

Data Extraction and Analysis for LC-MS Based Proteomics

Instructors Jake Jaffe¹, Deep Jaitly², and Matt Monroe²

Co-Organizers Josh Adkins² and Gordon Anderson²

¹ The Broad Institute, Cambridge, MA 02142 ² Pacific Northwest National Laboratory, Richland, WA 99354

Course Outline

- Introduction (Adkins)
 - Goals
 - Our Historical Perspective
 - Why Use an LC-MS Approach
 - Data and Tools Availability
- Part I: Overview of Label-Free Quantitative Proteomics (Jaffe)
- Part II: Feature discovery in LC-MS datasets (Monroe and Jaitly)
- Part III: PEPPeR, GenePattern and Real-world examples (Jaffe)
- Break
- AMT tag Pipeline Demo (general)
- Panel Discussion
 - Questions
 - Future Directions

Course Goals

- Understand the reasons for developing and applying an LC-MS-based approach to proteomics
- Discuss considerations of experimental design for larger scale experiments
- Develop a sense of the source of information, its relative complexity and the algorithms required to make use of this approach
- See (and participate) in a demonstration of the critical tools applied to "real" data
- Learn where to get more information

Pacific Northwest National Laboratory

Washington Wine Country

Pacific Northwest National Laboratory and EMSL

PNNL performs basic and applied research to deliver energy, environmental, and national security solutions for our nation.

The Guest House at PNNL for EMSL Users

EMSL Mission

The W.R. Wiley Environmental Molecular Sciences Laboratory (EMSL), **a national scientific user facility** at Pacific Northwest National Laboratory, provides integrated experimental and computational resources for discovery and technological innovation in the environmental molecular sciences to support the needs of DOE and the nation.

W.R. Wiley Environmental Molecular Sciences Laboratory

To find out more and request access to the resource: www.emsl.pnl.gov

"Realizing the promise of the genome project for human health"

A collaboration among MIT, Harvard, and affiliated teaching hospitals

Programs

- Cellular Circuits
- Medical Genetics
- Chemical Biology
- Cancer Research

Initiatives

- Metabolic Disease
- Infectious Disease
- Psychiatric Disease
- Inflammatory Disease

Platforms

- Sequencing
- Genotyping
- Chemical Synthesis and Screening
- Proteomics and Metabolite Profiling
- Image Analysis

- Scientific mission: Create comprehensive, broadly available tools for genomic medicine; pioneer applications toward disease understanding and treatment
- Organizational mission: Enable collaborative projects not readily done in individual labs; empower scientists through access to tools and approaches

History/Evolution of PNNL Proteomics

Key point: early access and experience with higher resolution LC and MS with ~1 ppm mass accuracy

Note: excludes non-AMT tag applications papers and excludes broader technology development papers

PRISM Data Trends

2007

Proteomics Informatics Architecture

modular and loosely coupled for flexibility

PRISM: G.R. Kiebel et. al. *Proteomics* **2006**, *6*, 1783-1790.

Motivations for LC-MS Based Proteomics

- Throughput, sensitivity, and sampling efficiency
 - Compared to LC-MS/MS based approaches
- Shortcomings with chemical/labeling methods
 - Multiple species need to be sampled for each "peptide"
 - Potentially more sample preparation steps or increased cost
 - Multiple analyses still required for statistical assessment
- New challenges for experimental design
 - Blocking and randomization needs

Shotgun or MuDPIT Proteomics

LCMS Information Gauntlet

Courtesy Jake Jaffe

An example need for increased throughput Analysis of Regulatory Mutants

Hypothesis: Knock-out regulatory proteins involved in pathogenesis and the commonly regulated proteins represent the best targets for therapeutics

Understanding Biological Regulation of *Salmonella*: **Demonstrates the need/use for increased throughput**

Replicate analysis to account for natural biological and normal analytical variation

Accurate Mass and Time Tag Approach

Example: V.A. Petyuk, et al. Genome Research. 2007, 17 (3), 328-336.

across samples

PEPPeR Pipeline

New Concerns with Larger Comparisons

- Column effects (PNNL operates 4 column systems)
 - Elution time variability, potential for carryover, and stationary phase life span
- Electrospray emitters
 - Alignment, wear, clogging, etc.
- Mass Spectrometer
 - Calibration, detector response, tuning, etc.
- Samples
 - Oxidation, degradation, and other chemical modifications

Accurate Mass and Time (AMT) Tag Data Processing Pipeline

DAnTE

J.S. Zimmer et. al. Mass. Spectrom. Rev. 2006, 25 (3), 450-482.

Recent Examples of Successful Applications using LC-MS Proteomics Approaches

NIAID: Salmonella infecting host cells; small sample quantities → whole proteome coverage

J.N. Adkins, et. al. Mol. Cell. Proteomics. 2006, 5 (8), 1450-1461.

 Analysis of purified viral particles of Monkeypox and Vaccinia viruses

N.P. Manes, et. al. J. Proteome Res. 2008, 7 (3), 960-968.

 Analysis of "Voxels" from mouse brains to reveal protein abundance patterns in brain structures

V.A. Petyuk, et al. Genome Research. 2007, 17 (3), 328-336.

• Jake Jaffe will expand on a couple of examples such as primary tissue example; quantities too small for labeling

Course Related Software & Data

AMT tag Pipeline Software

http://ncrr.pnl.gov

PEPPeR, software within GenePattern

A platform for integrative genomics

http://www.broad.mit.edu/cancer/software/genepattern/

PNNL's LCMS-based data repository

Biological MS Data and Software Distribution Center

Currently in open beta-testing >1 Terabyte available More coming soon!

http://omics.pnl.gov

Salmonella typhimurium data resource

Resource Center for Biodefense Proteomics Research

http://www.proteomicsresource.org

Other Software Resources

- http://www.ms-utils.org/ (Magnus Palmblad)
- http://open-ms.sourceforge.net/index.php (European consortium)
- http://tools.proteomecenter.org/SpecArray.php (ISB)
- http://fiehnlab.ucdavis.edu/staff/kind/Metabolomics/Peak_Alignment/ (Tobias Kind with Oliver Fiehn)
- http://www.proteomecommons.org/tools.jsp (Phil Andrews and Jayson Falkner)

Example Data for the AMT tag Pipeline Demo

- Salmonella typhimurium, LC-MS/MS
 - Grown in LB (Luria-Bertani) up to log phase
 - Soluble portion of cell lysis
 - "Mini-AMT tag" database, composed of 25 SCX fractions analyzed by LC-MS/MS
 - Mass and time tag database composed from searches using X!Tandem (Log E_Value ≤ -2)
 - Linear alignment of datasets for AMT tag database
- LC-MS
 - Different sample, grown and prepared in the same conditions
- LC-FTICR-MS analysis (11T FTICR)
 - Non-linear alignment and peak matching to the database
- DAnTE data
 - Similar experiment with new growth condition

Course Outline

- Introduction (Adkins)
- Part I: Overview of Label-Free Quantitative Proteomics (Jaffe)
 - When and why to use label free quantitative proteomics
 - Overview of the generic 'label free' pattern-based approach with guidelines
 - Discussion of alternate pipelines
- Part II: Feature discovery in LC-MS datasets (Monroe and Jaitly)
- Part III: PEPPeR, GenePattern and Real-world examples (Jaffe)
- Break
- AMT tag Pipeline Demo (general)
- Panel Discussion
 - Questions
 - Future Directions

Part I: An Overview of Labelfree quantitative proteomics

Jacob D. Jaffe The Broad Institute of Harvard and MIT Proteomics Platform

Section Outline

- When and why to use label free quantitative proteomics
- Overview of the generic 'label free' pattern-based approach with guidelines

A picture is worth 1000 parameters...

m/z

LCMS Information Funnel – Total Peaks

Retention Time

LCMS Information Funnel – MS/MS Sampling

Retention Time

LCMS Information Funnel – MS/MS Identified

Retention Time

Definition of Label-free Quantitative Proteomics

- Use of raw mass spectral signal intensity (peaks) as a surrogate for the abundance of a peptide and/or protein
- Signal intensity from the same analyte is compared across multiple experimental conditions as the basis for quantitation
- When coupled to LC, peaks have dimensions in retention time and well as *m/z* and intensity
- Careful experimental processing and computational methods are required to extract quantitative information in label-free proteomics

Motivations for Label-free Quantitative Proteomics

- Microarray envy
 - Well-defined experiment, well-defined tools
- Differential detection and <u>quantification</u> of proteins
 - Biomarker discovery and pattern recognition
 - Biological insight into the real actors in the cell: proteins
 - Time course analysis
- MS² independent but friendly
 - SILAC and iTRAQ (labeling methods) require MS² ID for entry
 - Comprehensive! Quantify all the spots! Even the faint ones!
- Minimal sample workup
 - Primary tissue OK
 - No artifacts from labeling efficiency

The Generic 'Label-free' Workflow

Targeted MS/MS Identifications

Best Practices: Getting Started

• Team approach

- LCMS expert experimentalist
- Computer scientist/programmer
- Statistician
- Planning
 - Statistical power of study (consult statistician)
 - Identification of reliable sample sources
 - Instrument / Computational / Storage infrastructure

Execution

- Patience
- Consistency

Best Practices: Samples

• BEST POSSIBLE **SAMPLES** AND **CONTROLS**

- Relevant to disease or study target
- Proximal to the source of differential markers
- Consistent in composition
- Controls appropriately matched (same subject if possible)
- Enriched in likely differential markers
- GARBAGE IN, GARBAGE OUT
- Sample processing pipeline TESTED and CONSISTENT
 - Abundant protein depletion (serum proteomics)?
 - Fractionation required?
 - Measure yields are they consistent?
 - CLEAN!!!
- Collect more than you need outlier removal!

Best Practices: Data Acquisition

Resolution! Resolution! Resolution!

- FTICR or Orbitrap recommended > 60,000 resolution
- More 'channels'

Accuracy! Accuracy! Accuracy!

- Calibrate mass often
- Downstream recognition of "same" feature easier
- Statistical confidence

Consistency

- LCMS methods and instrumentation
- LC column and length

Common Sense

- MS¹ sampling rate -> chromatographic resolution
- Tolerances and dynamic exclusion for MS² sampling
- Carry over testing and sample randomization
- SAVE THE SAMPLES!!!!!
Best Practices: Feature Picking

- Understand the method
 - No method is demonstrably 'best'
 - Consult with expert help
 - All methods have parameters and tolerances that have to be tailored to your operating characteristics
 - There is no magic 'black box'
- Patience
 - You will spend a long time collecting data; expect to spend at least as much time extracting and analyzing data
 - Budget time and resources to explore parameters on a subset of your data before doing feature picking *en masse*

Best Practices: Experiment Alignment

- Consistency in experimental execution
 - Makes life easier, less computational correction
- Pay attention to output of aligners
 - Methods may have metrics of alignment quality
 - Large corrections may signal outlier experiments
 - Consider discarding
- Intensity normalization
 - Total ion current (TIC)?
 - TIC of all features?
 - Subset of 'housekeeping' features?
 - Medians, means, etc?

Best Practices: Feature Assignment and Matching

- Assignment: annotation of an LCMS feature with a peptide identity (sequence)
 - Derived from external or embedded MS² data that has been searched against a database (i.e. Sequest, Mascot, etc)
 - AMT-based assignment (importance of mass accuracy)
 - Look for statistics!
- Matching: recognition that a feature is the same across multiple experiments irrespective of an identity assignment
 - Assignments can help
 - Accuracy and alignment are paramount
 - Take care with user-adjustable tolerances
 - Look for statistics!

Best Practices: Statistical Analysis

- Intensity normalization of features must be done prior to statistical analysis
 - Also address handling of missing values
- Understand what you are doing or seek assistance
 - Know your *p*-values from your *q*-values (and FDRs)
- Have a well-formulated statistical question
 - Most statistical tests are measured vs. the 'null' hypothesis
 - Decide in advance what levels of false discovery are acceptable
 - Significance level ≠ priority for follow-up
- There are many tools available
 - Some are more proteomics-amenable
 - Handling of intensity normalization
 - Handling of proteins as combinations of peptides

Best Practices: Following-up

- Targeted reinterrogation of samples for identification of 'unidentified' features
- Literature mining
 - Possible connections to your biological questions
 - Helps with prioritization
- Targeted assessment of interesting features in alternative matrices
 - I.e., discovered in tissue, but is it present in blood?
 - Methods other than mass spec, too!

Reference Chart of Label-free Platforms

	PNNL Pipeline	PEPPeR	msInspect	SuperHirn	CRAWDAD
Lab	PNNL	Broad Institute	FHCRC	IMSB (Swiss)	Univ. Wash.
Feature Picker	Decon2LS/Viper	Mapquant	msInspect	SuperHirn	CRAWDAD
		(or any other)			
Method	Spectrum de-	Image Analysis	Wavelet	Spectrum de-	m/z channel
	isotoping then	then de-	decomposition	isotoping then	binning
	clustering	isotoping	then de-	merging	
			isotoping		
RT Alignment	Normalization,	Relative, then	Iterative non-	LOESS	Dynamic time
	then linear or	linear, or	linear	modeling	warping
	LCMSWARP	LOESS (exp)	transformation		
m/z recalibration	Yes (dynamic)	Yes (quadratic)	No	No	No
Assignment of	AMT database,	AMT database,	AMT database	Yes, but not	Yes, for
IDs to features	normalized	relative elution	through user	well	differences only
	elution times	order	interaction	documented at	if they exist
		(Landmarks)		present	
Statistical	Mass shift decoy	Bayesian	No	No	No
Evaluation of	and/or Bayesian	Statistics			
assignment	Statistics				
Unidentified	Stored in	Data-dependent	User specified	Tolerance-based	Difference
Feature	database for	tolerance-based	tolerance-based	merging,	mapping only
Recognition	later analysis	clustering	clustering	heuristics	
Runs on	Windows with	Web-based	Java with GUI	Linux	Linux/Windows
	GUI	(Linux or			
		Windows install			
		bases)			

Part II: LC-MS Feature Discovery

- Introduction (Adkins)
- Part I: Overview of Label-Free Quantitative Proteomics (Jaffe)
- Part II: Feature discovery in LC-MS datasets (Monroe and Jaitly)
 - Structure of LC-MS Data
 - Feature discovery in individual spectra (deisotoping)
 - Feature definition over elution time
 - Identifying LC-MS Features using an AMT tag DB
 - Extending the AMT tag approach for feature based analyses
 - Estimating confidence of identified LC-MS features
 - Downstream quantitative analysis with DAnTE
- Part III: PEPPeR, GenePattern and Real-world examples (Jaffe)
- Break
- AMT tag Pipeline Demo (general)
- Panel Discussion
 - Questions
 - Future Directions

Part II: Feature discovery in LC-MS datasets

Navdeep Jaitly and Matthew E. Monroe

Pacific Northwest National Laboratory

- Mass spectra capture the changing composition of peptides eluting from a chromatographic column
 - Complex peptide mixture on a column is separated by liquid chromatography over a period of time
 - Changing composition of the mobile phase causes different peptides to elute at different times
 - The components eluting from a column are sampled continuously by sequential mass spectra

- Each compound is observed as an <u>isotopic pattern</u> in a mass spectrum
 - The pattern is dependent on the compound's chemical composition, charge, and resolution of instrument

 A mass spectrum of a complex mixture contains overlaid distributions of several different compounds

 With LC as the first dimension, each compound is observed over multiple spectra, showing a threedimensional pattern of m/z, elution time and abundance

Feature Discovery in LC-MS data

- Goal: Infer (mass, elution time, intensity) of compounds that are present in data obtained from an LC-MS dataset
 - Compounds are termed LC-MS features since they are inferred from a three dimensional pattern, yet identity is unknown

2D view of an LC-MS analysis of Salmonella typhimurium

Feature Discovery in LC-MS data

 Sequential process of finding features in each mass spectrum is followed by grouping of features over multiple spectra together

2D views of an LC-MS dataset in different stages of processing

Feature discovery in individual spectra

- Deisotoping
 - Process of converting a mass spectrum (*m/z, intensity*) into a list of species (*mass, abundance, charge*)

Deisotoping a mass spectrum of 4 overlapping species

Deisotoping an Isotopic Distribution

 Decon2LS deisotoping algorithm compares theoretical isotopic patterns with observed patterns

1. Horn, D.M., Zubarev, R.A., McLafferty, F.W. Automated Reduction and Interpretation of High Resolution Electrospray Mass Spectra of Large Molecules. *J. Am. Soc. Mass Spectrom.* **2000**, *11*, 320-332.

2. Senko, M. W.; Beu, S. C.; McLafferty, F. W. Automated assignment of charge states from resolved isotopic peaks for multiplycharged ions. *J. Am. Soc. Mass Spectrom.* **1995**, *6*, 52–56.

3. Senko, M. W.; Beu, S. C.; McLafferty, F. W. Determination of monoisotopic masses and ion populations for large biomolecules from resolved isotopic distributions. *J. Am. Soc. Mass Spectrom.* **1995**, *6*, 229–233.

4. Rockwood, A. L.; Van Orden, S. L.; Smith, R. D. Rapid Calculation of Isotope Distributions. Anal. Chem. 1995, 67, 2699–2704.

Deisotoping an Isotopic Distribution

- Patterson (Autocorrelation) algorithm to detect charge of a peak in a complex spectrum
- Mercury algorithm used to guess an average empirical formula for a given mass
 - Averagine empirical formula of $C_{4.9384} H_{7.7583} N_{1.3577} O_{1.4773} S_{0.0417} \rightarrow C_{83} H_{124} N_{23} O_{25} S$ for 1876.02 Da
- Fitness (fit) functions to quantitate quality of match between theoretical and observed profiles
- For additional details, see the slides presented at 2007 US HUPO, available at http://ncrr.pnl.gov/training/workshops/

¹⁶O/¹⁸O Mixtures

- Overlapping isotope patterns are separated by 4 Da
 - Creates challenges for deisotoping, particularly for charge states of 3+ or higher

Isotopic Composition

Deviation from natural abundances

- In ¹³C, ¹⁵N depleted media, isotopic composition of atoms is different from those found in nature
- E.g., sulfur isotopes predominate the distribution at right
- Constrast with an isotopic distribution of a peptide with similar mass and charge (16+), but a natural atomic distribution (below)

Isotopic Composition

Decon2LS supports changing the isotope composition

Transform Options							×
Peak Picking Hom Transform Isotope Distribution Averagine	C	ompostion					
Isotopic Composition							
Miscellaneous Options		Atomicity	Element Nam	Element Symbol	Isotope Mass	Isotope Percentage	*
FTICR Preprocessing Options	•	1	Hydrogen	Н	1.007825	0.99985	_
		1	Hydrogen	Н	2.014102	0.00015	
		2	Helium	He	3.01603	1E-06	
		2	Helium	Не	4.0026	0.999999	
		3	Lithium	Li	6.015121	0.075	
		3	Lithium	Li	7.016003	0.925	
		4	Berellium	Be	9.012182	1	
		5	Boron	В	10.01294	0.199	
		5	Boron	В	11.00931	0.801	
		6	Carbon	С	12	0.98893	
		6	Carbon	С	13.00336	0.01107	
		7	Nitrogen	N	14.00307	0.996337	
		7	Nitrogen	N	15.00011	0.003663	
		8	Oxygen	0	15.99491	0.99759	-
		Load		Save	Save As		
	ΠH	elpful Tips <i>Controls Isotop</i> - Lo	nic Composition ads in the isotoc	ic composition in the f	form of a .xml document		
	▶	- Va	lues can be edite	ed in the grid and save	ed in original format or as ne	w .xm/	
Load Parameters	Save Parame	eters		OK	Cancel		

Part II: LC-MS Feature Discovery

- Introduction (Adkins)
- Part I: Overview of Label-Free Quantitative Proteomics (Jaffe)
- Part II: Feature discovery in LC-MS datasets (Monroe and Jaitly)
 - Structure of LC-MS Data
 - Feature discovery in individual spectra (deisotoping)
 - Feature definition over elution time
 - Identifying LC-MS Features using an AMT tag DB
 - Extending the AMT tag approach for feature based analyses
 - Estimating confidence of identified LC-MS features
 - Downstream quantitative analysis with DAnTE
- Part III: PEPPeR, GenePattern and Real-world examples (Jaffe)
- Break
- AMT tag Pipeline Demo (general)
- Panel Discussion

Deisotoping collapses original data into data lists

						monoiso	most abu.		
scan num	charge	abundance	mz	fit	average mw	mw	mw	fwhm	signal noise
1500	1	2772933	759.0649	0.0716	758.5222	758.0576	758.0576	0.0106	718.83
1500	1	2614913	1103.033	0.1111	1102.698	1102.026	1102.026	0.0222	74.04
1500	1	2422829	864.4919	0.0156	864.0073	863.4846	863.4846	0.0137	74.75
1500	2	2297822	563.3253	0.012	1125.322	1124.636	1124.636	0.006	77.94
1500	1	1213607	943.9815	0.1025	943.5518	942.9742	942.9742	0.0165	120.36
1500	3	988761	675.0246	0.02	2023.375	2022.052	2023.0549	0.0086	79.22
1500	2	734070	688.392	0.0384	1375.694	1374.77	1374.7695	0.009	92.09
1500	2	663954	642.3243	0.0253	1283.417	1282.634	1282.6341	0.0076	109.01
1500	1	661477	730.1117	0.024	729.5461	729.1045	729.1045	0.0096	39.06
1500	2	630657	689.3645	0.0446	1377.64	1376.715	1376.7145	0.0088	57.52
1500	2	569896	591.8343	0.0198	1182.379	1181.654	1181.6541	0.0065	111.2
1500	2	503993	757.8854	0.0706	1513.762	1512.753	1512.7533	0.0105	80.4
1500	2	451007	936.9389	0.0296	1873.091	1871.863	1872.8662	0.0156	46.74

- Goal: Given series of deisotoped mass spectra, group related data across elution time
 - Look for repeated monoisotopic mass values in sequential spectra, allowing for missing data
 - Can also look for expected chromatographic peak shape

Can visualize deisotoped data in two-dimensions

- Zoom-in view of species
 - Same species in multiple spectra need to be grouped together

Scan number

Feature detail

- Median Mass: 1904.9399 Da (more tolerant to outliers than average)
- Elution Time: Scan 1757 (0.363 NET)
- Abundance: 1.7x10⁷ counts (area under 2+ SIC)
 - See both 2+ and 3+ data

• Stats typically come from the most abundant charge state

Second example

• LC-MS feature eluting over 7.5 minutes

Second example, feature detail

- Median Mass: 2068.1781 Da
- Elution Time: Scan 1809 (0.380 NET)
- Abundance: 8.7x10⁷ counts (area under 3+ SIC)
 - This example has primarily 3+ data; previous had even mix of 2+ and 3+ data

• Example: *S. typhimurium* dataset on 11T FTICR

Scan number

Isotopic Pairs Processing

- Paired features typically have identical sequences, with and without an isotopic label
 - e.g. ¹⁶O/¹⁸O pairs have 4 Da spacing due to two ¹⁸O atoms

Isotopic Pairs Processing

- Paired feature example: ¹⁶O/¹⁸O data
 - Compute AR using ratio of areas, or
 - Compute AR scan-by-scan, then average AR values (members must co-elute)

 Numerous options in VIPER for clustering data to form LC-MS features and for finding paired features

LC-MS Feature (UMC) Ion Networks		×				
1. Find Connections 2. Edit/Filter Connections 3. Define LC-MS Features using Connections							
Definition Scope	•						
○ <u>A</u> ll Data Points	Metric Type Euclidean	Set to Old Defaults	et to Defaults				
	E II Henristeria						
		Mass Vit Factor 0.01 Constraint L.T.					
	Use Average Mas	s vit. Factor 0.01 Constraint [L.1. •]	io ppm 💌				
	Use Log (Abunda	ncej 💽 Wt. Factor U. I Constraint None 💌					
	Use Generic NET	▼ Wt. Factor 15 Constraint None ▼					
	IV Use Fit	▼ Wt. Factor 0.1 Constraint None ▼					
	Reject connection longe	r than 0.1					
		,					
LC-MS Feature (UMC	LC-MS Feature (UMC) Ion Networks						
1. Find Connections 2. E	dit/Filter Connections 3. D	Define LC-MS Features using Connections					
LC-MS Feature Stats	1	An Brender and and and and					
Class Representative		Auto-Refine Options Split Features Options Adv Class Stats	Set to Defaults				
Highest Abundance	•	☐ Remove low intensity classes 30 %					
Class Abundance		☐ Remove high intensity classes 30 %					
Sum of Class Abu.	•	Remove cls. with less than 3 scans					
Class Mass		Remove cls. with length over 400 scans					
Class Median	<u> </u>	✓ Remove cls. with length over 15 % all scans	Beport				
Most Abu Lharge Stat	e Group Type	Percent max abu for gauging width 33 %					
I lise most abundar	nt Makesinge		Find LC-MS				
Use most abundar			Easterna .				
charge state group	o stats 🔲 member						
for class state group	ostats in member classes	✓ Interpolate abundances across gaps					

👌 LC-MS Feature Delta Pairing Analysis 🛛 🛛 🔀								
<u>F</u> unction <u>R</u> eport								
Find Pairs	Set to Defaults							
Delta: 4.00	Delta: 4.0085 Calculate N14/N15 Min/Max Delta: 4.0085 Deltas from class molecular mass							
Min Deltas:	1 Max Deltas: 1							
Delta count step size:	1							
Set to N14/N15	Set to C12/C13 Set to 016/018							
	Set to Deuterium							
Pair Tolerance: 0.02 Da Scan Tolerance: ✓ Require pair-classes overlap at feature edges 15 Note: Even if two LC-MS Features do not overlap at the edges, if one feature is completely within a second feature, then pairing is allowed; to prevent this, enable overlap at LC-MS Feature apexes ✓ Require pair-classes overlap at feature apexes 15 Inclusion/Exclusion Options 15 ER Inclusion Range: -5 to 5								
 Ambiguous pairs exclusion keeps most confident pair Pair Search and ER Calculation Options Require matching charge states for pair Use identical charge states for expression ratio Average ER's for all charge states Weight by Abu Compute ER Scan by Scan Enable I-Report ER computation Remove outlier ER values using Grubb's test (95% conf.) Repeatedly remove outliers Minimum final data 3 Use symmetric ERs 								

Part II: LC-MS Feature Discovery

- Introduction (Adkins)
- Part I: Overview of Label-Free Quantitative Proteomics (Jaffe)
- Part II: Feature discovery in LC-MS datasets (Monroe and Jaitly)
 - Structure of LC-MS Data
 - Feature discovery in individual spectra (deisotoping)
 - Feature definition over elution time
 - Identifying LC-MS Features using an AMT tag DB
 - Extending the AMT tag approach for feature based analyses
 - Estimating confidence of identified LC-MS features
 - Downstream quantitative analysis with DAnTE
- Part III: PEPPeR, GenePattern and Real-world examples (Jaffe)
- Break
- AMT tag Pipeline Demo (general)
- Panel Discussion

- Accurate Mass and Time (AMT) tag
 - Unique peptide sequence whose monoisotopic mass and normalized elution time are accurately known
 - AMT tags also track any modified residues in peptide
- AMT tag DB
 - Collection of AMT tags
- AMT tag approach articles
 - R.D. Smith et. al., *Proteomics* **2002**, *2*, 513-523.
 - J.S. Zimmer, M.E. Monroe et. al., Mass Spec. Reviews 2006, 25, 450-482.
 - L. Shi, J.N. Adkins, et. al., *J. of Biological Chem.* 2006, 281, 29131-29140.

- What can we use an AMT tag DB for?
 - Query LC-MS/MS data to answer questions
 - How many distinct peptides were observed passing filter criteria?
 - Which peptides were observed most often by LC-MS/MS?
 - How many proteins had 2 or more partially or fully tryptic peptides?
 - Correlate LC-MS features to the AMT tags
 - Analyze multiple, related samples by LC-MS using a high mass accuracy mass spectrometer
 - e.g. Time course study, 5 data points with 3 points per sample
 - Characterize the LC-MS features
 - Deisotope to obtain monoisotopic mass and charge
 - Cluster in time dimension to obtain abundance information
 - Match to AMT tags to identify peptides
 - Align in mass and time dimensions
 - Match mass and time of LC-MS features to mass and time of AMT tags

- Characterizing AMT tags
 - Analyze samples by LC-MS/MS
 - 10 minute to 180 minute LC separations
 - Obtain 1000's of MS/MS fragmentation spectra for each sample
 - Analyze spectra using SEQUEST, X!Tandem, etc.
 - SEQUEST: http://www.thermo.com/bioworks/
 - X!Tandem: http://www.thegpm.org/TANDEM/
 - Collate results

- AMT tag example
 - R.VKHPSEIVNVGDEINVK.V
 - Observed in scan 11195 of dataset #19 in an SCX fractionation series

- AMT tag example
 - R.VKHPSEIVNVGDEINVK.V
 - Observed in scan 11195 of dataset #19 in an SCX fractionation series

#	Immon.	Ь	b++	Seq.	у	y++	#
1	72.08			V	1877.01	939.01	17
2	101.11	228.17		K	1777.94	889.48	16
3	110.07	365.23		Н	1649.85	825.43	15
4	70.07	462.28		Р	1512.79	756.90	14
5	60.04	549.31		S	1415.74	708.37	13
6	102.06	678.36	339.68	Е	1328.71	664.86	12
7	86.10	791.44	396.22	I	1199.66	600.33	11
8	72.08	890.51	445.76	V	1086.58	543.79	10
9	87.06	1004.55	502.78	N	987.51	494.26	9
10	72.08	1103.62	552.31	V	873.47	437.24	8
11	30.03	1160.64	580.83	G	774.40	387.70	7
12	88.04	1275.67	638.34	D	717.38	359.19	6
13	102.06	1404.71	702.86	Е	602.35	301.68	5
14	86.10	1517.80	759.40	I	473.31		4
15	87.06	1631.84	816.42	N	360.22		3
16	72.08	1730.91	865.96	V	246.18		2
17	101.11			K	147.11		1

3+ species Match 30 b/y ions X!Tandem hyperscore = 80 X!Tandem Log(E_Value) = -5.9

- Align related datasets using elution times of observed peptides
 - One option: utilize NET prediction algorithm to create theoretical dataset to align against
 - NET prediction uses position and ordering of amino acid residues to predict normalized elution time

Peptide	X!Tandem Log (E Value)	Elution Time	Predicted NET
R.AARPAKYSYVDENGETK.T	-6.1	33.958	0.167
R.LVHGEEGLVAAKR.I	-8.8	36.915	0.224
R.GIIKVGEEVEIVGIK.E	-8.2	53.003	0.415
K.RFNDDGPILFIHTGGAPALFAYHPHV	-7.3	62.583	0.519
K.KTGVLAQVQEALKGLDVR.E	-11.6	62.803	0.438
R.KVAAQIPNGSTLFIDIGTTPEAVAHALLGHSNLR.I	-8.9	73.961	0.589
R.TFAISPGHMNQLRAESIPEAVIAGASALVLTSYLVR.C	-6.5	88.043	0.764

K. Petritis, L.J. Kangas, P.L. Ferguson, et al., *Analytical Chemistry* **2003**, *75*, 1039-1048. K. Petritis, L.J. Kangas, B. Yan, et al., *Analytical Chemistry* **2006**, *78*, 5026-5039.

- Align related datasets using elution times of observed peptides
 - One option: utilize NET prediction algorithm to create theoretical dataset to align against
 - NET prediction uses position and ordering of amino acid residues to predict normalized elution time
 - Alignment yields NET values based on observed elution times
 - Observed NET = Slope×(Observed Elution Time) + Intercept

- AMT tag example
 - R.VKHPSEIVNVGDEINVK.V
 - Observed in 7 (of 25) LC-MS/MS datasets in the SCX fractionation series

Compute monoisotopic mass: 1876.0053 Da Average Normalized Elution Time: 0.3021 (StDev 0.0021)

- Mass and Time Tag Database
 - Repository for AMT tags
 - Mass, elution time, modified residues, and supporting information for each AMT tag
 - Allows samples of unknown composition to be matched quickly and efficiently, without needing to perform tandem MS
 - Assembled by analyzing a control set of samples, cataloging each peptide identification until subsequent analyses no longer provide new identifications

MT Tag ID	Peptide	LC-MS/MS Obs. Count	Calculated Monoisotopic Mass	Average Observed NET	Observed NET StDev
1662039	MTGRELKPHDR	1	1338.6826	0.143	0.000
17683899	SSALNTLTNQK	3	1175.6146	0.235	0.005
36609588	HRDLLGATNPTLR	5	1960.0602	0.379	0.002
36715875	WVKVDGWDNFER	11	2590.2815	0.459	0.011
36843675	MYGHLKGEVAQER	8	2533.2304	0.557	0.005

• Mini AMT tag DB

- Database constructed from a relatively small number of datasets
- e.g. 25 SCX fractionation samples from S. typhimurium, each analyzed by LC-MS/MS and then by X!Tandem
- Protein database: S_typhimurium_LT2_2004-09-19
 - 4550 proteins and 1.4 million residues

>STM1834 putative YebN family transport protein (yebN) {Salmonella typhimurium LT2} MFAGGSDVFNGYPGQDVVMHFTATVLLAFGMSMDAFAASIGKGATLHKPKFSEALRTGLI FGAVETLTPLIGWGLGILASKFVLEWNHWIAFVLLIFLGGRMIIEGIRGGSDEDETPLRR HSFWLLVTTAIATSLDAMAVGVGLAFLQVNIIATALAIGCATLIMSTLGMMIGRFIGPML GKRAEILGGVVLIGIGVQILWTHFHG

>STM1835 23S rRNA m1G745 methyltransferase (rrmA) {Salmonella typhimurium LT2} MSFTCPLCHQPLTQINNSVICPQRHQFDVAKEGYINLLPVQHKRSRDPGDSAEMMQARRA FLDAGHYQPLRDAVINLLRERLDQSATAILDIGCGEGYYTHAFAEALPGVTTFGLDVAKT AIKAAAKRYSQVKFCVASSHRLPFADASMDAVIRIYAPCKAQELARVVKPGGWVVTATPG PHHLMELKGLIYDEVRLHAPYTEQLDGFTLQQSTRLAYHMQLTAEAAVALLQMTPFAWRA RPDVWEQLAASAGLSCQTDFNLHLWQRNR

- Database Relationships
 - Minimum information required:
 - Single table with Mass and NET

• Expanded schema:

- Microsoft Access DB Relationships
 - Full schema to track individual peptide observations

• Example data

N	Mass_	Tags
		-

Mass_Tag_ID	Peptide	Monoisotopic_Mass
24847	VKHPSEIVNVGDEINVK	1876.00533

ΤΜ	lass 1	Taas	NET
· _ · ·			

Mass_Tag_ID	Avg_GANET	Cnt_GANET	StD_GANET
24847	0.3021	7	2.11E-03

T_Peptides

Peptide_ID	Peptide	Mass Tag ID	Job	Scan Number	Charge State
53428	R.VKHPSEIVNVGDEINVK.V	24847	206386	11195	3
57461	R.VKHPSEIVNVGDEINVK.V	24847	206387	9945	3
61511	R.VKHPSEIVNVGDEINVK.V	24847	206388	10905	2
65386	R.VKHPSEIVNVGDEINVK.V	24847	206389	9667	2
69081	R.VKHPSEIVNVGDEINVK.V	24847	206390	9118	2
72556	R.VKHPSEIVNVGDEINVK.V	24847	206391	9159	2
76263	R.VKHPSEIVNVGDEINVK.V	24847	206392	9421	2

T_Score_XTandem

Peptide_ID	Hyperscore	Log(E_Value)
53428	80.2	-5.89
57461	69.2	-4.92
61511	74	-12.85
65386	77.2	-12.80
69081	69	-12.82
72556	78	-13.77
76263	60.3	-11.27

Processing steps

Convert to .Dta files or single _Dta.txt file using DeconMSn.exe. DeconMSn is similar to Thermo's Extract_MSn but has better support for data from LTQ-Orbitrap or LTQ-FT instruments.

Process _Dta.txt file with X!Tandem or .Dta files with SEQUEST. Use the Peptide File Extractor to convert SEQUEST .Out files to Synopsis (_Syn.txt) files.

Convert X!Tandem .XML output files or SEQUEST _Syn.txt file to tab-delimited files using the Peptide Hit Results Processor (PHRP) application.

Align datasets using the MTDB Creator application

Load into database using MTDB Creator

DeconMSn

- Determines the monoisotopic mass and charge state of each parent ion chosen for fragmentation on a hybrid LC-MS/MS instrument using Decon2LS algorithms
- Replacement for the Extract_MSn.exe tool provided with SEQUEST and Bioworks

• Peptide Hit Results Processor (PHRP) relationships

MTDB Creator

MTDB Creator application

 Allows external researchers to align multiple LC-MS/MS analyses, run PeptideProphet (for SEQUEST data) and create a standalone AMT tag database

AMT Tag DB Growth Trend

- Trend for Mini AMT tag DB
 - 25 SCX fractionation datasets of a single growth condition

- Trend for Mature AMT tag DB
 - 521 different samples from ~25 different conditions
 - Slope of curve decreases as more datasets are added and as fewer new peptides are seen

VIPER software

- Visualize and find features in LC-MS data
- Match features to peptides (AMT tags)
- Graphical User Interface and automated analysis mode

- Peak Matching Steps
 - Load LC-MS peak lists from Decon2LS
 - ✓Filter data
 - Feature definition over elution time
 - Select AMT tags to match against
 - Optionally, find paired features (e.g. ¹⁶O/¹⁸O pairs)
 - Align LC-MS features to AMT tags using LCMSWarp
 - Broad AMT tag DB search
 - Search tolerance refinement
 - Final AMT tag DB search
 - Report results

Ξ÷ γ	IPER								
File	<u>S</u> teps	<u>E</u> dit	Info	<u>⊻</u> iew	<u>T</u> ools	Special	<u>W</u> indo	W	<u>H</u> elp
	<u>1</u> a, 1b, <u>2</u> , F <u>3</u> , S <u>4</u> , F <u>5</u> , A <u>6</u> , D <u>7</u> , M <u>9</u> , S	Load p Filter ind LC elect P ind Pa lign LC ataba ataba ave Q	eak lis -MS Fe 4T Tag irs -MS Fe se Sea alibratio se Sea C Plots	t file atures s (Conr eatures rch on and rch usir 	(UMCs) hect to [to MT 1 Toleran ng Pairs)B) ⁻ ags ce Refine	ment		
	View	v Analy	/sis His	torv Lo	a				

• AMT Tag database selection

Select/Modify Database Connection		
MT_S_typhimurium_X347, 19273 MT tags MT_Human_P255, 94865 MT tags	Details for the selected connection in the list at left Database Name: MT_S_typhimurium_X347	
MT_BSA_P171, 6068 MT tags MT_Human_P308, 1849 MT tags MT_Human_P255, 20110 MT tags MT_Shewanella_P196, 72213 MT tags MT_C_Elegans_P237, 24103 MT tags MT_Cyanothece_P290, 47239 MT tags	Count of selected MT Tags in selected DB: 19273 Internal Standard Explicit: Minimum XCorr: 1 Minimum discriminant: 0 Minimum peptide prophet: 0 Minimum PMT quality: 1 Avg Obs NET - from DB	Connect to mass tag system (MTS) if inside PNNL or use standalone Microsoft Access DB
Sort by Most Recent ■ Link to Selected DB ■ Link to DB Not Listed Above ■ Break Current DB Link ■ Cancel □k	currently connected database ie: MT_S_typhimurium_X347 ed MT Tags in current DB: 18618 ard Explicit:	ags
Database info for the current gel file Override Job Info Job number:	208791 MD Type: 1	
Save Job Info Changes Source Filename	AID_STM019c_29Apr05_0305-06_isos.csv	
Path to Legacy DB (Access DB with MT Tags) D:\Typhimurium_AMTs.mdb	Bī	owse

- Align scan number (i.e. elution time) of features to NETs of peptides in given AMT tag database
 - Match mass and NET of AMT tags to mass and scan number of MS features
 - Use LCMSWarp algorithm to find optimal alignment to give the most matches

 LCMSWarp computes a similarity score from conserved local mass and retention time patterns

- Similarity scores between LC-MS features and AMT tags are used to generate a score graph of similarity
- Best alignment is found using a dynamic programming algorithm that determines the transformation function with maximum likelihood

- Transformation function is used to convert from scan number to NET
 - Features centered at same scan number get the same obs. NET value
 - When matching LC-MS features to AMTs, we will search +/- a NET tolerance, which effectively allows for LC-MS features to shift around a little in elution time

NET Residual Plots

- Difference between NET of LC-MS feature and NET of matching AMT tag
 - Indicates quality of alignment between features and AMT tags
- This data shows nearly linear alignment between features and AMTs, but the algorithm can easily account for non-linear trends

NET Residuals after LCMSWarp

 Non-linear alignment example #1

AMT

 Identical LC separation system, but having column flow irregularities

NET Residuals after LCMSWarp

- Non-linear alignment example #2
 - AMT Tag DB from C₁₈ LC-MS/MS analyses using ISCO-based LC (exponential dilution gradient)
 - LC-MS analysis used C₁₈ LC-MS via Agilent linear gradient pump

- AMT Tag DB from C₁₈ LC-MS/MS analyses using ISCO-based LC
- LC-MS analysis used C₁₈ LC-MS via Agilent linear gradient pump

Scan #

LCMSWarp Features

- Fast and robust
 - Previous method used least-squares regression, iterating through a large range of guesses (slow and often gave poor alignment)
- Requires that a reasonable number of LC-MS features match the AMT Tag DB

- In addition to aligning data in time, we can also recalibrate the masses of the LC-MS features
 - Possible because mass and time values are available for both LC-MS features and AMT tags
- Two options for mass re-calibration
 - Bulk linear correction
 - Piece-wise correction via LCMSWarp
- Visualize mass differences using mass error histogram or mass residual plot

Mass Error Histogram

List of binned mass error values

- Difference between feature's mass and matching AMT tag's mass
- Bin values to generate a histogram
- Typically observe background false positive level

LC-MS Feature Mass (Da)	AMT Tag Mass (Da)	Delta Mass (Da)	Mass Error (ppm)
1570.9005	1570.883	0.01745	11.1
1571.74325	1571.726	0.01770	11.3
1571.8498	1571.831	0.01912	12.2
1571.9107	1571.892	0.01848	11.8
1573.8381	1573.832	0.00569	3.6

Count (LC-MS Features)

- Option 1: Bulk linear correction
 - Use location of peak in mass error histogram to adjust masses of all features
 - Shift by ppm mass; absolute shift amount increases as monoisotopic mass increases

- Option 2: Piece-wise correction via LCMSWarp
 - Use smoothing splines to determine a smooth calibration curve which is a function of scan number

- Option 2: Piece-wise correction via LCMSWarp
 - Use a smoothing spline calibration which is a function of m/z
 - LCMSWarp utilizes a hybrid correction based on both mass error vs. time and mass error vs. m/z

- Comparison of the three methods
 - Mass error histogram gets taller, narrower, and more symmetric
 - Linear \rightarrow Mass error vs. m/z \rightarrow Mass error vs. time \rightarrow Hybrid
 - Not all datasets show the same trends, but Hybrid mass recalibration is generally superior

- Match Features to LC-MS/MS IDs
- S. typhimurium DB, from 25 LC-MS/MS analyses
 - 18,617 AMT tags, all fully or partially tryptic
 - Look for AMT tags within a broad mass range, e.g., ±25 ppm and ±0.05 NET of each feature

NF[®]

Search tolerance refinement

 Can use mass error and NET error histograms to determine optimal search tolerances

Tolerance Refinement (Mass and GANET Error Plots)	
<u>File E</u> dit <u>V</u> iew	
Mass Calibration Refinement Tolerance Refinement	Mass Error (PPM) Include Internal Standard matches Use UMC class stats
Mass Tolerance Refinement NET Tolerance Refinement Minimum Tol. 0.75 ppm Maximum Tol. 15 ppm Adjustment multiplier 1	✓ Show Tolerance Refinement Controls MTDB Status: MT tag count: 18,617; Internal Std count: 5 Data points with 1 or more hits = 4763 Job 208791: AID_STM019c_29Apr05_0305-06_isos.csv Relative Risk: 7.7% (FP: 356, TP: 4245)
Expectation Maximization Difference Control Induced Texpectation Difference Control Induced	Count (UMCs) Examine distribution of
Mass error tol. estimate 6 ppm Start Mass Tol Refinement NETerror tol. estimate 0.05 Start NET Tol Refinement Data to exclude from extremes 10 % Image: Use single data point errors for Mass Start NET Tol Refinement	³⁰⁰ errors to determine optimal tolerance using expectation maximization algorithm
Criteria To Use Peak For Refinement UMC Mass Statistics Minimum Height 10 counts/bin Pct of Max for Finding Width 60 Minimum S/N for Low Abu 2.5	200 ····· ±1.76 ppm
Relative Risk Statistics Current DB Search Tolerances Mass: 7.7% (FP: 356, TP: 4245) DB Mass Tolerance: 25 ppm NET: 25% (FP: 1615, TP: 4844) DB NET Tolerance: 0.05 NET	
Mass Calibration Plot Status NET Calibration Plot Status Peak Center: 0 ppm Peak Center: 0.001 NET Peak Width: 1.1 ppm Peak Width: 0.01 NET Peak Height: 338 counts/bin Peak Height: 377 counts/bin Noise: 8 counts S/N: 43	-3 -2 -1 0 1 2 3 4 Mass Error (ppm)

- Repeat search with final search tolerances
 - 5,934 features
 - 3,866 features with matches
 - 3,958 out of 18,617 AMT tags matched using ±1.76 ppm

Identifying LC-MS Features

- Caveat: given feature can match more than one AMT tag
 - Need measure of ambiguity

Identifying LC-MS Features

$$= \frac{(\sigma_{mj}\sigma_{tj})^{-1}\exp(-d_{ij}^{2}/2)}{\left(\sum_{k=1}^{N}(\sigma_{mk}\sigma_{tk})^{-1}\exp(-d_{ik}^{2}/2)\right)}$$

Match Tolerances Awin ray in Mass (Da) which dij Numerator p	j
Mass: ±4 ppm 35896216 1767.9777 0.373 3.012 6273.3 0.1	6
NET: ±0.02 NET 105490 1767.9730 0.380 0.090 27042.5 0.7	0
36259992 1767.9664 0.392 3.267 5521.4 0.1	4
1 767 084 Sum: 38837.2	

Identifying LC-MS Features

 VIPER reports a score that measures the uniqueness of each match SLIC Average 								
AMT Tag ID	Peptide	Mass (Da) NET		Score	XCorr	Score		
35896216	T.RALMQLDEALRPSLR.S	1767.9777	0.373	0.16	3.13	0.61		
105490	K.DLETIVGLQTDAPLKR.A	1767.9730	0.380	0.70	3.68	0.97		
36259992	R.SIGIAPDVLICRGDRAI.P	1767.9664	0.392	0.14	2.15	0.06		

Search tolerance refinement

- Effect of search tolerances on Mass Error histogram
 - If mass error plot not centered at 0, then narrow mass windows exclude valid data
 - Decreasing mass and/or NET tolerance reduces background false positive level

Automated Peak Matching

- Automated processing using VIPER
 - Processing steps and parameters defined in .Ini file
 - Separate .Ini file for ¹⁴N/¹⁵N pairs and ¹⁶O/¹⁸O pairs

Edit Analysis Settings	🖻 Edit Analysis Settings
1. Load and Filer 2 LC:MS Features 3. MT Tags 4. Pairs 5. NET Adjustment 6. Refinement 7. DB Search 8. Saving/Plotting Input File extension preference order isos_ic.csv, isos.csv, mexml.medata, mexml.mcdata, xmt, ic.pek, _spek, .pek, .DeCal.pek-3, .pek-3 Molecular Mass Range Use only lotopic data Min 400 With molecular mass within range Min 400 Within range Max 6000 Warage for Charge State and Isotopic data Isotopic data only Mule only Charge State and Isotopic data Min 0.15 Warage for Charge State and Isotopic data Min 0 Mule only Charge State Min 0 Within range Max 1E+15 Warage for Charge State and Isotopic data Min 400 Within range Max 1E+15 Ware ange for Charge State and Isotopic data Min 400000 Scan Range and GANET Range Min 0 Use only carse whose Min 1 Max 5000 Gaue State State and Isotopic data Min Use only carse whose Min 1 Maximum data count filter	1. Load and Filter 2. LCMS Features 3. MT Tags 4. Pairs 5. NET Adjustment 6. Refinement 7. DB Search 8. Saving/Plotting Disable all saving and exporting Database Search Mode ConglomerateLUMS Feature masses with NET (pref Image: Search Mode Image: Sear
Read from Selected Gel Gel file (in memory) to read or update Read from Settings File Revert Apply to Selected Gel Save to Settings File Close Set to Defaults Save to Settings File Close	Read from Selected Gel Gel file (in memory) to read or update Read from Settings File Revert Apply to Selected Gel Save to Settings File Close Set to Defaults Save to Settings File Close

Peak Matching Results

Browsable result folders for visual QC of each dataset

• S. typhimurium on 11T FTICR

Mass Errors Before Refinement

Mass Errors After Refinement

Peak Matching Results

- Browsable result folders for visual QC of each dataset
 - *S. typhimurium* on 11T FTICR

Total Ion Chromatogram (TIC)

Base Peak Intensity (BPI) Chromatogram

Peak Matching Results

- Browsable result folders for visual QC of each dataset
 - *S. typhimurium* on 11T FTICR

- NET Alignment Surface Metrics
 Should show a smooth bright vice
 - Should show a smooth, bright yellow, diagonal line

- NET Alignment Residual Metrics
 - Data after recalibration should be narrowly distributed around zero

Part II: LC-MS Feature Discovery

- Introduction (Adkins)
- Part I: Overview of Label-Free Quantitative Proteomics (Jaffe)
- Part II: Feature discovery in LC-MS datasets (Monroe and Jaitly)
 - Structure of LC-MS Data
 - Feature discovery in individual spectra (deisotoping)
 - Feature definition over elution time
 - Identifying LC-MS Features using an AMT tag DB
 - Extending the AMT tag approach for feature based analyses
 - Estimating confidence of identified LC-MS features
 - Downstream quantitative analysis with DAnTE
- Part III: PEPPeR, GenePattern and Real-world examples (Jaffe)
- Break
- AMT tag Pipeline Demo (general)
- Panel Discussion

Current AMT Tag Pipeline

- Individual LC-MS datasets are aligned to an AMT tag database independently
- Results are combined together after independent processing
 AMT tags from LC-MS/MS

Current AMT Tag Pipeline

• For each peptide identified by peak matching, find the abundance of that peptide in all the peak matchings to create a profile

LC-MS				LC-MS/MS			
Experiment #	Scan #	Mass	Abundance	Peptide	NET	Mass	ORFName
1	2027	1063.56	3320000	TPHPALTEAK	0.18	1063.57	P006 BGAL_ECOLI
2	2300	1063.56	3524300	TPHPALTEAK	0.18	1063.57	P006 BGAL_ECOLI
3	-	-	-	_	-	I	-
1600	2400	1063.56	481000	TPHPALTEAK	0.18	1063.57	P006 BGAL_ECOLI

Collate Abundances

	Peptide	NET	Mass	ORFName	Exp 1	Exp 2	Exp 3	Exp i	Exp 1600
٦	FPHPALTEAK	0.18	1063.57	P006 BGAL_ECOLI	3320000	3524300	-	381000	381000

Current AMT Tag Pipeline

1,850 1,400 950 500

 LC-MS features without matches may represent useful information, but are effectively ignored

AMT tags from LC-MS/MS

0.075 0.109 0.157 0.193 0.230 0.273 0.314 0.361 0.402 0.447 0.492 0.534 0.580 0.623 0.669 0.710 0.755 0.800

Other issues

- Independent processing of each dataset results in more missing data, because of the lack of statistics
- Lower abundance features suffer more, but are not the only casualties

Extended AMT Tag method

- Find common features based on mass and time patterns in all datasets first (with or without the AMT tag database)
- Align resulting groups of features to the AMT tag database using statistics from a larger number of features

Align all datasets to common baseline

- Alignment Functions

Score plots for alignment of 4 datasets against arbitrary baseline run

N. Jaitly, M.E. Monroe et. al., Analytical Chemistry 2006, 78, 7397-7409.

Alignment of Multiple LC-MS Datasets

- Obvious need for alignment before finding common features
 - Mass section of 5 LC-MS datasets before LC alignment

Alignment of Multiple LC-MS Datasets

- Obvious need for alignment before finding common features
 - Mass section of 5 LC-MS datasets after LC alignment

Clustering Features

 Create abundance profiles by finding similar features (using mass and retention time) across all LC-MS datasets, rather than analyzing each dataset separately and then collating results

Scan number

Identifying Clustered Features

 Align mass and elution time of clusters to AMT tag database, then identify clusters by matching to AMT tags

Fewer missing values observed with clustered feature approach

MultiAlign

- Represents next version of the feature identification process
- Along with MTDB Creator it represents a standalone, redistributable version of the AMT tag process

LC-MS Feature Discovery

- Similar approaches and software tools: High Res LC-MS
 - CRAWDAD
 - G.L. Finney et al. Analytical Chemistry 2008, 80, 961-971.
 - msInspect
 - M. Bellew et. al. *Bioinformatics* **2006**, *22*, 1902-1909.
 - PEPPeR
 - J. Jaffe et.al. Mol. Cell. Proteomics 2006, 5, 1927-1941.
 - SpecArray (Pep3D, mzXML2dat, PepList, PepMatch, PepArray)
 - X.-J. Li, et. al. Mol Cell Proteomics 2005, 4, 1328-1340.
 - SuperHIRN
 - L.N. Mueller et al. *Proteomics* **2007**, 7, 3470-3480.
 - Surromed label-free quantitation software (MassView)
 - W. Wang et al. Analytical Chemistry 2003, 75, 4818-4826.
 - XCMS (for Metabolite profiling)
 - C.A. Smith et. al. *Analytical Chemistry* **2006**, *78*, 779-787.

LC-MS Feature Discovery

- Similar approaches and software tools: Low Res LC-MS
 - Signal maps software
 - A. Prakash et. al. Mol. Cell Proteomics 2006, 5, 423-432.
 - Informatics platform for global proteomic profiling using LC-MS
 - D. Radulovic, et al. Mol. Cell. Proteomics 2004, 3, 984-997.
 - Computational Proteomics Analysis System (CPAS)
 - A. Rauch et. al. J. Proteome Research 2006, 5, 112-121.

Part II: LC-MS Feature Discovery

- Introduction (Adkins)
- Part I: Overview of Label-Free Quantitative Proteomics (Jaffe)
- Part II: Feature discovery in LC-MS datasets (Monroe and Jaitly)
 - Structure of LC-MS Data
 - Feature discovery in individual spectra (deisotoping)
 - Feature definition over elution time
 - Identifying LC-MS Features using an AMT tag DB
 - Extending the AMT tag approach for feature based analyses
 - Estimating confidence of identified LC-MS features
 - Downstream quantitative analysis with DAnTE
- Part III: PEPPeR, GenePattern and Real-world examples (Jaffe)
- Break
- AMT tag Pipeline Demo (general)
- Panel Discussion

Developing Confidence Metrics

- LC-MS data is aligned against an AMT tag database
- Each LC-MS feature is matched to the closest AMT tag in mass and normalized LC elution time (NET) dimensions

How do we control the errors in the process?

Controlling Rate of Random Matches

- Size of database and degree of noise in database affects the rate of random matches
 - Building more confident AMT tag database (e.g., using strict filtering) decreases background false positives
 - But, increases false negatives
- To date, ad hoc rules have been used
 - Subjectively pleasing threshold values selected for different parameters, such as mass error tolerance, LC NET error tolerance, etc.
 - False discovery rate (FDR) was estimated using decoy methods
 - Rules were accepted if results seemed satisfactory, otherwise parameters were re-optimized
 - But, chosen parameters may not result in optimal results

Metrics Associated with a Candidate Identification

 Each match between an LC-MS feature and a peptide AMT tag is described by a mass error and an LC NET error

Mass	Scan	Aligned NET	Peptide		NET	Mass	ORFName
2228.114	1097	0.218	TETQEKNPLPSKETIEC	0EK	0.22	2228.117	Thymosin beta-4
2222 2222 2222 2222 2222 2222 2222	8.120 - 8.117 - 8.115 - 8.112 - 8.110 -	0.218 0.	217 0.218 0.2	Δ m Δ N 219	nass = -1.3 ET = -0.00 0.22	5 ppm 2 0.221	

Aligned NET

Distribution of Peak Matches

• True and false matches resulting from peak matching display different mass and LC NET error distributions

Distribution of LC-MS Peak Matches

 Density plot of mass and LC NET error distributions is a sum of true and false components

Estimating the Probability a Match is Correct

 Approach: the probability that a peak match is correct can be estimated from where its mass and LC NET error values lie on the two-dimensional distribution

Estimating the Probability a Match is Correct

 The probability that a peak match is correct depends on where its mass and LC NET error value lies on the two-dimensional distribution

Optimizing the overall matching process

- General approach; calculate confidence in peak match based on:
 - Mass and LC NET errors
 - Instrumental performance for an analysis
 - Mass error precision
 - LC-NET precision
 - LC-MS/MS ID quality (e.g., SEQUEST XCorr or X!Tandem expectation values)
- Inter-related effects of different parameters on each other complicate simple choices:
 - Lower mass and LC NET errors should allow choice of lower scores
 - Higher scores should allow somewhat wider mass and LC NET tolerances

→ For practical value we need a single metric that calculates and combines all these factors automatically

 Statistical Method for Assignment of Relative Truth (SMART) – More details to be presented at ASMS 2008 Bioinformatics oral session

Part II: LC-MS Feature Discovery

- Introduction (Adkins)
- Part I: Overview of Label-Free Quantitative Proteomics (Jaffe)
- Part II: Feature discovery in LC-MS datasets (Monroe and Jaitly)
 - Structure of LC-MS Data
 - Feature discovery in individual spectra (deisotoping)
 - Feature definition over elution time
 - Identifying LC-MS Features using an AMT tag DB
 - Extending the AMT tag approach for feature based analyses
 - Estimating confidence of identified LC-MS features
 - Downstream quantitative analysis with DAnTE
- Part III: PEPPeR, GenePattern and Real-world examples (Jaffe)
- Break
- AMT tag Pipeline Demo (general)
- Panel Discussion

Downstream Data Analysis

- Quantitative protein inference from peptide data
- Complications
 - Multiple, possibly inconsistent peptide measurements for same protein
 - Systematic abundance variation within and between conditions
 - How should we use information from blocking and randomization of experiments?
 - High rate of missingness in peptide measurements
- Need to combine off the shelf statistical methods and novel solutions
 - Clustering
 - ANOVA
 - PCA

Infer Protein Abundances from Peptide Abundances

- Multiple peptides observed for each protein
 - For example, protein with 4 peptides
 - 1. SADLNVDSIISYWK
 - 2. LLLTSTGAGIIDVIK
 - 3. LIVGFPAYGHTFILSDPSK
 - 4. IPELSQSLDYIQVMTYDLHDPK
 - Plot peptide abundance across 57 datasets (for 4 conditions)

→ Outlier detection and normalization need to be performed before meaningful abundance information can be inferred

Outlier Detection

Normalization

Infer Protein Abundances from Peptide Abundances

- Scale peptide abundances to an automatically chosen "optimal" reference peptide for each protein
- Estimate relative protein abundance using scaled peptides

<u>Data Analysis Tool Extension (DAnTE)</u>

A software tool for downstream quantitative protein inference

Ref ID	Reference	Mass Tag ID	AB_007-LP	AB_007-LP	AB_007-LP	AB-008-LP	AB-008-LP
57559	gi 10048460 ref NP	32275105		0.0133541			
57559	gi 10048460 ref NP	47465602	0.214036	0.110191	0.088877	0.144964	
57559	gi 10048460 ref NP	83201030					
57559	gi 10048460 ref NP	83257895					
57559	gi 10048460 ref NP	83424583	0.126785	0.0901864	0.05985	0.0391025	0.0275993
57559	gi 10048460 ref NP	83451097	0.0600628			0.0392326	0.0274422
57559	gi 10048460 ref NP	83451190	0.0409746	0.0396703	0.0539142	0.0591157	0.0246261
57559	gi 10048460 ref NP	83479064	0.0383742	0.0865723	0.0402673	0.0359534	0.0397751
57559	gi 10048460 ref NP	83479231	0.0212362	0.0122634	0.0184865		
57559	gi 10048460 ref NP	83514326		0.0289326	0.0337594	0.0237968	0.0243036
74732	gi 10092608 ref NP	7824413			0.0851353		
74732	gi 10092608 ref NP	8680795					
74732	gi 10092608 ref NP	20746162	0.536631	0.315447	0.231846	0.131434	0.130482
74732	gi 10092608 ref NP	20750908	0.0699752	0.0821782	0.0417777	0.0280187	0.0366826
74732	gi 10092608 ref NP	20750955	0.16129	0.123591	0.12117	0.126886	0.0970479
74732	gi 10092608 ref NP	20956112	0.0407675				
74732	gi 10092608 ref NP	20985367		0.0144197	0.0138798		0.0125844
60259	ail10181140[ref]NP	7777112		0.0194588			

Software by Ashoka Polpitiya

Interactive Analysis in DAnTE

Outline of a Typical Analysis

- Load data
- Examine diagnostic plots
- Define factors
- Normalize
 - Within a Factor
 - Linear regression
 - LOESS (LOcal regrESSion)
 - Quantile
 - Across Factors
 - MAD
 - Central tendency
- Infer protein abundances from peptide abundances
 - RRollup, QRollup, and ZRollup
- ANOVA
- Save the results to a session file (.dnt)

Load Data

Ref ID	Reference	Mass Tag ID	AB_007-LP	AB_007-LP	AB_007-LP	AB-008-LP	AB-008-LP
57559	gi 10048460 ref NP	32275105		0.0133541			
57559	gi 10048460 ref NP	47465602	0.214036	0.110191	0.088877	0.144964	
57559	gi 10048460 ref NP	83201030					
57559	gi 10048460 ref NP	83257895					
57559	gi 10048460 ref NP	83424583	0.126785	0.0901864	0.05985	0.0391025	0.0275993
57559	gi 10048460 ref NP	83451097	0.0600628			0.0392326	0.0274422
57559	gi 10048460 ref NP	83451190	0.0409746	0.0396703	0.0539142	0.0591157	0.0246261
57559	gi 10048460 ref NP	83479064	0.0383742	0.0865723	0.0402673	0.0359534	0.0397751
57559	gi 10048460 ref NP	83479231	0.0212362	0.0122634	0.0184865		
57559	gi 10048460 ref NP	83514326		0.0289326	0.0337594	0.0237968	0.0243038
74732	gi 10092608 ref NP	7824413			0.0851353		
74732	gi 10092608 ref NP	8680795					
74732	gi 10092608 ref NP	20746162	0.536631	0.315447	0.231846	0.131434	0.130482
74732	gi 10092608 ref NP	20750908	0.0699752	0.0821782	0.0417777	0.0280187	0.0366828
74732	gi 10092608 ref NP	20750955	0.16129	0.123591	0.12117	0.126886	0.0970479
74732	gi 10092608 ref NP	20956112	0.0407675				
74732	gi 10092608 ref NP	20985367		0.0144197	0.0138798		0.0125844
60259	qi 10181140 ref NP	7777112		0.0194588			

Proteins, peptides, and peptide abundances

🐲 DAnTE 1.00 - [Main - Dataset_11.dnt]							
🐒 Eile Pre-Process Rollup Statistics Plo	it <u>T</u> oc	ols <u>W</u> indow <u>H</u> e	lp.				
🗄 🗋 🙋 🚰 🧉 🗐 🖬 💥 log. 🛶 🚬	ΣΣ	i 🛝 qa 🛄 🏨	🔀 🖄 🖊 🈌	0			
🖃 🐒 DAnTE	Proteinl	nfo					
Expressions		Row_ID	ProteinID				
ProteinInfo	▶ 01	32275105	gi 10048460 ref N				
	02	47465602	gi 10048460 ref N				
	03	83424583	gi 10048460 ref N				
	04	83451097	gi 10048460 ref N				
	05	83451190	gi 10048460 ref N				
	06	83479064	gi 10048460 ref N				
	07	83479231	gi 10048460 ref N				
	08	83514326	gi 10048460 ref N				
	09	7824413	gi 10092608 ref N				
	10	20746162	gi 10092608 ref N				
ProteinInfo selected.							

F DAnTE 1.00 - [Main - Dataset_11.dnt] 🛛 🔍 🖘 🗔 🗖 🔀							
🐒 Eile Pre-Process Rollup Statisti	s Pļot <u>T</u>		_ 8 ×				
🗋 🔯 📴 🚰 🛃 🗶 102 🛶 🗵 🚬 🗴 🥼 qq 📕 🏘 🖄 🖄 🙋 🤗 🥥							
Expressions							
		Row_ID	AB_007-LP1	AB_007-LP2	AB_007-LP3	AB-008-LP4	
E ProteinInfo	▶ 01	32275105		0.0133541			
	02	47465602	0.214036	0.110191	0.088877	0.144964	
	03	83424583	0.126785	0.0901864	0.05985	0.0391025	
	04	83451097	0.0600628			0.0392326	
	05	83451190	0.0409746	0.0396703	0.0539142	0.0591157	
	06	83479064	0.0383742	0.0865723	0.0402673	0.0359534	
	07	83479231	0.0212362	0.0122634	0.0184865		
	08	83514326		0.0289326	0.0337594	0.0237968	
	09	7824413			0.0851353		
	<			0.015113		>	
Expressions selected. 97 Rows/6 Columns.							

Diagnostic Plots: Check Normality

Select QQ Plot Parameters		Quantile-Quantile Plot
QQ Plots Data Source: Log Expressions Plot Properties	Select Datasets to Plot NIOSH_AB_007-LP NIOSH_AB_007-LP1 NIOSH_AB_007-LP2 NIOSH_AB_007-LP2 NIOSH_AB_008-LP1 NIOSH_AB-008-LP1 NIOSH_AB-008-LP1 NIOSH_AB-009-LP2 NIOSH_NIOSH_AB-009-LP1 NIOSH_AB-009-LP1 NIOSH_AB-010-LP1 NIOSH_AB-010-LP1 NIOSH_AB-010-LP1 NIOSH_AB-011-LP NIO	Sample of the second se
Histograms Data Source: Log Expressions Plot Properties Manually set the Bins: 50 Auto Binn	ng	Histogram
Columns on the Multi-Plot: 2 Foreground Color: Bor Transparent Background: (Only works with Add Rug: ✓ Select Datasets to Plot NIOSH_AB_007-LP NIOSH_AB-0	der Color: Co	
NIOSH_AB_007-LP1 NIOSH_AB-0 NIOSH_AB_007-LP2 NIOSH_AB-0 NIOSH_AB-008-LP NIOSH_AB-0 NIOSH_AB-008-LP1 NIOSH_AB-0 NIOSH_AB-008-LP2 NIOSH_AB-0 NIOSH_AB-009-LP NIOSH_CB_0 NIOSH_AB-009-LP1 NIOSH_CB_0 Add Date/Name Stamp	04.P1 NIOSH_CE 14.P NIOSH_CE 14.P1 NIOSH_CE 24.P NIOSH_CE 24.P1 NIOSH_CE 074.P NIOSH_CE 074.P1 NIOSH_CE Toggle All	Prop
OK Defaults	Cancel	Abundance

Factors

- Capture experimental design through factors
 - For example, gender, sample type, technical replicate, and/or biological replicate

🐒 Factor Information	ı		19 2				
Set Factors:			Sefine Factors		-		
Dataset Name	SampleType		Change or Defir	ne New Facto	ors:		?
NIOSH_AB_007-LP	Condition1		_				
NIOSH_AB_007-LP1	Condition1		- ·			E . VI / I)	
NIOSH_AB_007-LP2	Condition1		Factors:			Factor Values (levels):	
NIOSH_AB-008-LP	Condition1						
NIOSH_AB-008-LP1	Condition1		SampleType	Add		Condition2	Add
NIOSH_AB-008-LP2	Condition1						
NIOSH_AB-009-LP	Condition1		SampleType			Condition1	
NIOSH_AB-009-LP1	Condition1					Condition2	
NIOSH_AB-010-LP	Condition1					Condition3	
NIOSH_AB-010-LP1	Condition1				~~	Controls	
NIOSH_AB-011-LP	Condition1				>>		
NIOSH_AB-011-LP1	Condition1						
NIOSH_AB-012-LP	Condition1						
NIOSH_AB-012-LP1	Condition1						
NIOSH_CB_007-LP	Condition2						
NIOSH_CB_007-LP1	Condition2		Data			Dalaha	
NIOSH_CB-008-LP	Condition2		Delet	(e		Delete	
NIOSH_CB-008-LP1	Condition2						
NIOSH_CB-009-LP	Condition2						
NIOSH_CB-009-LP1	Condition2			ΟΚ		Cancel	
NIOSH_CB-010-LP	Condition2						
NIOSH_CB-010-LP1	Condition2						
NIOSH_CB-011-LP	Condition2		×				
	IK + /	- Canc	el				

Normalization: LOESS

Protein Abundance Inference

- DAnTE currently has 3 different algorithms for rolling up peptide abundances to infer protein abundances
- Additional algorithms can be added as needed

둘 RRollup Options 🛛 🔀	
RRollup - Reference Peptide Based Scaling, Rollup	
Data Source: Log Expressions This method assumes that the data is in log scale.	
Select Options for Peptide Scaling Minimum Presence of at least one Peptide for a Protein (%): 50 Minimum Number of Peptides required for Grubbs' Test:	
Exclude peptides from scaling if they are at least not present in this way and the set to the set t	Condition 1 Condition 2 Control Condition 3
In this many datasets: Include 'One-Hit-Wonders': Rollup as Mean (default Median):	
	- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
OK Defaults Cancel	

Protein Heatmap

Significant Proteins

Complete DAnTE Feature List

- Data loading with peptide-protein group information
- Log transform
- Factor Definitions
- Normalization
 - Linear Regression
 - Loess
 - Quantile normalization
 - Median Absolute Deviation (MAD) Adj.
 - Mean Centering
- Missing Value Imputation
 - Simple
 - mean/median of the sample
 - Substitute a constant
 - Advance
 - Row mean within a factor
 - kNN method
 - SVDimpute
- Save tables / factors / session

Plots

- Histograms
- QQ plots
- Boxplots
- Correlation plots
- MA plots
- PCA/PLS plots
- Protein rollup plots
- Heatmaps
- Rolling up to Proteins
 - Reference peptide based scaling (RRollup)
 - Z-score averaging (ZRollup)
 - QRollup
- Statistics
 - ANOVA
 - Provisions for unbalanced data
 - Random effects (multi level) models (REML)
 - Normality test (Shapiro-Wilks)
 - Non-parametric methods (Wilcoxon, Kruskal-Walis tests)
 - Q-values
 - Filters

Course Outline

- Introduction (Adkins)
- Part I: Overview of Label-Free Quantitative Proteomics (Jaffe)
- Part II: Feature discovery in LC-MS datasets (Monroe and Jaitly)
- Part III: PEPPeR, GenePattern and Real-world examples (Jaffe)
 - PEPPeR: a self-contained web-based Biomarker Discovery pipeline
 - GenePattern: a suite of analysis and visualization tools that works with just about anything
- Break
- AMT tag Pipeline Demo (general)
- Panel Discussion
 - Questions
 - Future Directions

Part III: PEPPeR, GenePattern and Real-world examples

Jacob D. Jaffe The Broad Institute of Harvard and MIT Proteomics Platform

Section Outline

- PEPPeR: a self-contained web-based Biomarker Discovery pipeline
- GenePattern: a suite of analysis and visualization tools that works with just about anything
- Examples of use in the real world
 - Proof of principle by accidental discovery of markers
 - In-silico defractionation
 - Breast cancer biomarker discovery

PEPPeR: Platform for Experimental Proteomics Pattern Recognition

Jaffe JD, Mani DR, Leptos KC, Church GM, Gillette MA, Carr SA. PEPPeR, a Platform for Experimental Proteomic Pattern Recognition. *Mol Cell Proteomics*. 2006 Oct;5(10):1927-1941.

Multiple LCMS Experiments: Good with the Bad

There is a lot of information in there

- Peptide/protein IDs
- Quantitative data
- Statistical assessment
- The information may be noisy
 - Retention time drift
 - Instrument response noise
- Are there methods to leverage this information?
 - Without 'perfect' chromatography?
 - Without strict alignment?

PEPPeR Concepts – Samples and Data Acquisition

PEPPeR Concepts – Data Processing

PEPPeR Concepts – Processing Continued...

PEPPeR Concepts – Analysis and Follow up

Landmark Matching

 Use accurate mass, relative retention order comparison to identify peaks

Landmark Matching

 Use accurate mass, relative retention order comparison to identify peaks m/z=999.4991 X m/z=999.4996 B **Current Experiment** Α С Μ **Comparison Experiment** B Ν Α С **APEPTIDEK APDITEPEK** m/z=999.4993 m/z=999.4993

Landmark Matching

Landmark Matching

Nuts and bolts: How it works

- Match features to sequenced peptides in a single LCMS run
- Refine/recalibrate m/z tolerance
- Re-match features to sequenced peptides in a single LCMS run
- Now compare list of all features to Basis Set for mass, relative elution order matches given landmarks as reference points – *propagation of identified features across multiple experiments*

Landmark Scoring and Confidence

$$S = \sum_{i=1}^{w} \left[\xi(\Lambda_{-i}, \Lambda_{0}) + \xi(\Lambda_{0}, \Lambda_{i}) \right]$$

$$\xi(m, n) = \begin{cases} \text{lif } \tau(m) < \tau(n) \\ \text{if } \tau(m) > \tau(n) \begin{cases} 0.5 \text{ if } \tau(n) - \tau(m) < \delta \text{ and } \mu(m) + \sigma(m) > \mu(n) - \sigma(n) \\ -1 \text{ if } else \end{cases}$$

$$P_{overall} = P_{m/z} P_{landmark} \qquad P_{landmark} = P(landmark \mid m/z) = P(m/z \mid landmark)P(landmark)$$

P(m | z | landmark)P(landmark) + (1 - P(m | z | landmark))(1 - P(landmark))

Let:

 Λ be a list of peptides observed in the comparison experiment ordered

by elution time. Here, elution time is defined by the centroid of all

MS/MS scans leading to the identification of the peptide.

 Λ_{0} is defined as the position of the putative assignment in Λ

 $\mu(\mathbf{x})$ be the centroid of elution time of peptide \mathbf{x}

in the comparison experiment (in scans)

 $\sigma(x)$ be the standard deviation of elution time of peptide x

in the comparison experiment (in scans)

 $\tau(x)$ be the centroid of elution time of peptide x

in the current experiment (in seconds)

 δ be the average retention time peak width, such that peptides eluting

```
within \delta sec are considered to be co-eluting (typically \delta = 30 s)
```

w the number of peptides to consider before and after

the putative assignment on the landmark list (typically w = 3)

Peak Matching: Recognizing Identical Features

- Use landmarks to derive corrections and tolerances for clustering of features across LCMS experiments
 - Break down the problem to make it parallelizable

Retention Time

Peak Matching: Recognizing Identical Features

- Peak Matching
- Use landmarks to derive corrections and tolerances for clustering of features across LCMS experiments

Retention Time

Peak Matching: Recognizing Identical Features

- Use landmarks to derive corrections and tolerances for clustering of features across LCMS experiments
 - Gaussian mixture model (GMM) with parameters determined by maximizing Likelihood ratio using Expectation Maximization (EM)
 - Number of clusters determined using Bayesian Information Criterion (BIC)
 - Coalesce clusters if M/Z and RT variation is within tolerance

Parameterized Peaks

Peak ID	m/z	<i>R</i> . <i>T</i> .	Z	Run 1	Run 2	Run 3	<i>Run</i>	Identity
1	490.3144	62.0	3	607.6	544.2	581.0	•••	
2	743.3549	56.2	3	694.4	682.6	691.4	•••	
3	999.4991	22.5	2	209.6	247.6	232.6	•••	APEPTIDEK
4	396.7187	20.5	3	321.7	344.9	318.5	•••	
5	934.6045	31.7	2	722.7	753.0	701.3	•••	
6	678.1993	32.4	3	371.2	387.2	441.4	•••	
7	999.4994	56.8	2	857.1	811.0	750.5	•••	APDITEPEK
8	526.6502	46.0	3	183.6	169.0	155.2	•••	
9	1105.3597	69.4	3	1130.1	1075.7	1075.1	•••	
10	1292.0880	34.5	2	709.7	614.0	656.0	•••	

Calibration and Landmark Performance

Scale Mixture									
	Α	В	С	D	Ε	F	G	Н	
Aprotinin	1	2	3	10	20	30	100	200	300
Ribonuclease A	300	1	2	3	10	20	30	100	200
Myoglobin	200	300	1	2	3	10	20	30	100
beta-Lactoglobulin	100	200	300	1	2	3	10	20	30
alpha Casein	30	100	200	300	1	2	3	10	20
Carbonic anhydrase	20	30	100	200	300	1	2	3	10
Ovalbumin	10	20	30	100	200	300	1	2	3
Fibrinogen	3	10	20	30	100	200	300	1	2
BSA	2	3	10	20	30	100	200	300	1
Transferrin	100	100	100	100	100	100	100	100	100
Plasminogen	30	30	30	30	30	30	30	30	30
beta-Galactosidase	10	10	10	10	10	10	10	10	10

Peaks with IDs (avg. per run): $165 \Rightarrow 281 +70\%$ False positive rate: 93% p < 0.005 100% p < 0.05False negative rate: $\sim 2\%$

All concentrations in fmol/ul (nM) Inject 1 ul x 5 replicates each

Measurement of Ratios with Variability

Complex Variability Mixture:

Mix α + Mitochondrial Protein from 2 wk. mouse liver

Mix β + Mitochondrial Protein from 6 wk. mouse liver

1 prep each sample, 6 injections each

PEPPeR and GenePattern

GenePattern A platform for integrative genomics

- GenePattern is a suite of tools originally developed for microarray analysis
 - AIM: reproducible research through well-defined processing pipelines
- Many analysis modules available
 - PEPPeR: Landmark Matching and Peak Matching
 - Daisy-chainable into pipelines
 - Feed into statistical tools

PEPPeR in GenePattern

😻 run LandmarkMatching - Mozilla Firefox	
<u>Eile Edit View Go Bookmarks Tools H</u> elp	$\langle \rangle$
	💌 🔘 Go
Google → G Search → 🖉 Page	Bank 💕 Check 🔻 »
GenePattern	broad.mit.edu
pipeline sea	irch Q
LandmarkMatching run edit <u>Filter by Suite</u>	
LandmarkMatching version Documentation: accurate_masses_SM.txt PREF	accurate_masses.txt FIT_COEF_25PPM.txt
peakList filename: * C:\PepperExample\peakData.zip	Browse
Zip file containing peak lists	
retentionTime filename: * C:\PepperExample\rtData.zip	Browse
Zip nie containing retention time (in this case from	mapquantj
Sampleinto filename: [C:\repperExample\smails.ample.csv CSV file with header: experiment sample.class	Browse
cionali D filename: * C:\PeoperExample\varmixGlobalID.txt	Browse
Global list of identified peptides	
accurateMass filename:	Browse
OPTIONAL: Specify the accurate mass table	
prefitCoef filename:	Browse
OPTIONAL: Specify the prefit coefficients in a file	
Bootstrap: No Vse bootstrapping to calculate landma	rk match statistics
run reset help	-
Done	Open Notebook

Insert your favorite stuff here...

- Landmark Matching is platform agnostic
 - Need to get your data into a few simple flat-file formats and then zip them up together
 - Search engines i.e. SEQUEST, SpectrumMill, Mascot, etc.
 - Peak Pickers: MAPQUANT, msInspect, Decon2LS, etc.
 - Some helper apps can be found with the PEPPeR bundle on the GenePattern website
- All works via web-client interface
 - Just press go (but beware of this!)
Landmark Matching Output

😻 Running Task - Mozilla Firefox		
<u>Eile Edit View Go Bookmarks Tools H</u> elp	\bigcirc	
🖕 • 🔿 - 🥰 😣 🚷 🗈	💌 🜔 Go	
Google - 💽 🔶 G Search - 🧭 PageBank ABG	Check 🕶 »	
sign out vfusaro@broad.m pipeline search task run edit Filter by Suite	nit.edu about	
stop		
email notification to:		
Running <u>LandmarkMatching</u> as job # <u>164</u> on Wed Oct 18 15:03:59 EDT 2006		
LandmarkMatching (peakList filename = <u>peakData.zip</u> , retentionTime filename = r <u>tData.</u> sampleInfo filename = <u>smallSample.csv</u> , globalID filename = <u>varmixGlobalID.bt</u> , accurateMass filename = , prefitCoef filename = , Bootstrap = No)	zip ,	
MATCH_DATA		
<u>PEAK_LIST</u>		
<u> RT_DATA </u>		
Match_gue.pl		
DUMP_from_mass_calibrator.bd	The main	output is a zipped
LMOutput.zip	directory of This can b	of all the processed files. De used as input into the
✓ stdout.bd	PeakMatc	h module.
✓ stderr.bd	lt is a goo	d idea to check the error
gp_task_execution_log.bd	log to mak	ke sure that everything
download selected results check all uncheck all		
delete selected results	_	
Done 3	Ope <u>n</u> Notebook 📈	

Peak Matching Interface

😻 run PeakMatch - Mozilla Firefox	
<u>File E</u> dit <u>V</u> iew <u>G</u> o <u>B</u> ookmarks <u>T</u> ools	Help 🔅
🔷 • 🔿 - 🎅 🛞 😚 🗈 I	💌 🕑 Go
Google -	🔽 🚸 🖸 Search 🔻 🌍 🎴 PageRank 🖑 Check 🔻 📉 AutoLink ᠉
Gene Pattern	sign out vfusaro@broad.mit.edu
pipeline	search Q
PeakMatch	✓ run edit Filter by Suite
PeakMatch version	
peakList filename: *	C:\PepperExample\peakData.zip Browse
	Zip file containing peak lists
sampleInfo filename: *	C:\PepperExample\smallSample.csv Browse
	CSV file with header: experiment, sample, class
LandmarkMatchOutput filename:	C:\PepperExample\Output\LandmarkMatch\LMOutput.zip Browse
M7 toloroppo:	
MZ IOIEFAILLE.	m/z tolerance (ppm). Used if landmark match output is not supplied. Defaults to 10 ppm.
RT tolerance:	retention time tolerance (min). Used if landmark match is not supplied. Defaults to 2 min.
outputName: *	PeakMatchOutput File name prefix for the output files
numberProcesses:	Number of processess when running in parallel. Defaults to 1 (sequential).
	run reset help
Done	Open Notebook

GenePattern Downstream Tools

Differential analysis/marker selection

- Gene/Class neighbors
- Comparative marker selection
- Gene Set Enrichment Analysis

Class Prediction – supervised learning – with cross-validation

- Regression trees
- K-nearest neighbors
- Neural networks
- Support Vector Machine

Class Discovery – unsupervised learning

- Hierarchical clustering
- Self-organizing maps
- Principal Component Analysis

Data Visualization

• Heat Maps, etc.

Note: Data analysis on subsequent slides done using GenePattern

Discovery of Novel Markers with PEPPeR

Designed accurate mass 'inclusion lists' to hit these targets

- Confident IDs of previously identified peptides agree 100% of the time (59/59)
- 60 novel confident peptide IDs
 - •25 belong to proteins in the mix
 - 24/25 are changing
 - 35 are from proteins not designed to be in the mixture

gi Number	Species	Name
223424	E. coli	RNA polymerase β'
38491462	E. coli	GroEL
42144	E. coli	NusA
42818	E. coli	RNA polymerase β
42900	E. coli	Ribosomal protein S1
26249756	E. coli	Argininosuccinate synthase
8099322	B. taurus	κ-casein

B-Galactosidase had 1:10 ratio! Casein had 10:1 ratio!

In-silico defractionation of 2D-LC

Wanted to mimic SCX fractionation scheme

Breast Cancer Biomarker Discovery

- Sample source: nipple aspirate fluid (NAF) from malignancy affected breast
 - Unaffected contra-lateral breast used for control
 - Pools of several patient samples made <- low starting material
- Samples depleted of abundant proteins by affinity chromatography
- Separate ID-centric (fractionation) and Pattern Centric runs conducted for PEPPeR analysis
- Performed marker selection with allowed FDR of 5%

Breast Cancer Marker Selection

Features vs. Assignments

- There's more out there than we can catalog
 - Low intensity features never trigger MS² in complex samples
 - Unidentified features may be better classifiers
- Direct follow-up easily achieved
 - We know exactly where and when to look
 - Targeted accurate mass methods can be employed
- Hopefully increase coverage and confidence in certain proteins as markers, rather than just peptides or features

Summary – what I hope you learned

- PEPPeR: Landmark Matching and Peak Matching
 - Keep track of all of those pesky peaks that you picked!
- GenePattern: A web-based tool to coordinate reproducible research
- An entrée into downstream discovery methods in an automated pipeline (more GenePattern)
- Some real world examples of its application

Acknowledgements

- Broad Proteomics:
 - Steve Carr
 - D.R. Mani
 - Vincent Fusaro
 - Mike Gillette
- Broad GenePattern Team:
 - Michael Reich
 - Josh Gould
- Church Lab, Harvard Medical School
 - George Church
 - Kyriacos Leptos

URLs:

• PEPPeR / GenePattern:

- http://www.broad.mit.edu/cancer/software/genepattern/
- http://www.broad.mit.edu/cancer/software/genepattern/desc/proteomics.html
- MAPQUANT:
 - http://arep.med.harvard.edu/MapQuant/

Live DEMO Time

• Thanks to the many developers, beta testers, and users

Note: PNNL is always looking for good and knowledgeable informatics staff and post-docs (see us afterwards for more information, or visit http://jobs.pnl.gov/)

Funding for Tool Development

- DOE Office of Biological and Environmental Research
 - http://ober-proteomics.pnl.gov/
- NIH
 - National Center for Research Resources
 - http://ncrr.pnl.gov/
 - National Institute of Allergy and Infectious Diseases
 - http://proteomicsresource.org/
 - National Cancer Institute
 - National Institute of General Medical Sciences
 - National Institute of Diabetes & Digestive & Kidney Diseases