
The Best of Both Worlds: Integrating Textual and Visual
Command Interfaces for Mars Rover Operations

Scott A. Maxwell
Mars Exploration Rover Project

Jet Propulsion Laboratory
M/S 126-114 4800 Oak Grove Dr.

Pasadena, CA, USA 91109
marsroverdriver@yahoo.com

Brian Cooper, Frank Hartman,
John Wright, and Jeng Yen

Mars Exploration Rover Project
Jet Propulsion Laboratory

4800 Oak Grove Dr.
Pasadena, CA 91109

Abstract - A Mars rover is a complex system, and driving
one is a complex endeavor. Rover drivers must be
intimately familiar with the hardware and software of the
mobility system and of the robotic arm. They must rapidly
assess threats in the terrain, then creatively combine their
knowledge of the vehicle and its environment to achieve
each day's science and engineering objectives.

To help the Mars Exploration Rover project's rover
drivers meet their goals, the software we developed to
drive the rovers -- the Rover Sequencing and Visualization
Program, or RSVP -- combines two representations of
command sequences, one textual and one using three-
dimensional graphics. Changes to one representation are
instantly reflected in the other, and the combination's
advantages exceed the mere sum of the parts: the different
representations offer different levels of abstraction,
engage different areas of the driver's brain, and
complement each other's strengths. This combination
plays a crucial role in simplifying a complex feat of
interplanetary exploration.

Keywords: Mars Exploration Rovers, RSVP

1 Introduction
The Mars Exploration Rover (MER) project landed

twin six-wheeled robotic geologists on Mars in January
2004. Since then, it has been the responsibility of the
Earth-based rover drivers -- a group of about ten members
of the engineering team -- to write, test, and validate the
command sequences that drive each vehicle to new
locations and make use of its robotic arm. Because of the
lengthy light-time delays between the two planets, it's
infeasible to command the rover in real time. Instead,
rover drivers must prepare the commands for an entire sol
(Martian day), review them, and then uplink them to the
rover, which executes them over the course of the sol.

These command sequences are complex. On a
typical day, the rover drivers prepare more than 100
commands -- sometimes up to 500 commands -- for each
rover. Think of it as writing hundreds of lines of
assembler code every day, in an environment where a
single bug could cost up to four hundred million dollars

(the approximate total cost of one rover). Add in
conditionality (the rovers have "IF" commands) and the
inherent uncertainty of operating a remote vehicle in an
unknown environment -- a literally alien environment --
and you begin to appreciate the scope of the task [1, 2].

We recognized early in the project's life cycle that the
rover drivers would need fast, accurate, and powerful
tools. Indeed, this was an important lesson learned from
the only previous Mars rover mission, JPL's 1997 Mars
Pathfinder mission. To meet the rover drivers' needs, we
developed state-of-the art rover-driving software: RSVP,
the Rover Sequencing and Visualization Program (see
Figure 1). A crucial feature of RSVP's design was the
inclusion of interlinked text-based and graphics-based
views of the command sequences.

Figure 1. Rover drivers Frank Hartman (foreground) and
Brian Cooper, hard at work using RSVP

2 Text-based Commanding
The text-based component of RSVP is called RoSE,

the Rover Sequence Editor. RoSE's primary role is to
provide a tabular view of the entire command sequence (or
group of sequences). RoSE does not attempt to abstract
the view of the command sequence in any meaningful way
-- indeed, that's the point. In RoSE, every command, and
every command argument, is visible to and editable by the
user -- from low-level heater-control commands, to high-
level "drive autonomously to this position" commands.

Figure 2 shows a view of RoSE editing a recent
command sequence. Certain information is blurred due to
legal restrictions, but its basic layout should be apparent: it
is dominated by a table of commands, arguments, and
comments on the commands. Within each sequence, the
commands are listed in timeline order, according to the
most recent modeling results.

In brief, RoSE is a left-brain tool, focused on logic
and detail. In RoSE, sequences are composed of words
and numbers.

Figure 2. The Rover Sequence Editor (RoSE); parts of
image are blurred due to legal restrictions

3 Graphical Commanding
By contrast to RoSE, in HyperDrive -- the 3-D

graphics-based component of RSVP -- sequences are
composed of pictures and motion. In a sense, HyperDrive
shows what the command sequence means, by displaying
an animated 3-D model of what the rover will do in
response to the commands we intend to send it. Indeed,
part of the uplink team's daily process is to review such an
animation, generated in real time by HyperDrive. Only
later does the team review the low-level details.

Figure 3 shows a basic view of HyperDrive, with the
model of the rover placed into a 3-D environment
constructed from images sent to Earth from the real rover.
In this view, the rover's arm, which normally is tucked
safely under the vehicle's main body, has been extended to
place the Rock Abrasion Tool on a target of interest to the
science team.

Figure 3. The graphics-oriented sequence viewer
(HyperDrive)

If RoSE is a left-brain tool, HyperDrive is a right-
brain tool, emphasizing vision and spatial relationships.
And unlike RoSE, HyperDrive deliberately omits many
commands from its view of the sequence. HyperDrive
shows only those commands with a sensible visual
representation -- mainly driving, arm motion, and imaging
commands. Such commands are represented by 3-D icons
inserted into the computer-generated view of the rover's
environment. For instance, a command to turn to a
particular heading is represented by a 3-D arrow anchored
at the current location (that is, at the location where the
rover will execute the turn command) and pointed in the
goal direction.

4 The Combined Approach
RoSE and HyperDrive, along with the other RSVP

component applications (not presented in this paper), are
linked by a message-passing system based on PVM, the
Parallel Virtual Machine software from Oak Ridge
National Laboratories. Any changes in one RSVP tool are
immediately broadcast to the other tools in the form of
PVM messages. For example, selecting one or more
commands in RoSE causes RoSE to broadcast a message
designating those commands as selected; in response,
HyperDrive highlights the 3-D icons corresponding to all
of the selected commands. Similarly, adding a command
in HyperDrive causes the command to show up in RoSE as
well, and so on.

One simple but extremely useful way we exploit this
linkage is with what we call "attached mode." In attached
mode, selecting a command in RoSE causes HyperDrive to
display the simulated rover in the state corresponding to
the completion of that command. For example, if you
select the "unstow IDD" (Instrument Deployment Device,
or robotic arm) command in RoSE, the simulated rover
instantly snaps its arm out. While one result can be an
amusing stop-motion animation effect, it's also an
invaluable sequence development aid: it lets you step
through the sequence, one command at a time, and see
what the rover will do in response to each command.

The reverse linkage also exists. HyperDrive can
produce smooth (not stop-motion-style) animations
representing the current command sequence(s), with all
vehicle articulation fully modeled. As HyperDrive plays
the animation, it sends messages that cause RoSE to select
the command whose effects are currently being animated.

The two tools share responsibility for error-checking.
RoSE knows the rover's entire command dictionary, and
checks mainly for syntactic errors and command
argument-level errors. For every command, RoSE knows
the valid range of that command's arguments. Depending
on the argument, this may be a valid set of keywords, a
valid set of numeric ranges, a maximum string length, or a
pattern a string argument must match (expressed as a Perl-
style regular expression). HyperDrive's checking is
narrower but deeper: for the subset of commands it
understands, it simulates each command, tracking the
vehicle's changing state and looking for collisions (e.g.,
between the robotic arm and the vehicle body), violations
of joint limits, and similar mistakes [3]. This same
simulation provides the data for HyperDrive's animations.

Although no one has attempted to produce hard
numbers showing the value of the combined textual and
visual commanding modes, the longer-than-expected
mission has yielded a great many anecdotal results. The
following sections present a series of examples drawn from
real-world experience.

4.1 Using the combined commanding approach to

control the robotic arm

In the first case, a text-based arm-motion command in
RoSE set the rover arm's five joint angles to [-0.003,
-0.217, 1.436, 3.495, 3.230] (all values in radians). The
HyperDrive simulation reported a collision error in the
following command, which rotated the turret (the
collection of tools at the end of the arm). Taken alone, the
numbers above don't tell even an experienced user much
about what the problem could be. But a single glance at
the corresponding HyperDrive view made the problem
clear. As shown in Figure 4, when the turret begins to
rotate, the Alpha Particle X-ray Spectrometer -- the dark
cylindrical tool pointing upward in the figure -- will run
into the rover's own forearm. The rover driver needed to

sequence a more complex series of moves, first drawing
the arm farther away from the terrain and tilting the turret
away from the forearm, in order to achieve the desired arm
configuration.

Figure 4. The cause of an error is made visually apparent
in HyperDrive

Importantly, HyperDrive serves to abstract certain
information about the sequence. There are usually several
ways to produce the same arm motion, but when looking at
the HyperDrive simulation, the user does not know and
does not have to care exactly how each command was
specified. In this case, it happens that the arm was moved
into its awkward position by specifying joint angles, but it
wouldn't have mattered to the analysis if it had been done
another way (e.g., by telling the IDD to move the current
tool to a chosen 3-D location). Those details are hidden in
the HyperDrive view, so the rover driver can concentrate
on the effect the command has on the rover. The RoSE
window always provides the details.

In another instance, the HyperDrive simulation
showed the arm moving at normal speed through most of a
sequence, then suddenly slowing to a crawl. While the
symptom was visually obvious, the cause was not -- until
the rover driver looked at the corresponding textual version
of the offending command in RoSE. Each arm motion
command includes a "speed ratio" parameter, which says at
what fraction of their maximum speed the arm's joints
should attempt to move. In this case, the rover driver had
accidentally entered 0.1 for this parameter, instead of the
intended 1.0 (full speed). As a result, the arm moved at
only one-tenth normal speed for that command. The fix
was trivial and obvious, and its efficacy was quickly
confirmed by HyperDrive.

4.2 Using the combined commanding approach to

control rover mobility

Not only is the combined interface useful for
controlling the robotic arm, it's also helpful in the other
half of the rover drivers' job: driving the rovers.

In many cases, the most natural way to drive the
rover is through the visual interface, HyperDrive.
Relatively low-level driving commands, such as arcs and
point turns, can be added using the HyperDrive interface.
More powerfully, HyperDrive also allows the user to
interactively move the rover model to the desired location
in the terrain model and then add a high-level command
that translates to "go here."

This style of driving fits well with the automated
terrain analysis provided by RSVP. RSVP includes a copy
of the portion of the rover flight software that evaluates
terrain for hazards. By running this code on a current
terrain model from the rover, RSVP can automatically
evaluate hazards in the rover's current surroundings and
color-code the model accordingly, simplifying the job of
planning a path through treacherous terrain. Figure 5
shows a screen shot of one such evaluation, performed
when Spirit was on its way to the so-called "Missoula"
Crater. Green areas are very safe, yellow areas are less
safe but still traversable, and red areas represent likely
mobility hazards. (The light blue zone in the foreground
represents an area for which the rover had no data -- its
view of that terrain was blocked by its own solar panels.)

Figure 5. Automated terrain analysis

Yet, in other cases, it's more natural to drive the rover
using the text interface. A common example involves
imaging a terrain feature with the rover's MTES (Mini-
Thermal Emission Spectrometer) instrument, which is
mounted on the raised mast. After the rover drills into a
rock with the RAT instrument and investigates the

subsurface layers, the science team commonly wants the
rover to back up 85 cm to reach a good standoff position
for MTES imaging of the RAT hole. Since the exact
desired behavior is known in advance and there are usually
no obstacles to avoid in such a short drive, it's easier and
more accurate to enter the backup using the text interface,
as a single command that says "drive straight backward 85
cm."

Several rover drivers (such as this writer) prefer a
hybrid style of driving, entering most commands in the
RoSE interface but constantly keeping an eye on the
results in HyperDrive.

4.3 Using the combined commanding approach for

imaging

The rover's main picture-taking command requires 47
arguments, with many complex interactions. And the
rover often takes not just one image, but a mosaic of
overlapping images from the same position, so that they
can later be combined to produce the effect of a single
larger image. The command parameters for one imaging
command may therefore interact not only with each other,
but also with the other commands in the mosaic. This is a
clear-cut case where the detail present in the textual
interface, while unavoidable, can at times make it
impossible to see the forest for the trees. If RSVP
provided only a textual commanding interface, users often
would find it difficult indeed to achieve the correct
imaging results.

Since imaging is a primarily visual task, it makes
sense that HyperDrive would offer a great deal of
assistance in this area. One of HyperDrive's features is a
Camera View, which dramatically simplifies the work of
image pointing in many cases. Figure 6 shows a recent
example from Opportunity. Having finished exploring a
trench it had dug, Opportunity was going to back away and
turn slightly. The science team wanted an image of the
trench from the post-backup position, so the rover driver
used HyperDrive's Camera View to generate the required
image pointing. He simulated the drive, then opened the
Camera View and interactively aimed the navigation
cameras in HyperDrive until the camera view showed that
they would cover the area of interest. The resulting image
pointing was used on the real vehicle, and the results (the
lower image in the figure) were practically identical to the
prediction (the upper image).

The Camera View is not limited to modeling the
navigation cameras. It can also simulate the view from
any of the rover's other cameras -- the panoramic cameras
(which, like the navigation cameras, are mounted on the
mast), the hazard-avoidance cameras (located on the front
and rear of the rover body), and the Microscopic Imager
(one of the tools on the arm).

Figure 6. Predicted and actual views from one of the
rover's navigation cameras. The green markers in the

predicted image show the locations of IDD targets

As usual, the linkage works both ways. Imaging
commands entered in RoSE (or in HyperDrive itself) show
up in HyperDrive as 3-D icons, showing where the image
will be taken and how the cameras will be pointed. In
addition, HyperDrive paints a "footprint" on the terrain,
showing the approximate area to be covered by each
image. The user can edit imaging commands in either tool,
and view the results in HyperDrive. While this does not

test for all possible interactions between command
arguments, it does provide a quick, reasonably accurate
visual check for image pointing.

5 Conclusions
The Mars Exploration Rover mission has been, and

continues to be, a highly successful story of interplanetary
exploration. One of the reasons for this success has been
the powerful, flexible tools available to the rover-driving
team. Rover drivers must assess a prodigious quantity of
information every sol, then act on it rapidly, with little
room for error. One of the ways RSVP helps them succeed
is by providing multiple viewing and editing modes, so
that the user can see the same information in different
ways and can enter different commands using the most
natural interface for each.

Sometimes a picture is worth a thousand words, and
sometimes a word is worth a thousand pictures. By giving
rover drivers both textual and visual command interfaces,
RSVP ensures that they can continue to make the most of
this priceless opportunity to investigate our neighbor
planet.

6 References
[1]Chris Leger et al., “Mars Exploration Rover Surface
Operations: Driving Spirit at Gusev Crater,” Proc. IEEE-
SMC, Waikoloa, HI, October 2005.

[2]Chris Leger et al., “Mars Exploration Rover Surface
Operations: Driving Opportunity at Meridiani Planum,”
Proc. IEEE-SMC, Waikoloa, HI, October 2005.

[3]Jeng Yen et al., “Sequence Rehearsal and Validation on
Surface Operations of the Mars Exploration Rovers,” Proc.
IEEE-SMC, Waikoloa, HI, October 2005.

