NS 102 Lecture 9 April 27, 2005

 Open: For me this is heaven- Jimmy Eat World

Pieter Bruegel the Elder, ca. 1563

GnatSigh News

(all the news that fits)

- Website http://home.fnal.gov/~rocky/NS102/
- Need violinist volunteer
- Review logarithms
- Review basic trigonometry (definition of sine, tangent, etc.)
- Exam \#1 returned today
- Galileo's Depositions, Defense, and Papal Condemnation on the website

Lab this week: Temperature of the Universe Lab next week: Geometry of the Universe

NS 102 Lecture 9 April 27, 2005

The Cosmological Distance Scale

Gustav Doré, ca. 1866

DISTANT

VIEW FROM A

1 AU

$\tan \alpha=\frac{}{D}$

$\tan \alpha=\frac{R}{D}$ law of skinny triangles:

 $\tan \alpha=\sin \alpha=\alpha$ (in radians)$$
\alpha(\text { in radians })=\frac{R}{D}
$$

$\alpha($ in seconds of arc $)=\frac{R}{D} \times 206,264.8$

seconds $\overline{200,000 \mathrm{AU}}=\frac{\alpha}{}$

 $\frac{\mathrm{D}}{\mathrm{pc}}=\frac{\text { seconds }}{\alpha}$

D

They have different apparent brightness They have different colors
They move
They change in brightness

Logarithmic Ear

Some Sort of
Electrical impulse

Your Brain

Intensity: energy per time per area

$I=\frac{\text { Energy }}{\text { Time Area }}=\frac{\text { Power }}{\text { Area }}$

$\frac{\text { Energy }}{\text { Time }}$ (Power)

measured in watts

Area
measured in
cm ${ }^{2}$
Intensity in watts per cm²

Intensity: energy per time per area

$I=\frac{\text { Energy }}{\text { Time Area }}$

$\mathrm{dB}=10 \log \left(I / I_{0}\right)$

$\mathrm{I}_{0}=$ threshold of hearing

Hearing threshold

$\mathrm{dB}=10 \log \left(I / I_{0}\right)$
 $d B=0$

Pain threshold

$d B=10 \log \left(I / I_{0}\right)$ $=10 \log \left(10^{12}\right)$
 $\mathrm{dB}=120$

AIR
 HORN

OUTOK CONTENTS UNDER PEESIVIS
Net WL. 11.0 oz. (312 g)

$\mathrm{I}=10^{12} \mathrm{I}_{0}=10^{-4}$ watts per cm^{2}

I_{0} is intensity at threshold of hearing

I / I_{0}	$\log \left(I / I_{0}\right)$	$\mathrm{dB}=10 \log \left(I / I_{0}\right)$
10^{-2}	-2	-20
1	0	0
10^{2}	2	20
10^{6}	6	60
10^{12}	12	120
10^{20}	20	200

Difference of about 1 dB is about the smallest

 change that can be noticed by the human ear$$
\begin{aligned}
\mathrm{dB}_{1} & =10 \log \left(I_{1} / I_{0}\right) \quad \mathrm{dB}_{2}=10 \log \left(I_{2} / I_{0}\right) \\
\mathrm{dB}_{1} & -\mathrm{dB}_{2}=10 \log \left(I_{1} / I_{0}\right)-10 \log \left(I_{2} / I_{0}\right) \\
& =10\left[\log \left(I_{1} / I_{0}\right)-\log \left(I_{2} / I_{0}\right)\right] \\
& =10\left[\log \left(I_{1}\right)-\log \left(L_{0}\right)-\log \left(I_{2}\right)+\log \left(\left(_{0}\right)\right]\right. \\
= & 10\left[\log \left(I_{1}\right)-\log \left(I_{2}\right)\right]=10 \log \left(I_{1} / I_{2}\right) \\
1 & =10 \log \left(I_{1} / I_{2}\right)
\end{aligned}
$$

$$
0.1=\log \left(I_{1} / I_{2}\right) \rightarrow 10^{0.1}=I_{1} / I_{2} \rightarrow 1.25=I_{1} / I_{2}
$$

Inverse-square law

Intensity: energy per time per area

$$
\text { I }=\frac{\text { Energy }}{\text { Time Area }}=\frac{\text { Power }}{\text { Area }}
$$

Power

Intensity
property of source
depends on power and distance between source and detector

Intensity =
$\frac{\text { power }}{4 \pi R^{2}}$

Let there be light

For light!!!

$I=\frac{\text { Energy }}{\text { Time Area }}$

(Luminosity)
 Energy Time

measured in watts

Area
cm²
Intensity in watts per cm²

For light!!!

$\mathrm{I}=\frac{\text { luminosity }}{\mathrm{cm}^{2}}$

Luminosity property of source
Intensity
depends on power and distance between source and detector

Intensity =

$\frac{\text { luminosity }}{4 \pi R^{2}}$

Logavithmic Eye

Eyes, like ears, are logarithmetic detectors.

LET THERE BE LIGHTI

Greeks classified stars into 6 classes,
or magnitudes

Brightest stars were $1^{\text {st }}$ magnitude Dimmest stars were $6^{\text {th }}$ magnitude

Intensity of brightest stars $=100 \times$ dimmest.

For sound: $\quad \mathrm{dB}_{1}-\mathrm{dB}_{2}=\alpha \log \left(I_{1} / I_{2}\right)$
To define scale:

1. Define α for convenience,

- $\Delta \mathrm{dB} \equiv 120$ between threshold and pain
- Measure ratio of intensities

$$
\begin{aligned}
120= & \alpha \log \left(I_{\text {pain }} / I_{0}\right) \\
= & \alpha \log \left(10^{12}\right)=\alpha \times 12 \rightarrow \alpha=10 \\
& \mathrm{~dB}_{1}-\mathrm{dB}_{2}=10 \log \left(I_{1} / I_{2}\right)
\end{aligned}
$$

2. One measurement \& one definition

$$
\begin{aligned}
& I_{0}=10^{-16} \text { watts } \mathrm{cm}^{-2} \quad \mathrm{~dB}_{0} \equiv 0 \\
& \quad \mathrm{~dB}=10 \log \left(I / 10^{-16} \text { watts } \mathrm{cm}^{-2}\right)
\end{aligned}
$$

For light: $m_{1}-m_{2}=\alpha \log \left(I_{1} / I_{2}\right)$
To define scale:

1. Define α for convenience,

- $\Delta \boldsymbol{m} \equiv 1-6=-5$ between brightest $\&$ dimmest
- Measure ratio of intensities

$$
\begin{aligned}
-5 & =\alpha \log \left(I_{\text {brightest }} / I_{\text {dimmest }}\right) \\
& =\alpha \log \left(10^{2}\right)=\alpha \times 2 \rightarrow \alpha=-5 / 2=-2.5 \\
& m_{1}-m_{2}=-2.5 \log \left(I_{1} / I_{2}\right)
\end{aligned}
$$

2. One measurement \& one definition

$$
\begin{gathered}
I_{\odot}=0.137 \text { watts cm }^{-2} \quad m_{\odot}=-26.8 \\
m_{1}-(-26.8)=-2.5 \log \left(I_{1} / 0.137 \text { watts } \mathrm{cm}^{-2}\right)
\end{gathered}
$$

For sound: $\mathrm{dB}_{1}-\mathrm{dB}_{2}=10 \log \left(I_{1} / I_{2}\right)$ For light: $\quad m_{1}-m_{2}=-2.5 \log \left(I_{1} / I_{2}\right)$
"-" means smaller m is brighter!

Intensity of sun vs. naked eye limit

 Sun$$
\begin{aligned}
& m_{\mathrm{S}}=-26.8 \\
& \mathrm{~m}_{\mathrm{N}}=6
\end{aligned}
$$

Naked eye limit
$m_{S}-m_{N}=-2.5 \log \left(I_{S} / I_{N}\right)$
$-27-6=-2.5 \log \left(I_{S} / I_{N}\right)$
$\not-33=\neq \frac{5}{2} \log \left(I_{S} / I_{N}\right)$
$33 \times \frac{2}{5}=13=\log \left(I_{S} / I_{N}\right)$
$10^{13}=I_{S} / I_{N}$

Intensity of Venus vs. Pluto

Venus
Pluto

$$
\begin{aligned}
& \mathbf{m}_{\odot}=-4 \\
& m_{p}=15 \\
& m_{Q}-m_{P}=-2.5 \log \left(l_{Q} / I_{P}\right) \\
& -4-15=-2.5 \log \left(l_{\uparrow} / I_{P}\right) \\
& \not-19=\neq \frac{5}{2} \log \left(I_{q} / I_{\mathrm{p}}\right) \\
& 19 \times \frac{2}{5}=8=\log \left(I_{\uparrow} / /_{p}\right) \\
& 10^{8}=I_{q} / I_{p}
\end{aligned}
$$

Intensity of Venus vs. Sirius

Venus
Sirius

$$
\begin{aligned}
& \mathrm{m}_{\odot}=-\mathbf{4} \\
& \mathrm{m}_{\mathrm{S}}=-1.5 \\
& \mathrm{~m}_{\nrightarrow}-\mathrm{m}_{\mathrm{s}}=-2.5 \log \left(\mathrm{l}_{\uparrow} / I_{\mathrm{s}}\right) \\
& -4-(-1.5)=-2.5 \log \left(I_{\uparrow} / l_{s}\right) \\
& \angle 2.5=--2.5 \log \left(\mathrm{l}_{\uparrow} / \mathrm{l}_{\mathrm{S}}\right) \\
& 1=\log \left(\mathrm{I}_{\uparrow} / \mathrm{l}_{\mathbf{s}}\right) \\
& 10^{1}=10=I_{T} / I_{s}
\end{aligned}
$$

The luminosity of nearby stars?

Measure: intensity of light, I parallax \rightarrow distance

$$
I=\frac{L}{4 \pi R^{2}}
$$

$D=$ seconds parallax

$$
I=\frac{L}{4 \pi R^{2}}
$$

$$
-26.8-m=-2.5 \log \left(0.137 \text { watts } \mathrm{cm}^{-2} / I\right)
$$

α Centauri	0.75	1.3	0	1.5
Barnard's star	0.5	2.0	9.5	0.0005
Sirius	0.4	2.5	-1.5	25
Altair	0.2	5.0	0.8	10
Canopus	0.003	330	-0.7	200,000
Arcturus	0.1	10	0	90
Betelgeuse	0.01	100	0.5	14,000

star parallax (")
distance (pc)
apparent luminosity magnitude (solar)

