Status of Radioactive Ion Beams at the HRIBF

Transfer Reactions Workshop June 21-22, 2002 HRIBF, Oak Ridge, TN

Dan Stracener Physics Division, ORNL

OAK RIDGE NATIONAL LABORATORY U.S. Department of Energy

The HRIBF: an ISOL RIB facility

Ion Sources used for RIB Production

- Electron Beam Plasma Ion Source
 - High positive ionization efficiency for many elements
 - >1000 hrs (5000 μ Ah) mean lifetime in beam
- Kinetic Ejection Negative Ion Source
 - Used for production of ^{17,18}F beams
 - >1200 hrs (3000 μ Ah) mean lifetime in beam
- **Negative Surface Ionization (LaB₆ surface)**
 - Specific for Group VIIA elements
 - High efficiency and good emittance
- Batch-mode Cs-sputter Negative Ion Source
 - On-line production of long-lived nuclei (e.g. ⁵⁶Ni)

RIB Production Targets

- HfO₂ fibers (production of ¹⁷F and ¹⁸F)
- **Uranium Carbide** (production of n-rich beams)
- Molten metals
 - Germanium for production of As and Ga isotopes
 - Nickel for production of Cu isotopes
- Ni pellets (production of ⁵⁶Ni via (p,p2n) reaction)
- Silicon Carbide (production of ²⁵Al and ²⁶Al)
 - Fibers (15 μ m) and powder (1 μ m)
- **Cerium Sulfide** (production of ³³Cl and ³⁴Cl)
 - Thin layers deposited on W-coated carbon matrix
- Pd powders (production of p-rich Ag isotopes)

HfO₂ Fiber Target for Production of ^{17,18}F Beams

HfO₂

- Thin Fibers (5 μm) fast diffusion
- High porosity (density is 1.15 g/cm³)
- Refractory (m.p. is 2770 C)
- Free of volatile impurities
- 4 rolls of HfO₂ cloth used for target
 - 1.5 cm diameter x 1 cm thick each
 - Range of 42 MeV deuterons is 1.6 cm
- Al₂O₃ felt sheath
 - Provides aluminum vapor
 - Transported as AIF molecule

JT-BATTELLE

Al2O3

Beam

Uncoated RVCF

UC₂ Coated RVCF Thickness: ~10 µm

- RVC fiber diameter: 60 μm
- Matrix density: 0.06 g/cm³
- UC coating thickness: 8 10 mm
- Target density: 1.17 g/cm³
- Uranium target thickness: 2.1 g/cm²

110

- Mass ratio is U:C::6.6:1
- Atomic ratio is UC₃

80

aastasastasastasastasastasast

UC Targets for

Production of

Neutron-rich Beams

OAK RIDGE NATIONAL LABORATORY U.S. Department of Energy

On-Line Target and Ion Source Testing Facility

On-line Target and Ion Source Testing

- An independent, low intensity test facility is an important and unique capability
- Makes use of a pre-existing separator
- Measure characteristics of the targets and ion sources
 - release from the target
 - transport from target to ion source
 - ion source efficiency (especially at high target temperatures)
- Compatible with the RIB Injector Platform
 - mechanically identical
 - operational experience is transportable
 - results are scaleable (10 nA to 10 $\mu\text{A}\text{)}$
- Dual function as test facility and TIS quality assurance

Proton-rich Radioactive Ion Beams

OAK RIDGE NATIONAL LABORATORY U.S. DEPARTMENT OF ENERGY List of available beams on HRIBF website at <u>www.phy.ornl.gov/hribf/users/beams/</u>

Available Neutron-rich Radioactive Ion Beams (over 100 beams with intensities $\geq 10^3$ ions/sec)

OAK RIDGE NATIONAL LABORATORY U.S. Department of Energy List of available beams on HRIBF website at www.phy.ornl.gov/hribf/users/beams/

Accelerated proton-rich Radioactive Ion Beams

RIB	Energy Range	Highest Intensity	ORIC Current	Purity
	(MeV)	(pps on target)	(µA on target)	(%)
¹⁷ F	10-170	1.0 x 10⁷	3	100
¹⁸ F	10-25	3.0 x 10 ⁵	1	10
⁶⁷ Ga*	160	2.5 x 10 ⁵	5	> 90
⁶⁹ As	160	2.0 x 10 ⁶	5	~ 10
⁷⁰ As*	140	2.0×10^3	0.01	< 10 ⁻⁶

* These beams were used for commissioning runs

Accelerated n-rich Radioactive Ion Beams

RIB	Energy Range	Highest Intensity	ORIC Current	Purity
	(MeV)	(pps on target)	(µA on target)	(%)
⁷⁸ Ge	175	1.5 x 10 ⁶	7	38
⁸⁰ Ge	179	1.8 x 10⁶	7	10
¹¹⁷ Ag*	460	1.2 x 10 ⁶	9	95
¹¹⁸ Ag	455	1.5 x 10 ⁶	11	90
¹²⁶ Sn	378	1.0 x 10⁷	5	50
¹²⁸ Sn	384	2.5 x 10 ⁶	5	20
¹³² Te	350-396	5.0 x 10 ⁶	5	87
¹³⁴ Te	396-560	2.4 x 10 ⁶	7	70
¹³⁶ Te	396	5.0 x 10 ⁵	7	50

* Used for commissioning OAK RIDGE NATIONAL LABORATORY U.S. DEPARTMENT OF ENERGY

Accelerated Ion Beams <u>Now Available</u> at the HRIBF

Improving the n-rich RIB Yields

- Beam purity
 - ionization selectivity
 - chemistry in the target and ion source
 - lower emittance to improve isobar separation
 - selective charge exchange schemes
- Beam intensity
 - higher production rates
 - raster the beam across the target
 - more refractory targets
 - faster dissipation of heat from the target
 - more efficient transport of short-lived nuclei
 - ion sources with higher ionization efficiencies

Pure Sn Beams

- Most of the neutron-rich Sn beams are contaminated
 - A=132 beam consists of 87% Te, 12% Sb, and 1% Sn
- Solution: extract from EBP ion source as SnS⁺
- Sulfur is added to the UC target via H₂S gas
- No detectable TeS⁺ or SbS⁺ ions
- Convert SnS⁺ to Sn⁻ in a Cs-vapor cell
- Energy spread is ~400 eV (molecular breakup)
- Selection process is unknown
 - do TeS and SbS dissociate due to high target temperature
 - do these molecules breakup during the ionization process
 - why don't the oxides behave in a similar manner
- Pure Ge beams are also available using this technique

Intensity of Sn⁻ beams injected into the Tandem (from SnS⁺) (the solid line is the production rate in the target, normalized to ¹²⁷Sn)

Ratios of positive ion yields for Sn isotopes (SnS⁺ and Sn⁺ from a UC target)

Pure Br and I Beams

- Release efficiency of Br and I from UC target is high
- Charge exchange efficiency in Cs-cell is low (0.8%)
- Solution: make negative ions directly using negative surface ionization from a hot LaB₆ surface
 - 15% efficiency for stable Br⁻ beams
- Br negative ion yields are 25 times greater than with EBPIS followed by charge exchange
- Yields are 10 times greater for iodine
- Expect at least 10⁵ pps on target for ⁸⁹Br and ¹³⁷I (8 neutrons beyond last stable isotope)
- Br beams are pure (no Se or Rb observed)
- I beams are pure (no Sn, Sb, Te, or Cs)

Pure Rb Beams

- Rb release from target is quite fast
- Positive ion sources using surface ionization have high efficiencies for Rb (>90% ISOLDE)
- Ionizer is a hot Ta or W tubular surface
- Charge exchange efficiency in Cs-cell is 0.3%
- Sr is also ionized efficiently but at higher operating temperatures
- Should result in at least a factor of 10 increase over present yields with higher beam purity
- Expect to deliver to experiments at least 10⁵ pps for Rb isotopes out to ⁹⁴Rb (7 neutrons beyond stability)

Other Targets and Beams in Development

- ²⁵Al from SiC
 - already tested fibers (15 μm dia.) and powder (1 $\mu\text{m}\,$ dia.)
 - ^{25}AI yield in both cases was low (10⁴ pps/µA from EBPIS)
 - thin layer of SiC deposited on low-density RVC matrix
- Optimize UC targets
 - vary the uranium density and matrix porosity
- ³³Cl from CeS
 - 1 μ m dia. powder suspended in low-density matrix
 - LaB₆ surface ion source (negative)
- ²⁶Si and ²⁷Si from Al₂O₃ target
 - use technique developed for Sn and Ge (extract as SiS⁺)
- Pd target for proton-rich Ag beams
 - complements the n-rich Ag beams from UC target
- ⁷Be beams from a multi-sample Cs-sputter ion source

RIB Development Personnel

Ion Source Development

Gerald Alton Hassina Bilheux* Jean Bilheux* Yuan Liu

RIB Operations & Development

Jim Beene Jerry Hale Paul Mueller Dan Stracener

Engineers

Darryl Dowling Alan Tatum

Technical Support

John Cole Don Pierce Charles Reed Cecil Williams

*Graduate Student

OAK RIDGE NATIONAL LABORATORY U.S. Department of Energy

