<u>NS 102 Lecture 9 April 27, 2005</u>

Open: For me this is heaven- Jimmy Eat World

(all the news that fits)

- Website <u>http://home.fnal.gov/~rocky/NS102/</u>
- Need violinist volunteer
- Review logarithms
- Review basic trigonometry (definition of sine, tangent, etc.)
- Exam #1 returned today
- Galileo's Depositions, Defense, and Papal Condemnation on the website

Lab this week: Temperature of the Universe Lab next week: Geometry of the Universe

NS102

Spring 2005

<u>Exam #1</u>

<u>NS 102 Lecture 9 April 27, 2005</u>

The Cosmological Distance Scale

They have different apparent brightness They have different colors They move They change in brightness

Intensity: energy per time per area

Energy Time (Power)

measured in watts

Area

measured in cm²

Intensity in watts per cm²

Intensity: energy per time per area

I = Energy Time Area

$dB = 10 \log (I/I_0)$

I₀ = threshold of hearing

Hearing threshold

$dB = 10 \log (I/I_0)$

dB = 0

$I_0 = 10^{-16}$ watts per cm²

Pain threshold

$dB = 10 \log (I/I_0) = 10 \log(10^{12})$

dB = 120

$I=10^{12}I_0 = 10^{-4}$ watts per cm²

<u>l₀ is intensity at threshold of hearing</u>

/ ₀	log (l/ l ₀)	$dB = 10 \log (I/I_0)$
10-2	-2	-20
1	0	0
10 ²	2	20
10 ⁶	6	60
10 ¹²	12	120
10 ²⁰	20	200

Difference of about 1 dB is about the smallest change that can be noticed by the human ear $dB_1 = 10 \log(I_1/I_0)$ $dB_2 = 10 \log(I_2/I_0)$ $dB_1 - dB_2 = 10 \log(I_1/I_0) - 10 \log(I_2/I_0)$ $=10 \left[\log(I_{1}/I_{0}) - \log(I_{2}/I_{0}) \right]$ $= 10 \left[\log(I_1) - \log(I_0) - \log(I_2) + \log(I_0) \right]$ $=10 \left[\log(I_1) - \log(I_2) \right] = 10 \log(I_1/I_2)$ $1 = 10 \log(I_1/I_2)$

 $0.1 = \log(I_1/I_2) \to 10^{0.1} = I_1/I_2 \to 1.25 = I_1/I_2$

Inverse-square law

Intensity: energy per time per area

property of source ower

Intensity depends on power and distance between source and detector

I = Energy Time Area

Energy
Time(Luminosity)measured in
watts

Area

measured in cm²

Intensity in watts per cm²

$I = \frac{luminosity}{cm^2}$

Luminosity property of source

Intensity depends on power and distance between source and detector

Intensity =

luminosity $4\pi R^2$

Eyes, like ears, are logarithmetic detectors.

Greeks classified stars into 6 classes, or <u>magnitudes</u>

Brightest stars were 1st magnitude Dimmest stars were 6th magnitude

Intensity of brightest stars = 100 X dimmest.

For sound: $dB_1 - dB_2 = \alpha \log(I_1/I_2)$

To define scale:

- 1. Define α for convenience,
 - $\Delta dB \equiv 120$ between threshold and pain
 - Measure <u>ratio</u> of intensities

$$20 = \alpha \log \left(I_{\text{pain}} / I_0 \right)$$
$$= \alpha \log (10^{12}) = \alpha \times 12 \rightarrow \alpha = 10$$
$$\frac{dB_1 - dB_2}{dB_2} = 10 \log \left(I_1 / I_2 \right)$$

2. One measurement & one definition

$$I_0 = 10^{-16} \text{ watts } \text{cm}^{-2} \text{ dB}_0 \equiv 0$$

 $\text{dB} = 10 \log \left(I / 10^{-16} \text{ watts } \text{cm}^{-2} \right)$

For light: $m_1 - m_2 = \alpha \log(I_1/I_2)$

To define scale:

- 1. Define α for convenience,
 - $\Delta m \equiv 1-6 = -5$ between brightest & dimmest
 - Measure <u>ratio</u> of intensities

$$-5 = \alpha \log \left(I_{\text{brightest}} / I_{\text{dimmest}} \right)$$
$$= \alpha \log(10^2) = \alpha \times 2 \rightarrow \alpha = -5/2 = -2.5$$
$$m_1 - m_2 = -2.5 \log \left(I_1 / I_2 \right)$$

2. One measurement & one definition

$$I_{\odot} = 0.137 \text{ watts cm}^{-2}$$
 $m_{\odot} = -26.8$
 $m_1 - (-26.8) = -2.5 \log(I_1/0.137 \text{ watts cm}^{-2})$

For sound: $dB_1 - dB_2 = 10 \log(I_1/I_2)$

For light: $m_1 - m_2 = -2.5 \log(I_1/I_2)$

"-" means smaller *m* is brighter!

Intensity of sun vs. naked eye limit

 $m_{s} - m_{N} = -2.5 \log(I_{s}/I_{N})$ $-27 - 6 = -2.5 \log(I_S/I_N)$ $\neq 33 = \neq \frac{5}{2} \log(|I_{\rm S}/|I_{\rm N})$ $33 \times \frac{2}{5} = 13 = \log(|I_{\rm S}|/|N_{\rm N})$ $10^{13} = I_{S}/I_{N}$

Intensity of Venus vs. Pluto

Venus $m_{Q} = -4$ Pluto $m_{p} = 15$

 $m_{\odot} - m_{P} = -2.5 \log(I_{\odot}/I_{P})$ $-4 - 15 = -2.5 \log(I_{\odot}/I_{P})$ $\neq 19 = \neq \frac{5}{2} \log(|_{\mathbb{Q}}/|_{\mathsf{P}})$ $19 \times \frac{2}{5} = 8 = \log(|I_{\odot}/|P_{P})$ $10^8 = I_{\odot}/I_{P}$

Intensity of Venus vs. Sirius

- Venus m_{\bigcirc} = -4Sirius m_s = -1.5
 - $m_{o} m_{s} = -2.5 \log(I_{o}/I_{s})$ $-4-(-1.5) = -2.5 \log(I_{\odot}/I_{S})$ $/2.5 = /2.5 \log(I_{\odot}/I_{S})$ $1 = \log(|I_{\odot}/I_{S})$ $10^1 = 10 = I_{\odot}/I_{S}$

The luminosity of nearby stars?

Measure: intensity of light, I parallax \rightarrow distance

 $I = \frac{L}{4\pi R^2}$

= <u>seconds</u> $I = \frac{1}{4\pi R^2}$ pc parallax $-26.8 - m = -2.5 \log(0.137 \text{ watts } \text{cm}^{-2}/I)$

parallax (")	distance (pc)	apparent magnitude	luminosity (solar)
0.75	1.3	0	1.5
0.5	2.0	9.5	0.0005
0.4	2.5	-1.5	25
0.2	5.0	0.8	10
0.003	330	- 0.7	200,000
0.1	10	0	90
0.01	100	0.5	14,000
	parallax (") 0.75 0.5 0.4 0.2 0.003 0.1 0.01	parallaxdistance (")0.751.30.52.00.42.50.25.00.0033300.1100.01100	$\begin{array}{c} \mbox{parallax} & \mbox{distance} & \mbox{apparent} \\ (") & (pc) & \mbox{magnitude} \\ \hline 0.75 & 1.3 & 0 \\ 0.75 & 2.0 & 9.5 \\ 0.5 & 2.0 & 9.5 \\ 0.4 & 2.5 & -1.5 \\ 0.2 & 5.0 & 0.8 \\ 0.003 & 330 & -0.7 \\ 0.1 & 10 & 0 \\ 0.01 & 100 & 0.5 \\ \end{array}$