662039

Observed 
NET 

StDev

Average 
Observed 

NET

Calculated 
Monoisotopic

Mass
LC-MS/MS 
Obs. CountPeptideMT Tag ID



Assembling an AMT tag DB
Mini AMT tag DB

Database constructed from a relatively small number of datasets
e.g. 25 SCX fractionation samples from S. typhimurium, each 
analyzed by LC-MS/MS and then by X!Tandem
Protein database: S_typhimurium_LT2_2004-09-19

4550 proteins and 1.4 million residues

>STM1834 putative YebN family transport protein (yebN) {Salmonella typhimurium LT2}

MFAGGSDVFNGYPGQDVVMHFTATVLLAFGMSMDAFAASIGKGATLHKPKFSEALRTGLI

FGAVETLTPLIGWGLGILASKFVLEWNHWIAFVLLIFLGGRMIIEGIRGGSDEDETPLRR

HSFWLLVTTAIATSLDAMAVGVGLAFLQVNIIATALAIGCATLIMSTLGMMIGRFIGPML

GKRAEILGGVVLIGIGVQILWTHFHG

>STM1835 23S rRNA m1G745 methyltransferase (rrmA) {Salmonella typhimurium LT2}

MSFTCPLCHQPLTQINNSVICPQRHQFDVAKEGYINLLPVQHKRSRDPGDSAEMMQARRA

FLDAGHYQPLRDAVINLLRERLDQSATAILDIGCGEGYYTHAFAEALPGVTTFGLDVAKT

AIKAAAKRYSQVKFCVASSHRLPFADASMDAVIRIYAPCKAQELARVVKPGGWVVTATPG

PHHLMELKGLIYDEVRLHAPYTEQLDGFTLQQSTRLAYHMQLTAEAAVALLQMTPFAWRA

RPDVWEQLAASAGLSCQTDFNLHLWQRNR



Assembling an AMT tag DB
Database Relationships

Minimum information required:
Single table with Mass and NET

T_Mass_Tags

PK Mass_Tag_ID

Peptide
Monoisotopic_Mass
NET

Expanded schema:

T_Proteins

PK Ref_ID

Reference
Description

T_Mass_Tags

PK Mass_Tag_ID

Peptide
Monoisotopic_Mass

T_Mass_Tags_NET

PK,FK1 Mass_Tag_ID

Avg_GANET
Cnt_GANET
StD_GANET

T_Mass_Tags_to_Protein_Map

PK,FK1 Mass_Tag_ID
PK,FK2 Ref_ID

PK := Primary Key
FK := Foreign Key



Assembling an AMT tag DB
Microsoft Access DB Relationships

Full schema to track individual peptide observations

V_Filter_Set_Overview_Ex

Filter_Type
Filter_Set_ID
Extra_Info
Filter_Set_Name
Filter_Set_Description

T_Analysis_Description

PK Job

Dataset
Dataset_ID
Dataset_Created_DMS
Dataset_Acq_Time_Start
Dataset_Acq_Time_End
Dataset_Scan_Count
Experiment
Campaign
Organism
Instrument_Class
Instrument
Analysis_Tool
Parameter_File_Name
Settings_File_Name
Organism_DB_Name
Protein_Collection_List
Protein_Options_List
Completed
ResultType
Separation_Sys_Type
ScanTime_NET_Slope
ScanTime_NET_Intercept
ScanTime_NET_RSquared
ScanTime_NET_Fit

T_Mass_Tags

PK Mass_Tag_ID

Peptide
Monoisotopic_Mass
Multiple_Proteins
Created
Last_Affected
Number_Of_Peptides
Peptide_Obs_Count_Passing_Filter
High_Normalized_Score
High_Peptide_Prophet_Probability
Mod_Count
Mod_Description
PMT_Quality_Score

T_Mass_Tags_NET

PK,FK1 Mass_Tag_ID

Min_GANET
Max_GANET
Avg_GANET
Cnt_GANET
StD_GANET
StdError_GANET
PNET

T_Proteins

PK Ref_ID

Reference
Description
Protein_Sequence
Protein_Residue_Count
Monoisotopic_Mass
Protein_Collection_ID
Last_Affected

T_Mass_Tags_to_Protein_Map

PK,FK1 Mass_Tag_ID
PK,FK2 Ref_ID

Mass_Tag_Name
Cleavage_State
Fragment_Number
Fragment_Span
Residue_Start
Residue_End
Repeat_Count
Terminus_State
Missed_Cleavage_Count

T_Peptides

PK Peptide_ID

FK1 Analysis_ID
Scan_Number
Number_Of_Scans
Charge_State
MH
Multiple_Proteins
Peptide

FK2 Mass_Tag_ID
GANET_Obs
Scan_Time_Peak_Apex
Peak_Area
Peak_SN_Ratio

T_Score_Discriminant

PK,FK1 Peptide_ID

Peptide_Prophet_FScore
Peptide_Prophet_Probability

T_Score_Sequest

PK,FK1 Peptide_ID

XCorr
DelCn
Sp
DelM

T_Score_XTandem

PK,FK1 Peptide_ID

Hyperscore
Log_EValue
DeltaCn2
Y_Score
Y_Ions
B_Score
B_Ions
DelM
Intensity
Normalized_Score



Assembling an AMT tag DB
Example data

1876.00533VKHPSEIVNVGDEINVK24847
Monoisotopic_MassPeptideMass_Tag_ID

R.VKHPSEIVNVGDEINVK.V
R.VKHPSEIVNVGDEINVK.V
R.VKHPSEIVNVGDEINVK.V
R.VKHPSEIVNVGDEINVK.V
R.VKHPSEIVNVGDEINVK.V
R.VKHPSEIVNVGDEINVK.V
R.VKHPSEIVNVGDEINVK.V

Peptide

294212063922484776263
291592063912484772556
291182063902484769081
296672063892484765386
2109052063882484761511
399452063872484757461
3111952063862484753428

Charge 
State

Scan 
NumberJobMass Tag 

IDPeptide_ID

-11.2760.376263
-13.777872556
-12.826969081
-12.8077.265386
-12.857461511
-4.9269.257461
-5.8980.253428

Log(E_Value) HyperscorePeptide_ID

2.11E-0370.302124847
StD_GANETCnt_GANETAvg_GANETMass_Tag_ID

T_Mass_Tags_NETT_Mass_Tags

T_Peptides T_Score_XTandem



Assembling an AMT tag DB
Processing steps
Thermo-Finnigan
LTQ .Raw files

MS/MS spectra files

Convert to .Dta files or single _Dta.txt file using DeconMSn.exe. 
DeconMSn is similar to Thermo’s Extract_MSn but has better 
support for data from LTQ-Orbitrap or LTQ-FT instruments.

Peptide ID Results

Process _Dta.txt file with X!Tandem or .Dta files with 
SEQUEST.  Use the Peptide File Extractor to convert 
SEQUEST .Out files to Synopsis (_Syn.txt) files.

Tab delimited text 
files

Convert X!Tandem .XML output files or SEQUEST _Syn.txt file 
to tab-delimited files using the Peptide Hit Results Processor 
(PHRP) application.

Summarized result 
files

Microsoft Access DB

Align datasets using the MTDB Creator application

Load into database using MTDB Creator



DeconMSn
Determines the monoisotopic mass and charge state of 
each parent ion chosen for fragmentation on a hybrid 
LC-MS/MS instrument using Decon2LS algorithms
Replacement for the Extract_MSn.exe tool provided with 
SEQUEST and Bioworks



Assembling an AMT tag DB
Peptide Hit Results Processor (PHRP) relationships

Results_Info

PK Result_ID

FK1 Unique_Seq_ID
Group_ID
Scan
Charge
Peptide_MH
Peptide_Hyperscore
Peptide_Expectation_Value_Log(e)
Multiple_Protein_Count
Peptide_Sequence
DeltaCn2
y_score
y_ions
b_score
b_ions
Delta_Mass
Peptide_Intensity_Log(I)

Result_To_Seq_Map

PK,FK1 Unique_Seq_ID
PK,FK2 Result_ID

Seq_Info

PK Unique_Seq_ID

Mod_Count
Mod_Description
Monoisotopic_Mass

Mod_Details

PK,FK1 Unique_Seq_ID

Mass_Correction_Tag
Position

Seq_to_Protein_Map

PK,FK1 Unique_Seq_ID
PK Protein_Name

Cleavage_State
Terminus_State
Protein_Expectation_Value_Log(e)
Protein_Intensity_Log(I)



MTDB Creator
MTDB Creator application

Allows external researchers to align multiple LC-MS/MS 
analyses, run PeptideProphet (for SEQUEST data) and create a 
standalone AMT tag database



Assembling an AMT tag DB
Database histograms – filtered on Log(E_Value) ≤ -2

Peptide Mass Histogram
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AMT Tag DB Growth Trend
Trend for Mini 
AMT tag DB

25 SCX fractionation 
datasets of a single 
growth condition

Trend for Mature 
AMT tag DB

521 different samples 
from ~25 different 
conditions
Slope of curve decreases 
as more datasets are 
added and as fewer new 
peptides are seen

Filtered on Log(E_Value) ≤ -2

Filtered on Peptide 
Prophet Probability ≥ 0.99



Identifying LC-MS Features
VIPER software

Visualize and find features in LC-MS data
Match features to peptides (AMT tags)
Graphical User Interface and automated analysis mode



Peak Matching Steps
Load LC-MS peak lists from Decon2LS
Filter data
Feature definition over elution time
Select AMT tags to match against
Optionally, find paired features (e.g. 16O/18O pairs)
Align LC-MS features to AMT tags using LCMSWarp
Broad AMT tag DB search
Search tolerance refinement
Final AMT tag DB search
Report results

Identifying LC-MS Features



AMT Tag database selection

Identifying LC-MS Features

Connect to mass tag 
system (MTS) if 
inside PNNL or use 
standalone Microsoft 
Access DB



Alignment using LCMSWarp

Calculated 
monoisotopic mass

Average observed NET

AMTs

Deisotoped
monoisotopic mass

Observed scan number

LC-MS Features

Align scan number (i.e. elution time) of features to NETs
of peptides in given AMT tag database

Match mass and NET of AMT tags to mass and scan number of 
MS features
Use LCMSWarp algorithm to find optimal alignment to give the 
most matches



Scan number

A
lig
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en

t 
S

co
re Best score = 0.00681

Scan = 1113
Shift = 113

Alignment using LCMSWarp

N. Jaitly, M.E. Monroe et. al., 
Analytical Chemistry 2006, 78, 
7397-7409.

LCMSWarp computes a similarity score from conserved 
local mass and retention time patterns



Alignment 
Function

Heatmap of similarity 
score between LC-MS 
features and AMT tags 
(z-score representation)

Alignment using LCMSWarp
Similarity scores between LC-MS features and AMT tags are used 
to generate a score graph of similarity
Best alignment is found using a dynamic programming algorithm 
that determines the transformation function with maximum likelihood

AMT 
tag

NET

MS Scan Number

S. typhimurium on 11T

N. Jaitly, M.E. Monroe et. al., 
Analytical Chemistry 2006, 78, 
7397-7409.



Alignment using LCMSWarp
Transformation function is used to convert from scan 
number to NET

Features centered at same scan number get the same obs. NET value
When matching LC-MS features to AMTs, we will search +/- a NET 
tolerance, which effectively allows for LC-MS features to shift around a 
little in elution time
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Alignment using LCMSWarp
NET Residual Plots 

Difference between NET of LC-MS feature and 
NET of matching AMT tag 

Indicates quality of alignment between features 
and AMT tags

This data shows nearly linear alignment 
between features and AMTs, but the algorithm 
can easily account for non-linear trends

NET Residuals if a linear mapping is used NET Residuals after LCMSWarp

A
M

T 
ta

g 
N

E
T

MS Scan 
Number

S. typhimurium on 11T



Non-linear alignment 
example #1

Identical LC separation system, 
but having column flow 
irregularities

Alignment using LCMSWarp

AMT 
tag

NET

MS Scan Number

S. typhimurium on 9T

NET Residuals after LCMSWarp

NET Residuals if a linear mapping is used



Non-linear alignment 
example #2

AMT Tag DB from C18 LC-MS/MS 
analyses using ISCO-based LC 
(exponential dilution gradient)
LC-MS analysis used C18 LC-MS 
via Agilent linear gradient pump

Alignment using LCMSWarp

NET Residuals after LCMSWarp

NET Residuals if a linear mapping is used

S. oneidensis on 
LTQ-Orbitrap



Non-linear alignment 
example #3

AMT Tag DB from C18 LC-MS/MS 
analyses using ISCO-based LC
LC-MS analysis used C18 LC-MS 
via Agilent linear gradient pump

Alignment using LCMSWarp

NET Residuals after LCMSWarp

NET Residuals if a linear mapping is used

QC Standards (12 
protein digest) on 
LTQ-Orbitrap



Alignment using LCMSWarp
LCMSWarp Features

Fast and robust
Previous method used least-squares regression, iterating through a 
large range of guesses (slow and often gave poor alignment)

Requires that a reasonable number of LC-MS features match the 
AMT Tag DB

S. typhimurium on 11T
match against 18,617 S. typhimurium PMTs

S. typhimurium on 11T
match against 65,193 S. oneidensis PMTs



Alignment using LCMSWarp
In addition to aligning data in time, we can also 
recalibrate the masses of the LC-MS features

Possible because mass and time values are available for both 
LC-MS features and AMT tags

Two options for mass re-calibration
Bulk linear correction
Piece-wise correction via LCMSWarp

Visualize mass differences using mass error histogram 
or mass residual plot



Match Tolerances
Mass: ±25 ppm
NET: ±0.05 NET

Mass Error Histogram
List of binned mass error values

Difference between feature's mass and 
matching AMT tag's mass
Bin values to generate a histogram
Typically observe background false 
positive level

3.60.005691573.8321573.8381
11.80.018481571.8921571.9107
12.20.019121571.8311571.8498
11.30.017701571.7261571.74325
11.10.017451570.8831570.9005

Mass 
Error 
(ppm)

Delta 
Mass 
(Da)

AMT Tag 
Mass 
(Da)

LC-MS 
Feature 

Mass (Da)

100

200

300

400

-10 0 10 20

Count (LC-MS Features)

Mass Error (ppm)

Likely false 
positive 

identifications

Likely true 
positive 

identifications



Option 1: Bulk linear correction
Use location of peak in mass error histogram to adjust 
masses of all features
Shift by ppm mass; absolute shift amount increases as 
monoisotopic mass increases

Shift all masses -11.6 ppm:

Δmass= -11.6ppm x massold

1x106 ppm/Da

For 1+ feature at 1570.9005 Da,
Δmass = -0.0182 Da

For 3+ feature at 2919.4658 Da,
Δmass = -0.0339 Da

Mass Calibration

100

200

300

400

-10 0 10 20

Count (LC-MS Features)

Mass Error (ppm)

Peak Center of mass: 11.6 ppm
Peak Width: 2 ppm at 60% of max
Peak Height: 404 counts/bin
Noise level: 19 counts/bin

Peak Center of mass: 11.6 ppm
Peak Width: 2 ppm at 60% of max
Peak Height: 404 counts/bin
Noise level: 19 counts/bin

11.6 ppm



Mass Calibration

MS Scan Number

Mass 
Residual

Mass Error (ppm) 
vs. Scan Number

Option 2: Piece-wise correction via LCMSWarp
Use smoothing splines to determine a smooth calibration curve 
which is a function of scan number

Mass Error (ppm) vs. Scan Number 
after correction

MS Scan Number

S. typhimurium on 11T



Mass Calibration

Mass Error (ppm) 
vs. m/z

m/z

Mass 
Residual

Option 2: Piece-wise correction via LCMSWarp
Use a smoothing spline calibration which is a function of m/z
LCMSWarp utilizes a hybrid correction based on both mass error 
vs. time and mass error vs. m/z

Mass Error (ppm) vs. m/z
after correction

m/z

S. typhimurium on 11T



Mass Calibration
Comparison of the three methods

Mass error histogram gets taller, narrower, and more symmetric
Linear Mass error vs. m/z Mass error vs. time Hybrid

Not all datasets show the same trends, but Hybrid mass recalibration is 
generally superior
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Identifying LC-MS Features
Match Features to LC-MS/MS IDs
S. typhimurium DB, from 25 LC-MS/MS analyses

18,617 AMT tags, all fully or partially tryptic
Look for AMT tags within a broad mass range, 
e.g., ±25 ppm and ±0.05 NET of each feature

Average observed NET

S. typhimurium on 11T FTICRS. typhimurium AMT Tag Database

18,617 AMT tags 5,934 features5,934 features
4,678 features have match,
matching 6,242 AMT tags

Observed NET



Search tolerance refinement
Can use mass error and NET error histograms to 
determine optimal search tolerances

Examine distribution of 
errors to determine optimal 
tolerance using expectation 
maximization algorithm

Examine distribution of 
errors to determine optimal 
tolerance using expectation 
maximization algorithm

±1.76 ppm



Repeat search with final search tolerances
5,934 features

Identifying LC-MS Features

Match Tolerances
Mass: ±25 ppm
NET: ±0.05 NET

Match Tolerances
Mass: ±1.76 ppm
NET: ±0.0203 NET

3,866 features with matches
3,958 out of 18,617 AMT tags matched using ±1.76 ppm

Observed NET



NET

Monoisotopic Mass

1,767.960

1,767.964

1,767.968

1,767.972

1,767.976

1,767.980

1,767.984

0.350 0.358 0.366 0.374 0.382 0.390 0.398 0.407

Caveat: given feature can match more than one AMT tag
Need measure of ambiguity

1767.9727 Da
NET: 0.383

1767.9727 Da
NET: 0.383

0.3921767.9664R.SIGIAPDVLICRGDRAI.P36259992

0.3801767.9730K.DLETIVGLQTDAPLKR.A105490

0.3731767.9777T.RALMQLDEALRPSLR.S35896216

NETMass (Da)PeptideAMT Tag IDMatch Tolerances
Mass: ±4 ppm
NET: ±0.02 NET

Δ mass = 2.8 ppm
Δ NET = -0.010

Δ mass = 0.17 ppm
Δ NET = -0.003 

Δ mass = -3.5 ppm
Δ NET = 0.009 

Identifying LC-MS Features

1.6 ppm



σmj = 4 ppm, σtj = 0.025
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0.145521.4

0.7027042.5

0.166273.3

pijNumerator

3.2670.3921767.966436259992

0.0900.3801767.9730105490

3.0120.3731767.977735896216

dij
2NETMass (Da)AMT Tag ID

K.K. Anderson, M.E. Monroe, and 
D.S. Daly. Proteome Science 2006, 
4, 1.

dij

NET

Monoisotopic Mass

1,767.960

1,767.964

1,767.968

1,767.972

1,767.976

1,767.980

1,767.984

0.350 0.358 0.366 0.374 0.382 0.390 0.398 0.407

Match Tolerances
Mass: ±4 ppm
NET: ±0.02 NET

0.70

0.16

0.14

Identifying LC-MS Features



VIPER reports a score that measures 
the uniqueness of each match

0.062.150.140.3921767.9664R.SIGIAPDVLICRGDRAI.P36259992

0.973.680.700.3801767.9730K.DLETIVGLQTDAPLKR.A105490

0.613.130.160.3731767.9777T.RALMQLDEALRPSLR.S35896216

Avg
Disc 

Score
Average 

XCorr
SLiC
ScoreNETMass (Da)PeptideAMT Tag ID

NET

Monoisotopic Mass

1,767.960

1,767.964

1,767.968

1,767.972

1,767.976

1,767.980

1,767.984

0.350 0.358 0.366 0.374 0.382 0.390 0.398 0.407

0.16

0.14

0.70

Identifying LC-MS Features

K.K. Anderson, M.E. Monroe, and 
D.S. Daly. Proteome Science 2006, 
4, 1.



Effect of search tolerances on Mass Error histogram
If mass error plot not centered at 0, then narrow mass windows 
exclude valid data
Decreasing mass and/or NET tolerance reduces background 
false positive level

Search tolerance refinement
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linear mass correction

Mass error histograms with 
LCMSWarp mass correction



Automated processing using VIPER
Processing steps and parameters defined in .Ini file

Separate .Ini file for 14N/15N pairs and 16O/18O pairs

Automated Peak Matching



Browsable result folders for visual QC of each dataset
S. typhimurium on 11T FTICR

Data Searched Data With Matches

Mass Errors Before Refinement Mass Errors After Refinement

2D Plot Metrics
Reasonable number 
of matches
NET range ≈ 0 to 1

2D Plot Metrics
Reasonable number 
of matches
NET range ≈ 0 to 1

Peak Matching Results

Mass Error 
Histogram Metrics

Well defined, 
symmetric mass 
error peak 
centered at 0 ppm

Mass Error 
Histogram Metrics

Well defined, 
symmetric mass 
error peak 
centered at 0 ppm



Browsable result folders for visual QC of each dataset
S. typhimurium on 11T FTICR

Total Ion Chromatogram (TIC)

NET Errors Before Refinement NET Errors After Refinement

Base Peak Intensity (BPI) Chromatogram

Peak Matching Results

NET Error 
Histogram Metrics

Well defined, 
symmetric NET 
error peak 
centered at 0

NET Error 
Histogram Metrics

Well defined, 
symmetric NET 
error peak 
centered at 0

Chromatogram 
Metrics

Narrow peaks 
evenly distributed 
throughout 
separation window

Chromatogram 
Metrics

Narrow peaks 
evenly distributed 
throughout 
separation window



Browsable result folders for visual QC of each dataset
S. typhimurium on 11T FTICR

Peak Matching Results

NET Alignment Surface Metrics
Should show a smooth, bright yellow, 
diagonal line

NET Alignment Surface Metrics
Should show a smooth, bright yellow, 
diagonal line

NET Alignment Residual Metrics
Data after recalibration should be 
narrowly distributed around zero

NET Alignment Residual Metrics
Data after recalibration should be 
narrowly distributed around zero



Part II: LC-MS Feature Discovery
Introduction (Adkins)
Part I: Overview of Label-Free Quantitative Proteomics (Jaffe)
Part II: Feature discovery in LC-MS datasets (Monroe and Jaitly)

Structure of LC-MS Data
Feature discovery in individual spectra (deisotoping)
Feature definition over elution time
Identifying LC-MS Features using an AMT tag DB
Extending the AMT tag approach for feature based analyses
Estimating confidence of identified LC-MS features
Downstream quantitative analysis with DAnTE

Part III: PEPPeR, GenePattern and Real-world examples (Jaffe)
Break
AMT tag Pipeline Demo (general)
Panel Discussion



Current AMT Tag Pipeline
Individual LC-MS datasets are aligned to an AMT tag 
database independently
Results are combined together after independent 
processing

LC-MS
Exp. 1

Exp. 2

Exp. i

Exp. 1600

AMT tags from LC-MS/MS



Current AMT Tag Pipeline
For each peptide identified by peak matching, find the 
abundance of that peptide in all the peak matchings to 
create a profile

P006|BGAL_ECOLI1063.570.18TPHPALTEAK35243001063.5623002

P006|BGAL_ECOLI1063.570.18TPHPALTEAK33200001063.5620271

-------3

P006|BGAL_ECOLI1063.570.18TPHPALTEAK4810001063.5624001600

ORFNameMassNETPeptideAbundanceMassScan #Experiment #

LC-MS LC-MS/MS

381000

Exp i

381000

Exp 1600

3524300

Exp 2

P006|BGAL_ECOLI

ORFName

3320000

Exp 1

-1063.570.18TPHPALTEAK

Exp 3MassNETPeptide

Collate Abundances



Current AMT Tag Pipeline
LC-MS features without 
matches may represent 
useful information, but 
are effectively ignored

AMT tags from LC-MS/MS

All features

Identified
features

LC-FTICR-MS



Other issues
Independent processing of each dataset results in 
more missing data, because of the lack of statistics
Lower abundance features suffer more, but are not the 
only casualties

Reproducibility of detection with the current pipeline
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Extended AMT Tag method
Find common features based on mass and time patterns in 
all datasets first (with or without the AMT tag database)
Align resulting groups of features to the AMT tag database 
using statistics from a larger number of features

Exp. 2

Exp. i

Exp. 1600

AMT tags from LC-MS/MS

LC-MS
Exp. 1



Align all datasets to common baseline

Score plots for alignment of 4 datasets against arbitrary baseline run

- Alignment Functions

N. Jaitly, M.E. Monroe et. al., Analytical Chemistry 2006, 78, 7397-7409.



Alignment of Multiple LC-MS Datasets

scan #

m
as

s

O charge = 1

+ charge = 2

Δ charge = 3

□ charge >= 4

Dataset 1

Dataset 2

Dataset 3

Dataset 4

Dataset 5

Obvious need for alignment before finding common features
Mass section of 5 LC-MS datasets before LC alignment



Alignment of Multiple LC-MS Datasets
m

as
s

O charge = 1

+ charge = 2

Δ charge = 3

□ charge >= 4

Dataset 1

Dataset 2

Dataset 3

Dataset 4

Dataset 5

Obvious need for alignment before finding common features
Mass section of 5 LC-MS datasets after LC alignment

scan #



Clustering Features
Create abundance profiles by finding similar features 
(using mass and retention time) across all LC-MS 
datasets, rather than analyzing each dataset separately 
and then collating results

1100 1200 1300
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Identifying Clustered Features
Align mass and elution time of clusters to AMT tag 
database, then identify clusters by matching to AMT tags

Comparison of Reproducible Detection
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MultiAlign
Represents next version of the feature identification process
Along with MTDB Creator it represents a standalone, 
redistributable version of the AMT tag process



Similar approaches and software tools: High Res LC-MS
CRAWDAD

G.L. Finney et al. Analytical Chemistry 2008, 80, 961-971.
msInspect

M. Bellew et. al. Bioinformatics 2006, 22, 1902-1909.
PEPPeR

J. Jaffe et.al. Mol. Cell. Proteomics 2006, 5, 1927-1941.
SpecArray (Pep3D, mzXML2dat, PepList, PepMatch, PepArray)

X.-J. Li, et. al. Mol Cell Proteomics 2005, 4, 1328-1340.
SuperHIRN

L.N. Mueller et al. Proteomics 2007, 7, 3470-3480.
Surromed label-free quantitation software (MassView)

W. Wang et al. Analytical Chemistry 2003, 75, 4818-4826.
XCMS (for Metabolite profiling)

C.A. Smith et. al. Analytical Chemistry 2006, 78, 779-787.

LC-MS Feature Discovery



Similar approaches and software tools: Low Res LC-MS
Signal maps software

A. Prakash et. al. Mol. Cell Proteomics 2006, 5, 423-432.
Informatics platform for global proteomic profiling using LC-MS

D. Radulovic, et al. Mol. Cell. Proteomics 2004, 3, 984-997.
Computational Proteomics Analysis System (CPAS)

A. Rauch et. al. J. Proteome Research 2006, 5, 112-121.

LC-MS Feature Discovery
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Developing Confidence Metrics

LC-MS data is aligned against an AMT tag database
Each LC-MS feature is matched to the closest AMT tag 
in mass and normalized LC elution time (NET) 
dimensions

scan #
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Alignment &

Peak Matching

LC-MS dataset AMT tag Database

How do we control the errors in the process?



Size of database and degree of noise in database affects 
the rate of random matches

Building more confident AMT tag database (e.g., using strict 
filtering) decreases background false positives

But, increases false negatives

To date, ad hoc rules have been used
Subjectively pleasing threshold values selected for different 
parameters, such as mass error tolerance, LC NET error 
tolerance, etc.

False discovery rate (FDR) was estimated using decoy methods

Rules were accepted if results seemed satisfactory, otherwise 
parameters were re-optimized

But, chosen parameters may not result in optimal results

Controlling Rate of Random Matches



Metrics Associated with a Candidate Identification

Each match between an LC-MS feature and a peptide AMT 
tag is described by a mass error and an LC NET error

1097

Scan

2228.114

Mass

0.218

Aligned NET

Thymosin beta-42228.1170.22TETQEKNPLPSKETIEQEK

ORFNameMassNETPeptide

Δ mass = -1.35 ppm
Δ NET = -0.002 



Distribution of Peak Matches
True and false matches resulting from peak matching 
display different mass and LC NET error distributions

Centrally Distributed 
True Matches

Uniformly Distributed 
False Matches

Mass Error (PPM)

LC
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E
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• charge 2

• charge >2



Distribution of LC-MS Peak Matches

Mass error (ppm) LC NET error

Density plot of mass and LC NET error distributions is a 
sum of true and false components
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Estimating the Probability a Match is Correct
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partrandomofheightpartcentralofheight
partcentralofheightmatchcorrectofyprobabilit

h+

NET Error = -0.008
Mass Error = 1 ppm

Approach: the probability that a peak match is correct can be 
estimated from where its mass and LC NET error values lie on the
two-dimensional distribution

probability of correct match= 52
52 + 2

h-



Estimating the Probability a Match is Correct
The probability that a peak match is correct depends on where its 
mass and LC NET error value lies on the two-dimensional 
distribution

h-

−+

+

+
=

+
=

hh
h

partrandomofheightpartcentralofheight
partcentralofheightmatchcorrectofyprobabilit

NET Error = -0.07
Mass Error = 2 ppm

h+ ≈ 0

probability of correct match= 0
0 + 2



Optimizing the overall matching process
General approach; calculate confidence in peak match based on:

Mass and LC NET errors

Instrumental performance for an analysis
Mass error precision

LC-NET precision

LC-MS/MS ID quality (e.g., SEQUEST XCorr or X!Tandem expectation 
values)

Inter-related effects of different parameters on each other 
complicate simple choices: 

Lower mass and LC NET errors should allow choice of lower scores

Higher scores should allow somewhat wider mass and LC NET 
tolerances

For practical value we need a single metric that calculates and
combines all these factors automatically

Statistical Method for Assignment of Relative Truth (SMART) –
More details to be presented at ASMS 2008 Bioinformatics oral session
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Downstream Data Analysis
Quantitative protein inference from peptide data
Complications

Multiple, possibly inconsistent peptide measurements for same 
protein 
Systematic abundance variation within and between conditions

How should we use information from blocking and randomization of
experiments?

High rate of missingness in peptide measurements

Need to combine off the shelf statistical methods and 
novel solutions

Clustering
ANOVA
PCA



Condition 1 Condition 2 Control Condition 3

Infer Protein Abundances from Peptide Abundances

Multiple peptides observed for each protein
For example, protein with 4 peptides

Outlier detection and normalization need to be 
performed before meaningful abundance 
information can be inferred

1. SADLNVDSIISYWK
2. LLLTSTGAGIIDVIK
3. LIVGFPAYGHTFILSDPSK
4. IPELSQSLDYIQVMTYDLHDPK

Plot peptide abundance across 57 datasets (for 4 conditions)
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Color legend with 
overlaid histogram of 
correlation values

Outlier Detection



Normalization

Dataset 1
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Infer Protein Abundances from Peptide Abundances

Raw peptide 
abundances 
vs. dataset (for 
1 protein)

Scaled peptide 
abundances 
for this 
protein’s 4 
peptides

Median protein abundance (dark black line)

Scale peptide abundances to an automatically chosen 
“optimal” reference peptide for each protein
Estimate relative protein abundance using scaled peptides

Condition 1 Condition 2 Control Condition 3

Datasets

Ab
un

da
nc

e

1. SADLNVDSIISYWK
2. LLLTSTGAGIIDVIK
3. LIVGFPAYGHTFILSDPSK
4. IPELSQSLDYIQVMTYDLHDPK



Data Analysis Tool Extension (DAnTE)
A software tool for downstream quantitative protein inference

AMT tag 
Pipeline
(LC-MS)

VIPER

Tabular Data
(raw abundances, 

exp. ratios, 
spectral counts)

MultiAlign

DAnTE

Proteins, peptides and 
peptide abundances

Software by 
Ashoka Polpitiya



Data Loading

• Peptide abundance

• Peptide-Protein relations

• Factors

Variance Stabilization

• log2 or log10

• Bias (additive/multiplicative)

Replicate Normalization

• Linear Regression

• Local regression (LOESS)

• Quantile

Global Normalization

• Central tendency

• Median absolute Deviation     
(MAD)

Investigative Plots

• Histograms

• Boxplots

• Correlation diagrams

• MA Plots

Impute Missing Data

• Substitute

• Average

• KNNimpute

• SVDimpute etc.Infer Proteins from Peptides

• RRollup

• ZRollup

• QRollup

• Rollup Plots

Statistical Tests

• ANOVA

• Mix Models

Visualization

• PCA

• PLS

• Heatmaps (hierachical,  

kmeans)

Other Features

• Filter ANOVA results

• Save session

Interactive Analysis in DAnTE



Outline of a Typical Analysis
Load data
Examine diagnostic plots
Define factors
Normalize

Within a Factor
Linear regression
LOESS (LOcal regrESSion)
Quantile

Across Factors
MAD
Central tendency

Infer protein abundances from peptide abundances
RRollup, QRollup, and ZRollup

ANOVA
Save the results to a session file (.dnt)



Load Data
Tabular Data File:

Proteins, 
peptides,
and peptide 
abundances



Diagnostic Plots: Check Normality

Theoretical Quantiles (Normal)
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Factors
Capture experimental design through factors

For example, gender, sample type, technical replicate, and/or 
biological replicate
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Protein Abundance Inference
DAnTE currently has 3 different algorithms for rolling up 
peptide abundances to infer protein abundances
Additional algorithms can be added as needed

Condition 1 Condition 2 Control Condition 3



Protein Heatmap
All proteins
Each row 
corresponds to a 
protein and each 
column to a dataset
Color represents 
abundance 
(median ~2)

Datasets
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Significant Proteins

ANOVA between the 
four groups

826 proteins show 
significant changes 
for a false discovery 
rate of 0.01

Hierarchical clusters

Condition 1 Condition 2 Control Condition 3

Datasets

P
roteins



Complete DAnTE Feature List

Data loading with peptide-protein 
group information
Log transform 
Factor Definitions
Normalization

Linear Regression
Loess
Quantile normalization
Median Absolute Deviation (MAD) Adj.
Mean Centering

Missing Value Imputation
Simple

mean/median of the sample
Substitute a constant

Advance
Row mean within a factor
kNN method
SVDimpute

Save tables / factors / session

Plots
Histograms
QQ plots
Boxplots
Correlation plots
MA plots
PCA/PLS plots
Protein rollup plots
Heatmaps

Rolling up to Proteins
Reference peptide based scaling (RRollup)
Z-score averaging (ZRollup)
QRollup

Statistics
ANOVA

Provisions for unbalanced data
Random effects (multi level) models (REML)

Normality test (Shapiro-Wilks)
Non-parametric methods (Wilcoxon, Kruskal-
Walis tests)
Q-values
Filters



Course Outline
Introduction (Adkins)
Part I: Overview of Label-Free Quantitative Proteomics (Jaffe)
Part II: Feature discovery in LC-MS datasets (Monroe and Jaitly)
Part III: PEPPeR, GenePattern and Real-world examples (Jaffe)

PEPPeR: a self-contained web-based Biomarker Discovery 
pipeline
GenePattern: a suite of analysis and visualization tools that 
works with just about anything

Break
AMT tag Pipeline Demo (general)
Panel Discussion

Questions
Future Directions



Part III: PEPPeR, GenePattern
and Real-world examples

Jacob D. Jaffe
The Broad Institute of Harvard and MIT

Proteomics Platform



Section Outline
PEPPeR: a self-contained web-based Biomarker 
Discovery pipeline

GenePattern: a suite of analysis and visualization 
tools that works with just about anything

Examples of use in the real world
Proof of principle by accidental discovery of markers
In-silico defractionation
Breast cancer biomarker discovery



PEPPeR: 
Platform for 
Experimental 
Proteomics 
Pattern 
Recognition

Jaffe JD, Mani DR, Leptos KC, Church GM, Gillette MA, Carr SA. PEPPeR, a Platform for Experimental Proteomic Pattern 
Recognition. Mol Cell Proteomics. 2006 Oct;5(10):1927-1941.



Multiple LCMS Experiments: Good with the Bad 

There is a lot of information in there
Peptide/protein IDs
Quantitative data
Statistical assessment

The information may be noisy
Retention time drift
Instrument response noise

Are there methods to leverage this information?
Without ‘perfect’ chromatography?
Without strict alignment?



PEPPeR Concepts – Samples and Data Acquisition



PEPPeR Concepts – Data Processing



PEPPeR Concepts – Processing Continued…



PEPPeR Concepts – Analysis and Follow up



Landmark Matching: Identity Propagation
Use accurate mass, relative retention order comparison 
to identify peaks

Current Experiment
A

B

C

X

Y

m/z=999.4991

m/z=999.4996
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Landmark Matching: Identity Propagation
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Landmark Matching: Identity Propagation
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Nuts and bolts: How it works
Match features to sequenced peptides in a single LCMS 
run

Refine/recalibrate m/z tolerance

Re-match features to sequenced peptides in a single 
LCMS run

Now compare list of all features to Basis Set for mass, 
relative elution order matches given landmarks as 
reference points – propagation of identified features 
across multiple experiments



Landmark Scoring and Confidence
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Let:
Λ be a list of peptides observed in the comparison experiment ordered

by elution time. Here, elution time is defined by the centroid of all 
MS/MS scans leading to the identification of the peptide.
Λ0 is defined as the position of the putative assignment in Λ

μ(x) be the centroid of elution time of peptide x
in the comparison experiment (in scans)

σ(x) be the standard deviation of elution time of peptide x
in the comparison experiment (in scans)

τ(x) be the centroid of elution time of peptide x
in the current experiment (in seconds)

δ be the average retention time peak width, such that peptides eluting 
within δ sec are considered to be co-eluting (typically δ = 30 s)

w the number of peptides to consider before and after
the putative assignment on the landmark list (typically w = 3)
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Peak Matching: Recognizing Identical Features

Use landmarks to derive corrections and tolerances for 
clustering of features across LCMS experiments

Break down the problem to make it parallelizable

Retention Time

m
/z

}

}



Peak Matching: Recognizing Identical Features

Use landmarks to derive corrections and tolerances for 
clustering of features across LCMS experiments
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Peak Matching: Recognizing Identical Features

Use landmarks to derive corrections and tolerances for 
clustering of features across LCMS experiments

Retention Time

m
/z

Gaussian mixture model (GMM) with parameters determined by maximizing 
Likelihood ratio using Expectation Maximization (EM)
Number of clusters determined using Bayesian Information Criterion (BIC)
Coalesce clusters if M/Z and RT variation is within tolerance



Parameterized Peaks
Peak ID m/z R.T. z Run 1 Run 2 Run 3 Run … Identity

1 490.3144 62.0 3 607.6 544.2 581.0 …
2 743.3549 56.2 3 694.4 682.6 691.4 …
3 999.4991 22.5 2 209.6 247.6 232.6 … APEPTIDEK
4 396.7187 20.5 3 321.7 344.9 318.5 …
5 934.6045 31.7 2 722.7 753.0 701.3 …
6 678.1993 32.4 3 371.2 387.2 441.4 …
7 999.4994 56.8 2 857.1 811.0 750.5 … APDITEPEK
8 526.6502 46.0 3 183.6 169.0 155.2 …
9 1105.3597 69.4 3 1130.1 1075.7 1075.1 …

10 1292.0880 34.5 2 709.7 614.0 656.0 …



Calibration and Landmark Performance
Scale Mixture

A B C D E F G H I
Aprotinin 1 2 3 10 20 30 100 200 300
Ribonuclease A 300 1 2 3 10 20 30 100 200
Myoglobin 200 300 1 2 3 10 20 30 100
beta-Lactoglobulin 100 200 300 1 2 3 10 20 30
alpha Casein 30 100 200 300 1 2 3 10 20
Carbonic anhydrase 20 30 100 200 300 1 2 3 10
Ovalbumin 10 20 30 100 200 300 1 2 3
Fibrinogen 3 10 20 30 100 200 300 1 2
BSA 2 3 10 20 30 100 200 300 1
Transferrin 100 100 100 100 100 100 100 100 100
Plasminogen 30 30 30 30 30 30 30 30 30
beta-Galactosidase 10 10 10 10 10 10 10 10 10

All concentrations in fmol/ul (nM)
Inject 1 ul x 5 replicates each

Peaks with IDs (avg. per run):
165 ⇒ 281         +70%

False positive rate:
93% p < 0.005
100% p < 0.05

False negative rate:
~2%



Measurement of Ratios with Variability
Variability Mixture

α β α β α β α β α β
Aprotinin 100 5 100 5 100 5 100 5 100 5

Ribonuclease A 100 100 100 100 100 100 100 100 100 100
Myoglobin 100 100 100 100 100 100 100 100 100 100

beta-Lactoglobulin 50 1 50 1 50 1 50 1 50 1
alpha Casein 100 10 100 10 100 10 100 10 100 10

Carbonic anhydrase 100 100 100 100 100 100 100 100 100 100
Ovalbumin 5 10 5 10 5 10 5 10 5 10
Fibrinogen 25 25 25 25 25 25 25 25 25 25

BSA 200 200 200 200 200 200 200 200 200 200
Transferrin 10 5 10 5 10 5 10 5 10 5

Plasminogen 2.5 25 2.5 25 2.5 25 2.5 25 2.5 25
beta-Galactosidase 1 10 1 10 1 10 1 10 1 10

All concentrations in fmol/ul (nM)
Inject 1 ul x 5 replicates each
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Complex Variability Mixture:

Mix α + Mitochondrial Protein from 2 
wk. mouse liver

Mix β + Mitochondrial Protein from 6 
wk. mouse liver

1 prep each sample, 6 injections each
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PEPPeR and GenePattern

GenePattern is a suite of tools originally developed for 
microarray analysis

AIM: reproducible research through well-defined processing 
pipelines

Many analysis modules available
PEPPeR: Landmark Matching and Peak Matching
Daisy-chainable into pipelines
Feed into statistical tools



PEPPeR in GenePattern



Insert your favorite stuff here…
Landmark Matching is platform agnostic

Need to get your data into a few simple flat-file formats and then 
zip them up together
Search engines i.e. SEQUEST, SpectrumMill, Mascot, etc.
Peak Pickers: MAPQUANT, msInspect, Decon2LS, etc.
Some helper apps can be found with the PEPPeR bundle on the 
GenePattern website

All works via web-client interface
Just press go (but beware of this!)



Landmark Matching Output

The main output is a zipped 
directory of all the processed files.  
This can be used as input into the 
PeakMatch module.

It is a good idea to check the error 
log to make sure that everything 
was processed correctly.



Peak Matching Interface



GenePattern Downstream Tools
Differential analysis/marker selection

Gene/Class neighbors
Comparative marker selection
Gene Set Enrichment Analysis

Class Prediction – supervised learning – with cross-validation
Regression trees
K-nearest neighbors
Neural networks
Support Vector Machine

Class Discovery – unsupervised learning
Hierarchical clustering
Self-organizing maps
Principal Component Analysis

Data Visualization
Heat Maps, etc.

Note: Data analysis on subsequent 
slides done using GenePattern



Discovery of Novel Markers with PEPPeR

α1

α3
α2

α5
α4

β1

β3
β2

β5
β4

α
β

Designed accurate mass ‘inclusion lists’ to hit these targets

Confident IDs of previously identified 
peptides agree 100% of the time (59/59)

60 novel confident peptide IDs
25 belong to proteins in the mix

24/25 are changing

35 are from proteins not designed to be in 
the mixture 

gi Number Species Name
223424 E. coli RNA polymerase β'

38491462 E. coli GroEL
42144 E. coli NusA
42818 E. coli RNA polymerase β
42900 E. coli Ribosomal protein S1

26249756 E. coli Argininosuccinate synthase
8099322 B. taurus κ-casein

B-Galactosidase had 1:10 ratio!
Casein had 10:1 ratio!

peptides / m/z features



In-silico defractionation of 2D-LC
Wanted to mimic SCX fractionation scheme

Frac. 1 Frac. 2 Frac. 3 Frac. 4 Frac. 5 Master
Ovalbumin 0 0 0 5 0 5
Transferrin 0 0 0 0 5 5
Fibrinogen 0 12.5 0 0 0 12.5

Plasminogen 5 5 5 5 5 25
Myoglobin 0 0 50 0 0 50

β -Lactoglobulin 0 0 12.5 25 12.5 50
RNAse A 50 10 0 0 0 60
Casein 5 50 5 0 0 60

Carb. Anhyd. 0 0 0 50 50 100
BSA 100 0 0 0 0 100
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Breast Cancer Biomarker Discovery
Sample source: nipple aspirate fluid (NAF) from 
malignancy affected breast

Unaffected contra-lateral breast used for control
Pools of several patient samples made <- low starting material

Samples depleted of abundant proteins by affinity 
chromatography

Separate ID-centric (fractionation) and Pattern Centric 
runs conducted for PEPPeR analysis

Performed marker selection with allowed FDR of 5%



Breast Cancer Marker Selection

≈

Features up in cancerFeatures down in cancer

Assigned peptides down in cancer

≈

Assigned peptides up in cancer

n=1520

n=264



Features vs. Assignments
There’s more out there than we can catalog

Low intensity features never trigger MS2 in complex samples
Unidentified features may be better classifiers

Direct follow-up easily achieved
We know exactly where and when to look
Targeted accurate mass methods can be employed

Hopefully increase coverage and confidence in certain 
proteins as markers, rather than just peptides or 
features



Summary – what I hope you learned
PEPPeR: Landmark Matching and Peak Matching

Keep track of all of those pesky peaks that you picked!

GenePattern: A web-based tool to coordinate 
reproducible research

An entrée into downstream discovery methods in an 
automated pipeline (more GenePattern)

Some real world examples of its application
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URLs:
PEPPeR / GenePattern:

http://www.broad.mit.edu/cancer/software/genepattern/
http://www.broad.mit.edu/cancer/software/genepattern/desc/proteomics.html

MAPQUANT:
http://arep.med.harvard.edu/MapQuant/



Live DEMO Time
Thanks to the many developers, beta testers, and users

Note: PNNL is always looking for good and knowledgeable informatics 
staff and post-docs (see us afterwards for more information, or visit 
http://jobs.pnl.gov/)
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