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In previous work we formulated the third-order asymptotic aberration coefficients of round
(axially symmetric) electrostatic lenses in a form independent of object and aperture positions,
and expressions for the six quantities which are sufficient to specify completely the aberration
properties of the lenses were derived in the form of integrals involving derivatives of the axial
potential through the fourth order. Because actual calculations involved numerical
differentiation of the axial potentials, integrations by parts were used to transform the
integrals to two new forms with axial derivatives of lower degree. Many other forms of the
aberration integrals can be obtained by further integrations by parts, but the transformations
are laborious and it is not easy to predict the forms which are possible nor to determine the
sequence of operations which will yield a desired result. However, using a method originally
developed by Seman and extended by Hawkes, a completely general formula has been derived
from which all of the possible forms of the asymptotic integrals can be obtained simply. A few
of these possible forms are derived and discussed.

PACS numbers: 41.80.—y, 07.77.+p, 07.80.4+x

I. INTRODUCTION

In previous work!2 we formulated the third-order asymptotic
aberration coefficients of round (axially symmetric) electro-
static lenses in a form independent of object and aperture
positions. Six quantities are sufficient to specify completely
the third-order aberration properties of round electrostatic
lenses. Equations for these six quantities were derived in the
form of integrals involving derivatives of the axial potential
through the fourth order.

Because actual calculations of the aberration integrals in-
volved numerical differentiation of computed axial potentials,
we used successive integrations by parts to transform the in-
tegrals to two new forms; one form with axial derivatives no
higher than the third, and a second form with axial derivatives
no higher than the second. There are, however, many other
possible forms of the aberration integrals which can be ob-
tained through integrations by parts, but the complexity of
the integrals makes the transformations laborious. Further-
more, it is not easy to predict the possible forms which may
be attained nor to determine the sequence of operations which
will yield a desired result.

In order to obtain integrals for the asymptotic aberration
coefficients which do not contain contributions from the as-
ymptotic (straight-line) portions of trajectories, it is necessary
to obtain forms for the integrals which contain only derivatives
of the axial potential. In this paper we use a method originally
developed by Seman? for round magnetic and electrostatic
lenses, to derive a formula from which all of the posible forms
of the asymptotic aberration integrals for round electrostatic
lenses can be obtained very simply. A few of these possible
forms are discussed.
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Il. FORMULATION OF THE ABERRATION
COEFFICIENTS

The incident asymptotic ray is specified by its slopes a; and
1, and by its coordinates x; and ¢, when projected onto some
selected entrance plane A. Similarly, the emerging asymptotic
ray is specified by its slopes ag, /s, and by its coordinates x
and y, when projected onto a corresponding exit plane B. By
asymptotic rays we mean rays outside of the effective field
of the lens; hence real objects and images must be outside the
lens field or they must be virtual.

Defining the dimensionless quantities X; = x,/D, Y; =
y1/D, and Z, = z1/D, where D is the diameter of the lens, the
coordinates are grouped as system invariants,

n=X2+Y2% s1=a?+ ‘712,

uy =Xy + Y71, v =Xy — Yo 1)

Aberration coefficients involving v; vanish for electrostatic
lenses.

Following Hawkes*® we begin with Fermat’s principle in
the form

B
5 f mdZ=0, 2)
A
in which
m=®V/2(1 4+ X’'2 4 Y'2)l/2 3)

for a purely electrostatic field with a potential distribution
$(X,Y,Z). Here primes indicate differentiation with respect
to Z. Introducing the vector U = (X,)Y) (i.e., U = X; + Y;,
where i is a unit vector in the x direction, and j is a unit reactor
in the y direction), m can be expressed as
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m=m©® 4+ m® 4 m 4 (4)
where
= ¢1/29
m® = =Yg/ pV/2)U2 + (Y5)¢1/2U"2,
¢iu ¢//2
4) = 1
m( ) - /128 <¢1/2 ¢3/2)

4

¢l/2

— Yo 73 UPU2 = Ygl/2U%, (5)

&(Z) is the axial potential, U2 = X2 4 Y2and U2 = o2 + 42
In our previous work!?2 the third-order aberration coefficients
are obtained from a dimensionless characteristic function

ve= /e | ® midz, (6)

which is in second order in 71, s}, u; and can be expressed in
matrix form as

M, Mp My r
VE=(rsiu)l 0 My Mu|l s ) (7)
0 0 M/ \u

Given two independent first-order trajectories G(Z) and H(Z)
satisfying at plane A,

Gi=1, H;=0,

G/'=0, H/=1,
the third-order aberration equations are obtained from

OVg oVg
AXo=Hy——— Go—— 1LH +
2 2axl 20 a fo 20!1(01 712
oVyp oVp

le 2 bal

(8)

Awag = Hy/ — YeHs ay(ey? + 7v,2)

+ Yoag(ag® + v92), (9)

where the quantities g and 7, are first-order projected values,
and equations for AY; and A+ are obtained by replacing X,
ay, ag with Yy, v3, vs. Previous work!2 should be consulted
for concrete examples of the application of this formalism.

lil. DERIVATION OF THE GENERAL FORM OF
THE CHARACTERISTIC FUNCTION

The aberration integrals which result from differentiating
Eq. (6) can be expressed in a multitude of different forms
through transformations using integrations by parts. Often
these transformations are carried out on each of the several
aberration integrals. However, the labor involved can be
considerably reduced by performing the transformation di-
rectly on the characteristic function Vr. Nevertheless, much
labor is still involved. More importantly, it is difficult to
predict the possible forms which may be obtained and to
determine the sequence of operations which will yield a de-
sired result.

An ingenious answer to this problem was originally devel-
oped by Seman® for round magnetic and electrostatic lenses,
and extended by Hawkes®6 to quadrupole lenses. It consists
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of deriving a completely general formula from which all of
the possible forms of the aberration integrals can be obtained
simply, almost by inspection. In applying this method we
follow Hawkes>® closely.

Consider the function

B
Vi* = ¢,1/2Vp = f mWdz. (10)
A

The integrand m¥), given in Eq. (4), consists of terms with the
dimensions [9]4¢'/2]1{U2]2, where 3 = d/dZ. By applying the
differentiation operator [0]* in all possible combinations, we
find fourteen possible terms:

¢/4 277 2 2,
Ty= mUt  Ts= zU%U
_ ¢12¢Il ¢// ,
Ty = 5572 U4, Ty = 12 U2y,
/72 ¢
Ts= $%/2 UL Tw= $5/2
_ ¢///¢/ ¢ ,
Ty= 52 U4, Ty, _¢3/2(U2 2, (11)
Ts=2ous 1=y
¢1/2 ’ ¢1/2 ’
_ ¢
Te= 4,5/2 Ty = $L/2
_ ¢//¢/ , _ ,
Tr="Gg V0%, Tug= iU

Similarly, Vg* has the dimensions [2]3{¢1/2]1[U2]2, and eight
possible terms are generated:

t)y = ()51/2U2/L]'2 ity =

¢3/2
to= ¢"f/2 W w=fZue )
t3 = 5172 t7 = q;/;% U4
ty= ¢¢:’/’2 vu¥ tg = (Z;,; U4

The function V¢* can be altered in form without affecting
its value by adding to it expressions which vanish; suitable
expressions are obtained by differentiating each of the terms
t; and eliminating U” with the aid of the paraxial equation
of motion wherever it occurs:

1 d) , __¢”
sV

4 ¢1 /2
The expressions which result are:

P2 + U=0. (13)

Ty=t)/+%To+ YyT1s + T1a—2T14=0
To=ty’ + T7+%T1— Tig—4T13=0
Tg=tg’+YyT7— Tg + %T10—T13=0

Py=tyd+%Ts + Tr—Tg—2Tg— Ty, =0

Ts=ts' + %Ts + 2T¢ —2T7 —2T10— T1; =0 (14)
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Te=ts’ + VoTy— Ts—2Tg=0
I‘7—='t7/+3/2T2—T3—T4—2T7=0
F85t8’+5/2T1 — 3Ty — 2T = 0.

The function Vi* has the form
128Vy* = J; ® (T3 + Ts— 8Ty — 16T1q) dZ. (15)
We now add
128:1 Iy =0, (16)

where the quantities 7; are arbitrary parameters, giving

B

8
128Vp* = (z nt,)
i=1 A

B
+ j; (%78T1 + (Yor5 + 377 — 378)T3

+ (=1 + Yry— )T + (Yore — )T 4
+ (1 —76)T5+ 2(r5 — 18)Tg
+(ro+ Yara + 14— 275 — 21) T + (—714 — 276)T's
+ (=8 + Yory — 73— 279)Tg + (373 — 275)T10
+ ot — 75) Ty + (Yar1 — 72— 74)T12
+ (1) — 4715 — 13)T13 + (=16 — 21)T 4] dZ. (17)

Putting in the trajectory U and the functions T,
128Vg* = [11¢!/2U% U2}

B 74 12 417
+ J; {U“ [5/278 ;;/2 + (Yors + Yor7 — 37g) d;—s%'
79 107 47
+ (=1 + Yory — 77) :;*3/; + (Yore — 77) ¢3/¢2)
10 /3
+(1—76) %E] + vu? [2(7'5 — 1g) ;5/2

&' 117
+ (Tz + 1/47’3 + 14— 275 — 2T7) ;)‘3/_24' (—T4 - 2T6) ¢1/2:|

+ U2U,2 [('—8 + 1/271 - T3 21’4)(1)17
’2

e Rt Gt

¢’

¢3/2

+ (313 — 275)

+ (Yar1— 12— 74) ;7]

Y77 d)/
+ U2U2[(71—4T2— Tg)m]

+ UM[(~16 — 271)¢1/2]] dz. (18)

IV. SOME SPECIAL FORMS

Because planes A and B are both effectively in regions of
constant ¢, all the integrated terms, with the exception of the
term in 7}, contain derivatives of ¢ and hence vanish. Simi-
larly, all but the last term in the integrand contain derivatives
of the potential and vanish along the asymptotic (straight-line)
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portions of trajectories. To eliminate such contributions it is
necessary only to set 1} = —8. An expression which we derived
previously!-2 with derivatives of ¢ up to the third order cor-
responds to

1n1=0,713=013=0,74=0,75=0,
6=1,177=0,15=0,
and one with derivatives of ¢ up to the second order to
711=0,79=0,73=0, 74 = -2,
15=0,176=1,77 =1, 13 =0.

Assuming now that we take 7; = —8 to eliminate asymp-
totic contributions to the integral, how can we eliminate as
many of the higher derivatives of ¢ as possible? We must have
16 = 1 to eliminate ¢*® and 74 = 277 and 74 = ~27 = —417

to eliminate ¢””. So we have 7, = —8, 74 = =2, 17 = 5, and
76 = 1. The terms in ¢ remaining are:
thrs+ %37 20 (- 5
(rg + Yyrz — 275 — 3) (z:;;z;/,
~n=8

One easily sees that four of these five terms can be eliminated
by choosing 72 = 0, 73 = —8, 75 = —%, and 75 = —Y%. We now
have
Ty=-8r1=013=-8r4=-2

75 = =, 6= 1,77 =Y, g = =Y
giving
128VF* = [71¢1/2U2’U’2]§

B ¢/4 ¢”2
+ J; {w ["5/12 FITIL ¢3/2]
73 72
oo [ 52 svroa [ 722

72
¢3/2

+ (U2 [5/2 ] ] dz. (19)
It is interesting that this form of the integral leads to aberration
coefficients in a form originally derived by Scherzer.” We
further find that in order to obtain another form derived by
Scherzer to demonstrate that the spherical aberration coef-
ficient is always negative it is only necessary to substitute 75
= —5, and 7g = —134 in the above set of values.

According to Hawkes,® the aberration integrals given by
Sturrock® can be obtained by setting

1=-81=013=-8 14=-2,
5= =%, 16 =1, 77 = Y, 75 = =2,

that is, changing only the value of 75 from those which give
Eq. (19). However, using these values does not reproduce the
appropriate nonrelativistic limit of Sturrock’s formulas. In
fact, since Sturrock’s formulas do not contain a term in ¢’3 it
is necessary that 74 = 75. By changing 75 to —5%, one gets
formulas with the same form as Sturrock but with somewhat
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different coefficients, leading to the conclusion that Sturrock’s
formulas are in error. We do not have space in this paper to
present the detailed equations. However, it is clear that it is
easier to investigate the possible forms of the aberration in-
tegrals using the general Eq. (18) than in any other way.
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