EU Specific Targeted Research Project

MICROTRAP

"Development of a pan-European Microtrap Technology capability for Trapped Ion Quantum Information Science"

EU Framework 6 IST Programme

Future & Emerging Technologies Initiative

Microtrap consortium

NPL 🕅

National Physical Laboratory, UK (Co-ordinator)

• Patrick Gill, Alastair Sinclair & Guido Wilpers, Michael Brownnutt

Universitaet Innsbruck, Austria

 Rainer Blatt, Wolfgang Haensel, Hartmut Haeffner, Christian Roos, Piet Schmidt , Jan Benhelm ++

University of Aarhus, Denmark

• Michael Drewsen, Jens Sorensen, Solvejg Jorgensen ++

University of Oxford, UK

• David Lucas, Andy Steane, Matthew McDonnell, Nick Thomas ++

Universitaet Siegen, Germany

• Christof Wunderlich, Vladimir Elman, Michael Johanning ++

Universitaet Ulm, Germany

• Ferdinand Schmidt-Kaler, Kilian Singer, Robert Tammer, Stefan Schultz ++

- Discussion at Michigan workshop, May 2004
- Pre-proposal to EU, September 2004
- Positive evaluation, Dec 2004
- Full proposal, May 2005
- Strongly positive evaluation, July 2005
- Contract negotiation, November/December 2005
- Scheduled start date, April 1st 2006

Microtrap Programme Phase 1: 0-18 months

Phase 1 Build

- Trap design and fabrication concept evaluation
- Comparison and selection of Supplier technology capabilities
- Purchase orders to preferred suppliers (by month 3)
- Supplier fabrication and sample chip supply to partners (by month 9)
- Evaluation of chip trap operation, cooling efficiency and heating /decoherence rates with various ions (by month 18)

In parallel:

- Efficient trap drive development and loading techniques
- Trap chip carrier mounting and fast vacuum interconnects
- Shuttling algorithms for remote loading and entanglement
- Spatially resolved ion addressing and detection

Microtrap Programme Phase 2: 19–36 months

Information Society Technologies

Phase 2 Build

- Critical review of phase 1 fab & microtrap design and outcomes (by month 20)
- Refined design to preferred suppliers
- Supplier fabrication and supply to partners (by month 27)
- Incorporation of vacuum interface advances, drive and shuttling technology and addressing/detection advances in partner labs
- Entanglement and gate operation demonstrations with various ions
- Consideration of functionality for expanded segment operation and integration into arrays

Input Data for Microtrap design

- Partner existing fabrication activities
- Wider awareness of trapology ideas and techniques through eg trapped ion QC workshops at Michigan, NIST etc
- Emerging QIP techniques

Outputs

- New & focused trap technology
- Publication of results in peer-reviewed journals
- Contribution to global knowledge and fab capability in this area
- Added value to complement international effort in TIQC

Existing Partner links to fabricators

Institut Angewandte Optik und Feinmechanik

NPLO

... The Next Dimension

Central Microstructure Facility

Present chip mounting - UIm

- •11 DC-electrodes
- •1 compensation (grey)
- •1 RF-electrode (red)

Dimensions:

Chip:35mm x 50mmCentral slit:5mm x 400µmSegment widths:80µm...360µm

chip mounting issues

Chips for segmented two layer traps - Ulm / Micreon GmbH

Various fabrication methods and materials: ceramic-gold ns-laser cut / ceramic-gold gaps > 12 µm (old trap) fs-laser cut / ceramic-gold gold on glass semiconductor carrier material....

Oxford intermediate design

ion-electrode distance = 0.7 mm trap-trap separation = 0.8 mm test open design concept *Built by University of Liverpool (S.Taylor)*

Innsbruck: IOF Fraunhofer Institute, Jena

Au on aluminium nitride

- Top and bottom Ti-Ni-Au coated Aluminium nitride layers
- intermediate AI nitride insulating layer
- alignment with microscopic positioning
- bonded with UHV glue
- similarly bonded to Al-N chip carrier

Innsbruck IOF chip-mounting and feedthrough concept

Innsbruck: FKE Vienna Cr / Au on silica

0

. .

S. Jans, on Y = 148,8 % Aborto e Size = 30 Clipto Aperial grid On y = 140 % AperiAit 14 Cris = 20,8 %

Deam Cificet Y = 0.00 m Heam Africa = 11 % Beam Shift Y = 0.00 %

Autoresault (17% C. 1704) Sestem version – 11961, Print Chanbel (1196,000,008)

EHT = 10.00 kV

 $\begin{array}{l} E_{AA}(a_{A}(a_{A}^{*})^{T}_{A}(a_{A}^{*}) = 6.23)\\ F(I) = -1.575, A\\ G(I) = G(I) = 0.000, V\\ Harry I, Ma, a_{A}^{*}, J = 0.000, V\\ Harry I$

SCH angs (34% Clob

Sature Chrom-Gold-Elektroden

.00

8.

0

. . . 0

Si02

0

•

0 . 0

NPL - CIP Fabrication process Au-coated silica on silicon

silicon wafer, 500 \rightarrow 100 μm thick

thermal oxidisation up to 20 μm thick

etch to remove SiO₂:create "fingers"

plasma and wet etches to remove Si

pattern gold electrodes

NPL - CIP example trap layout

15 mm x 15 mm chip size, same pattern on both sides

DC and compensation electrodes

RF electrode

ground

exposed silica

resistors

capacitors

MICROTRAP

Aiming to form an effective European partnership capable of collectively pushing forward trap fabrication processes in a number of ways

capable of contributing to the wider international effort in trapped ion QC.

