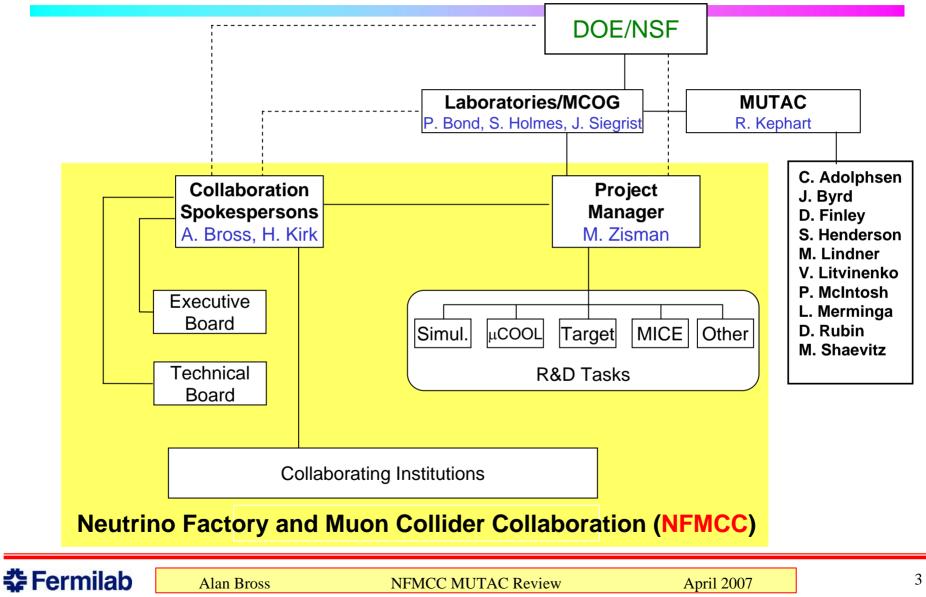


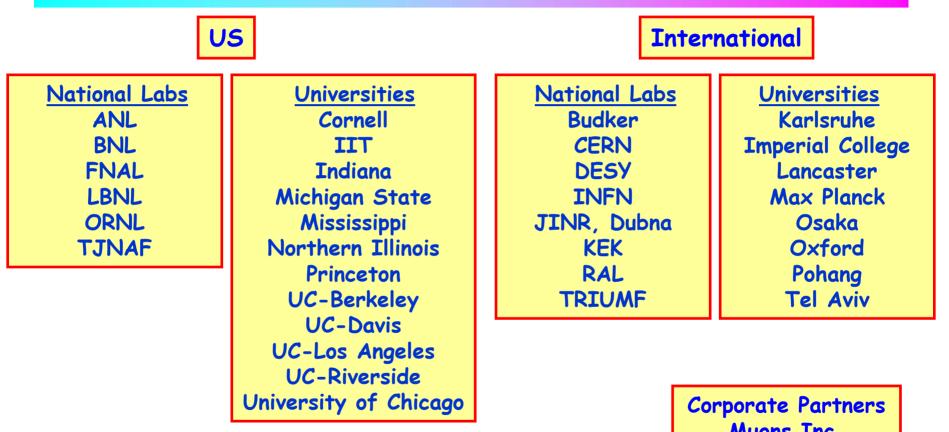
Neutrino Factory and Muon Collider Collaboration Introduction

MUTAC Review April 2007 Alan Bross


To study and develop the theoretical tools, the software simulation tools, and to carry out R&D on the hardware that is unique to the design of Neutrino Factories and Muon Colliders

• Extensive experimental program to verify the theoretical and simulation predictions

Alan Bross



Current Organization

Collaborating Institutions

Muons Inc. Tech-X Corporation

‡ Fermilab

Alan Bross

Executive Board

A. Bross	FNAL	Co-Spokesperson	bross@fnal.gov	
H. Kirk	BNL	Co-Spokesperson	kirk@bnl.gov	
A. Sessler	LBNL	Associate Spokesperson	amsessler@lbl.gov	
D. Cline	UCLA		dcline@physics.ucla.edu	
S. Geer	FNAL		sgeer@fnal.gov	
G. Hanson	UC Riverside		Gail.Hanson@ucr.edu	
D. Kaplan	IIT		kaplan@fnal.gov	
K. McDonald	Princeton University		kirkmcd@Princeton.edu	
R. Palmer	BNL		palmer@bnl.gov	
A. N. Skrinsky	BINP		skrinsky@inp.nsk.su	
D. Summers	U. Mississippi		summers@phy.olemiss.edu	
A. Tollestrup	FNAL		alvin@fnal.gov	
B. Weng	BNL		weng@bnl.gov	
J. Wurtele	LBNL/UC Berkeley		wurtele@physics.berkeley.edu	
M. Zisman	LBNL	Project Manager	mszisman@lbl.gov	
J. Gallardo	BNL	Scientific Secretary	gallardo@bnl.gov	

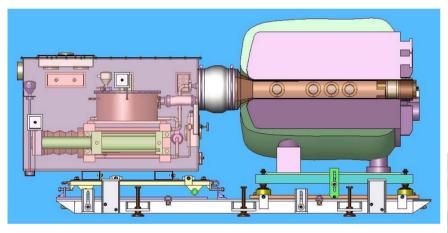
Fermilab Alan Bross NFMCC MUTAC Review April 2007 5

Alan Bross	Co-Spokesperson	bross@fnal.gov	
Rick Fernow		fernow@bnl.gov	
Michael Green		magreen@lbl.gov	
Don Hartill		dlh@lns.cornell.edu	
Dan Kaplan		kaplan@fnal.gov	
Harold Kirk	Co-Spokesperson	kirk@bnl.gov	
Kirk McDonald		kirkmcd@Princeton.edu	
Jim Norem		norem@anl.gov	
Bob Rimmer		rarimmer@jlab.org	
Mike Zisman	Project Manager	MSZisman@lbl.gov	

Theory & Simulation Board

R. Fernow (BNL)	Chair	fernow@bnl.gov
H. Kirk (BNL)	Targetry Simulation Co-ordinator	kirk@bnl.gov
D. Neuffer (FNAL)	Front-End Systems Co-ordinator	neuffer@fnal.gov
R. Fernow (BNL)	Emittance Exchange/Ring Cooler Coordinator	fernow@bnl.gov
S. Berg/ C. Johnstone (BNL)/(FNAL)	Acceleration Simulation Coordinators	jsberg@bnl.gov cjj@fnal.gov
A. Sessler (LBNL)	Theory Co-ordinator	amsessler@lbl.gov
M. Berz (MSU)		berz@msu.edu
G. Hanson (UCR)		Gail.Hanson@ucr.edu
E. Keil (FNAL)		Eberhard.Keil@t-online.net
S. Koscielniak (Triumf)		shane@triumf.ca
R. Palmer (BNL)		palmer@bnl.gov

Scientific Program


Targetry R&D: Mercury Intense Target Experiment (MERIT) Co-Spokespersons: Kirk McDonald, Harold Kirk Ionization Cooling R&D: MuCool and MICE MuCool Spokesperson: Alan Bross **US MICE Leader: Dan Kaplan** Simulations & Theory Coordinator: Rick Fernow Collaborating on Electron Model for Muon Acceleration Project (EMMA) Fermilab Muon Collider Task Force V. Shiltsev, S. Geer

🛟 Fermilab

MERIT - Mercury Intense Target

- Test of Hg-Jet target in magnetic field (15T)
- Proposal submitted to CERN April, 2004 (approved April 2005)
- Located in TT2A tunnel to ISR, in nTOF beam line
- First beam July, 2007

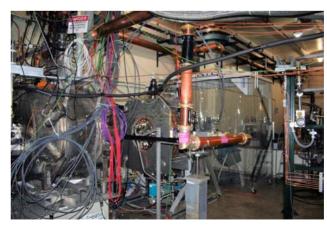
‡ Fermilab


Alan Bross

NFMCC MUTAC Review

Muon Cooling: MuCool and MICE Component R&D and Cooling Experiment

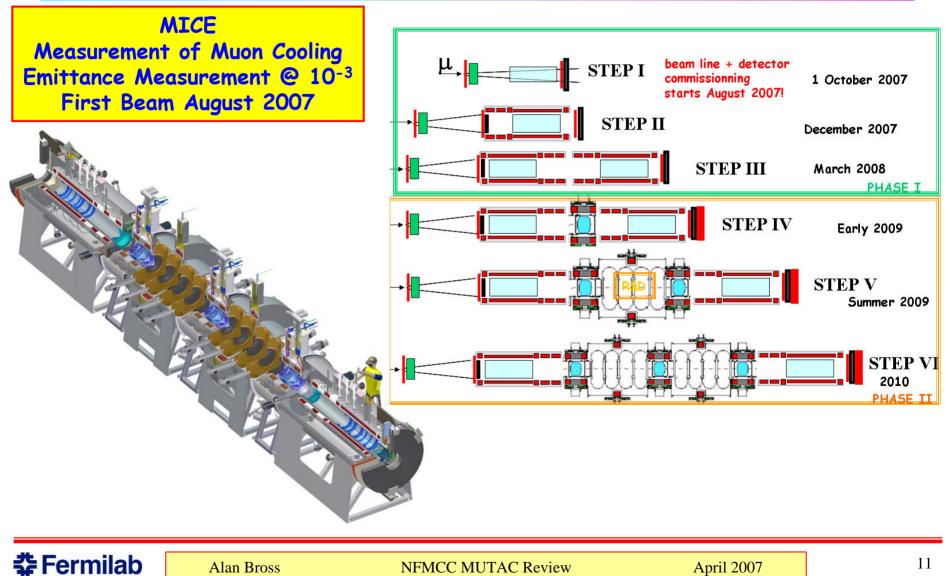
- MuCool
 - Component testing: RF, Absorbers, Solenoids
 - Uses Facility @Fermilab (MuCool Test Area -MTA)
 - Supports Muon Ionization Cooling Experiment (MICE)



50 cm \varnothing Be RF window

MuCool 201 MHz RF Testing

MuCool LH₂ Absorber Body


🛟 Fermilab

Alan Bross

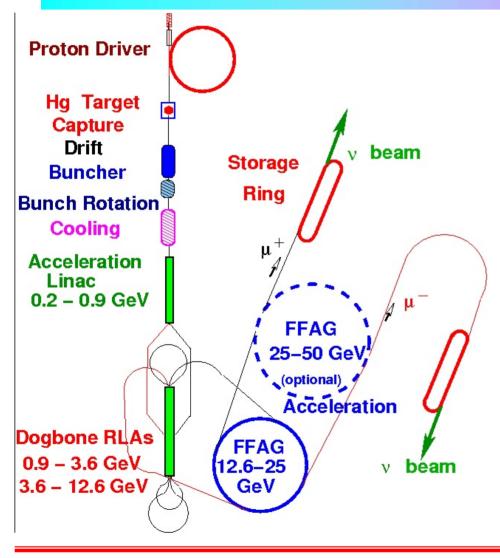
NFMCC MUTAC Review

Muon Ionization Cooling Experiment (MICE)

Alan Bross

NFMCC MUTAC Review

- Very Productive Period for the Collaboration
 - Strong participation in the International Scoping Study of a Future Neutrino Factory and Superbeam facility (ISS)
 - Super Beams
 - Beta-Beam Facility


The Collaboration's Focus was NF

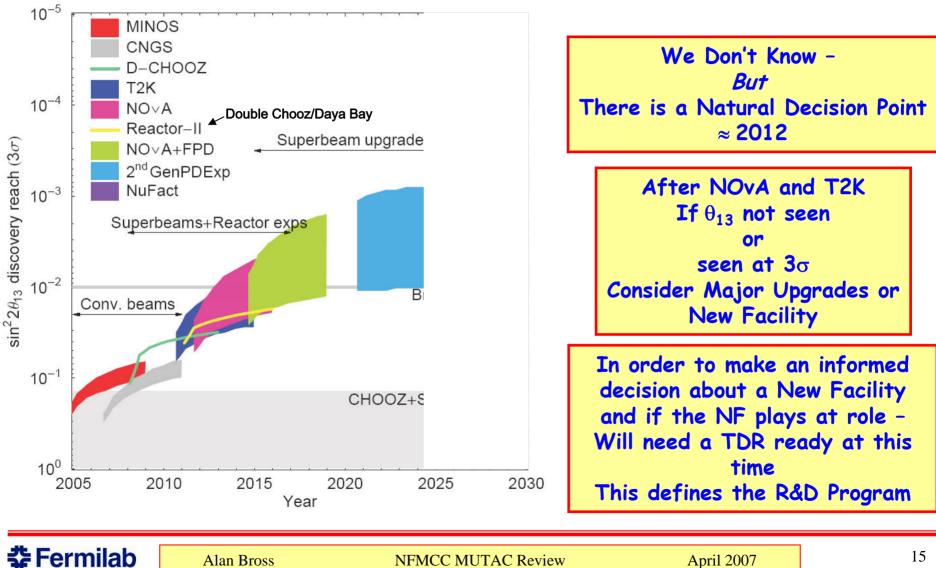
12

- Neutrino Factory
- Exciting New developments in Muon Collider Design and Simulation
 - Complete cooling scenario for a Muon Collider
 - All cooling components have been simulated
 - Low-emittance Muon Collider

Neutrino Factory – ISS Preliminary Design

- Proton Driver
- Target, Capture, Decay (MERIT)
 - $\pi \rightarrow \mu$
- Bunching, Phase Rotation
 - Reduce ΔE
- Cooling (MICE)
- Acceleration (EMMA)
 - 103 MeV \rightarrow 25 & 50^{*} GeV
- Storage/Decay ring
- Still under study

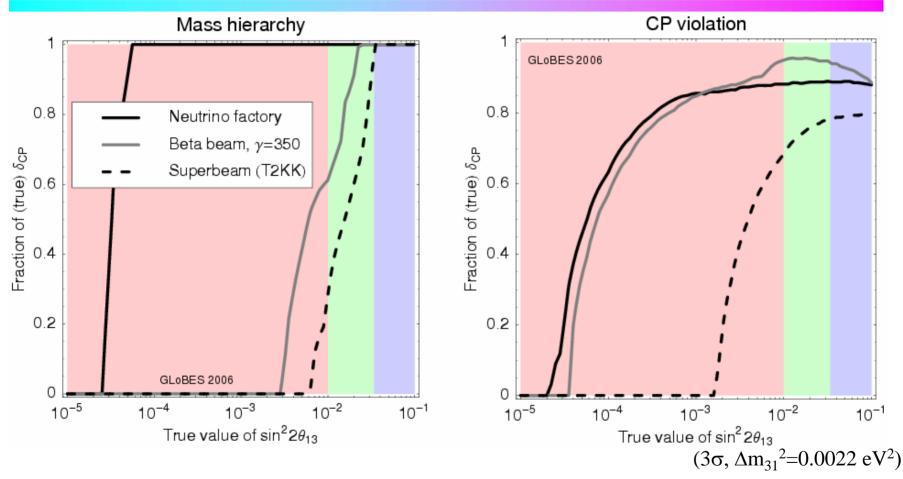
Alan Bross


- What is the origin of neutrino mass?
- Did neutrinos play a role in our existence?
 - Galaxy Formation
- Did neutrinos play a role in birth of the universe?
- Are neutrinos telling us something about unification of matter and/or forces?
- Will neutrinos give us more surprises?
 Big questions = tough questions to answer

Is a Neutrino Factory needed in order to answer these questions?

🛟 Fermilab

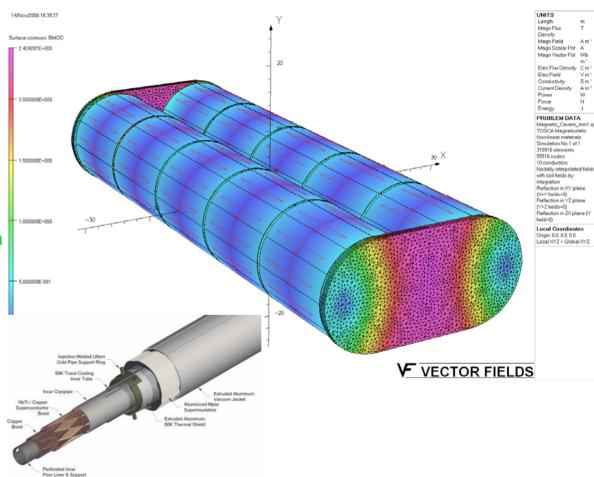
Neutrino Factory - The Physics Case



NFMCC MUTAC Review

Alan Bross

Neutrino Factory- ISS


Best possible reach in θ_{13} for all performance indicators =Neutrino factory

 Fermilab
 Alan Bross
 NFMCC MUTAC Review
 April 2007

Neutrino Factory Detector Design

- Totally Active Sampling Calorimeter 25kT
- 15m Ø X 15m long -0.5T
 - Times 10!
 - Cost estimate
 - \$140-680M
- New Ideas
 - High $T_c SC$
 - No Vacuum Insulation
 - VLHC SC transmission line
 - Technically proven
 - Might actually be affordable

🛟 Fermilab

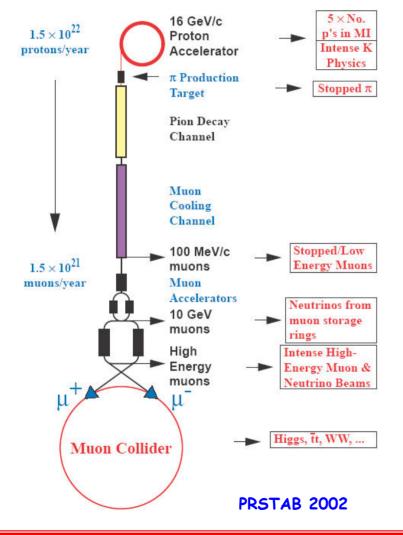
Alan Bross

NFMCC MUTAC Review

Muon Collider - Motivation

Reach Multi-TeV Lepton-Lepton Collisions at High Luminosity

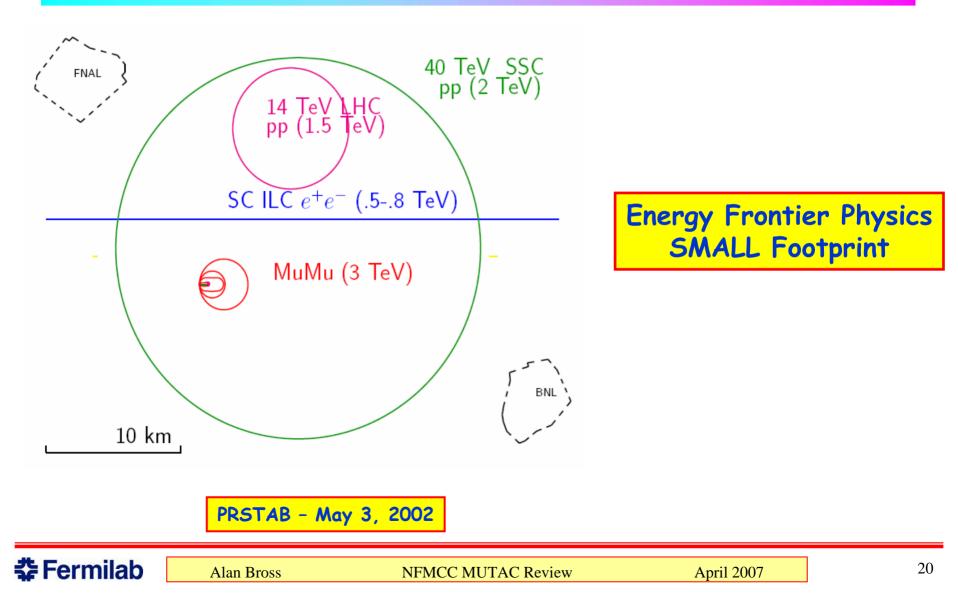
Muon Colliders may have special role for precision measurements. Small ∆E beam spread – Precise energy scans


Small Footprint -Could Fit on Existing Laboratory Site

🛟 Fermilab

Alan Bross

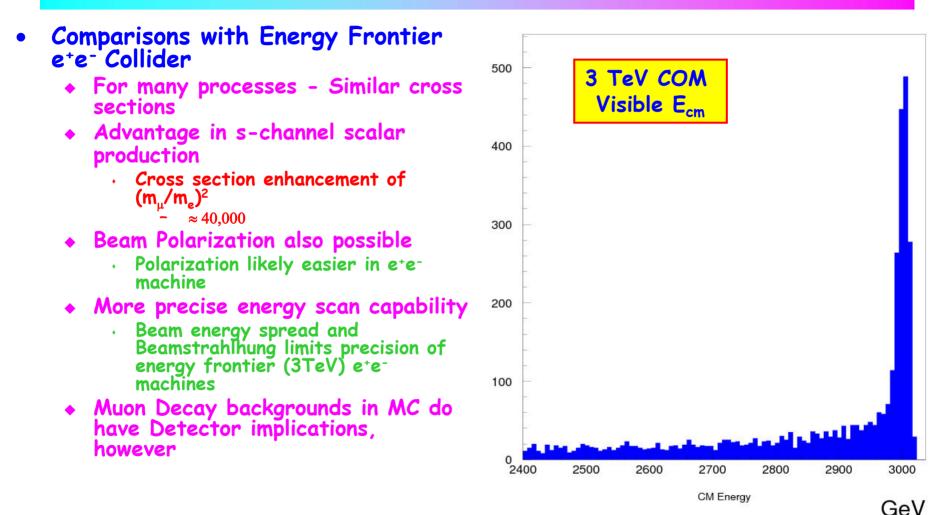
Evolution of a Physics Program



- Intense Low-energy muon physics
 - Intense K physics, etc
- Neutrino Factory
- Energy Frontier Muon Collider
 - 1.5 4 TeV

🛟 Fermilab	Alan Bross	NFMCC MUTAC Review	April 2007	19

The Muon Collider Motivation - Elevator Spiel

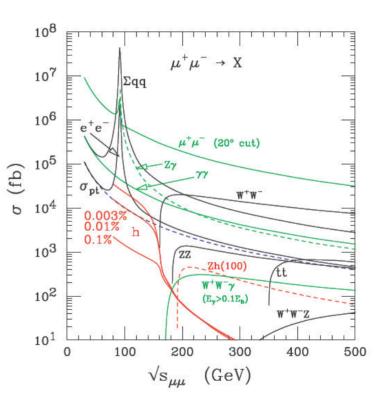


🛟 Fermilab

Alan Bross

Muon Collider at the Energy Frontier

NFMCC MUTAC Review



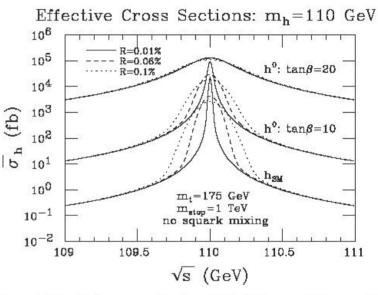
S-channel Coupling to Higgs

Standard Model Cross Sections

- For √s < 500 GeV muon collider</p>
 - threshold regions:
 - top pairs
 - electroweak boson pairs
 - Zh production
 - s-channel Higgs production:
 - coupling \propto mass $\left[\frac{m_{\mu}}{m_{e}}\right]^{2} = 4.28 \times 10^{-4}$
 - narrow state

 $\begin{array}{rcl} m(h) = 110 \ {\rm GeV}: & \Gamma &=& 2.8 \ {\rm MeV} \\ m(h) = 120 \ {\rm GeV}: & \Gamma &=& 3.6 \ {\rm MeV} \\ m(h) = 130 \ {\rm GeV}: & \Gamma &=& 5.0 \ {\rm MeV} \\ m(h) = 140 \ {\rm GeV}: & \Gamma &=& 8.1 \ {\rm MeV} \\ m(h) = 150 \ {\rm GeV}: & \Gamma &=& 17 \ {\rm MeV} \\ m(h) = 160 \ {\rm GeV}: & \Gamma &=& 72 \ {\rm MeV} \end{array}$

Alan Bross

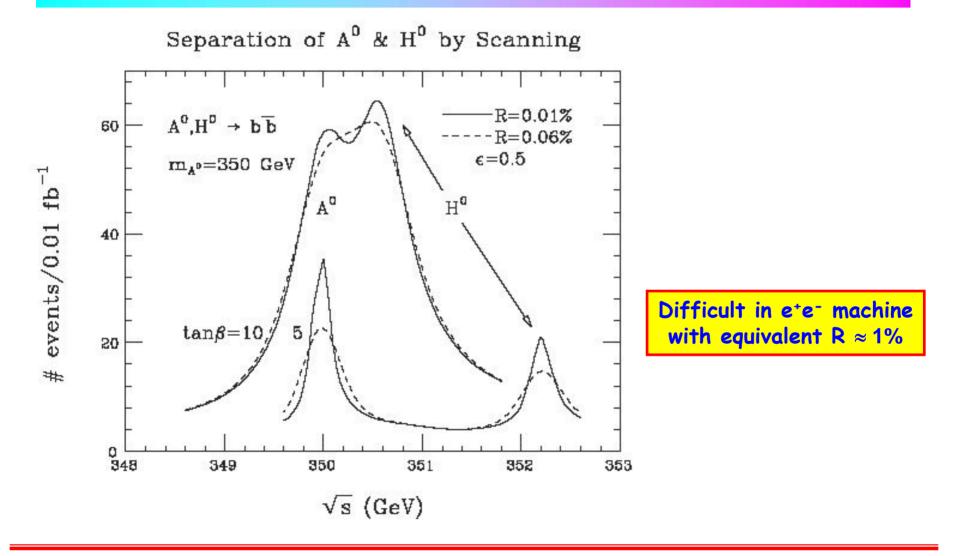

Higgs Γ

Fine energy resolution ($\Delta E/E$) is possible for muon colliders

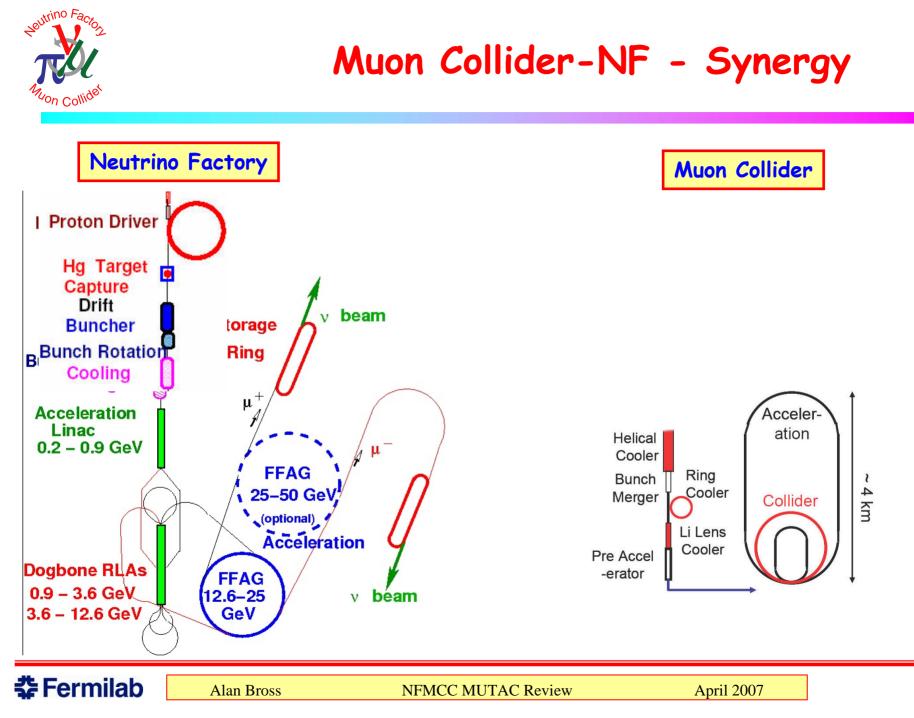
$$\sigma_h(\sqrt{\hat{s}}) = \frac{4\pi\Gamma(h \to \mu\mu)\,\Gamma(h \to X)}{\left(\hat{s} - m_h^2\right)^2 + m_h^2[\Gamma_h^{\text{tot}}]^2} ,$$

$$\sigma_{\sqrt{s}} = (7 \text{ MeV}) \left(\frac{R}{0.01\%}\right) \left(\frac{\sqrt{s}}{100 \text{ GeV}}\right) .$$

$$\begin{split} \overline{\sigma}_h &= \frac{2\pi^2 \Gamma(h \to \mu \mu) \, BF(h \to X)}{m_h^2} \times \frac{1}{\sigma_{\sqrt{s}} \sqrt{2\pi}} \qquad (\Gamma_h^{\rm tot} \ll \sigma_{\sqrt{s}}) \\ \overline{\sigma}_h &= \frac{4\pi BF(h \to \mu \mu) BF(h \to X)}{m_h^2} \qquad (\Gamma_h^{\rm tot} \gg \sigma_{\sqrt{s}}) \end{split}$$


h

Measuring SM Higgs width directly requires: $\Delta E/E < 0.002\%$ with an integrated lumonisity > 2 pb⁻¹ Figure 7: The effective cross section, $\overline{\sigma}_h$, obtained after convoluting σ_h with the Gaussian distributions for R = 0.01%, R = 0.06%, and R = 0.1%, is plotted as a function of \sqrt{s} taking $m_h = 110$ GeV. Results are displayed in the cases: h_{SM} , h^0 with $\tan \beta = 10$, and h^0 with $\tan \beta = 20$. In the MSSM h^0 cases, two-loop/RGE-improved radiative corrections have been included for Higgs masses, mixing angles, and self-couplings assuming $m_{\tilde{t}} =$ 1 TeV and neglecting squark mixing. The effects of bremsstrahlung are not included in this figure.



MC Physics - Resolving degenerate Higgs

‡ Fermilab

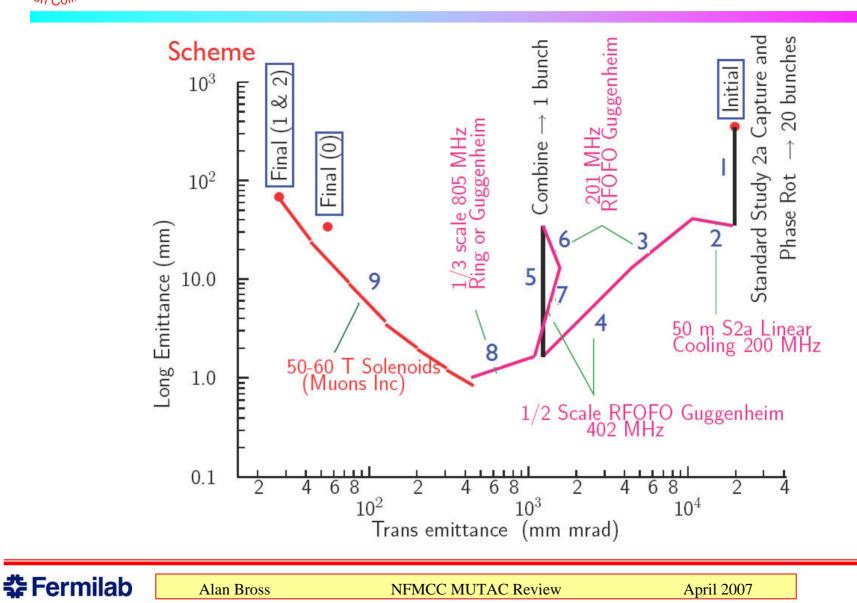
Alan Bross

- Although a great deal of R&D has been done (or is ongoing) for a Neutrino Factory, the Technological requirements for a Muon Collider are Much More Aggressive
 - Bunch Merging is required
 - MUCH more Cooling is required
 - + 1000X in each transverse dimension, \approx 10X in longitudinal
 - Cooling in 6D (x,x',y,y',E,t) is required
 - Acceleration to much higher energy (20-40 GeV vs. 1.5-3 TeV)
 - Storage rings
 - Colliding beams
 - Energy loss in magnets from muon decay (electrons) is an issue

- Ingredients needed in Collider cooling scenario include:
 - Longitudinal cooling by large factors ...
 - Transverse cooling by very large factors
 - Final beam compression with reverse emittance exchange
 - Improvements in bunch manipulations (bunch recombination?)
 - Reacceleration and bunching from low energy

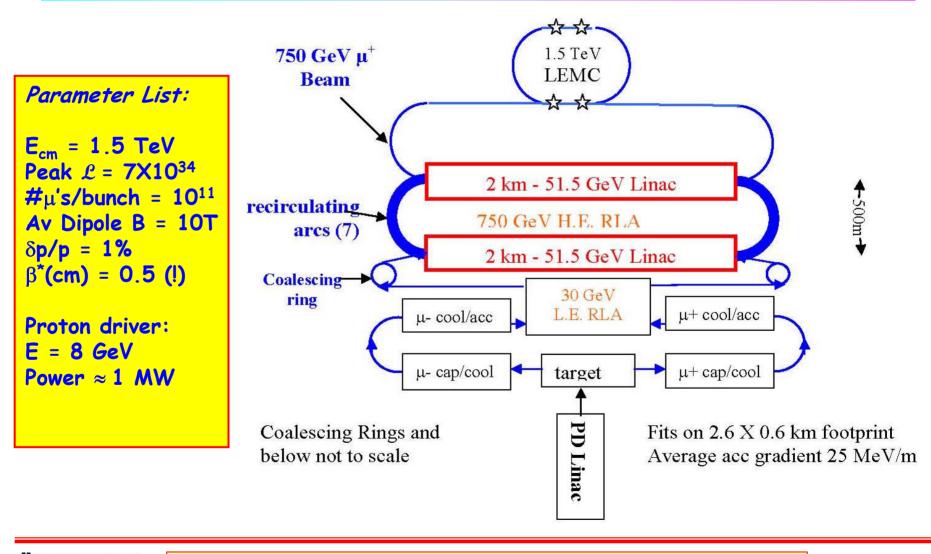
<u>Palmer et al</u>: RFOFO Ring Guggenheim 50-60T Solenoid Channel

<u>Muons Inc</u>.


High pressure gas-filled cavities Helical Cooling Channel Reverse Emittance Exchange Parametric Resonance Induced Cooling

🛟 Fermilab

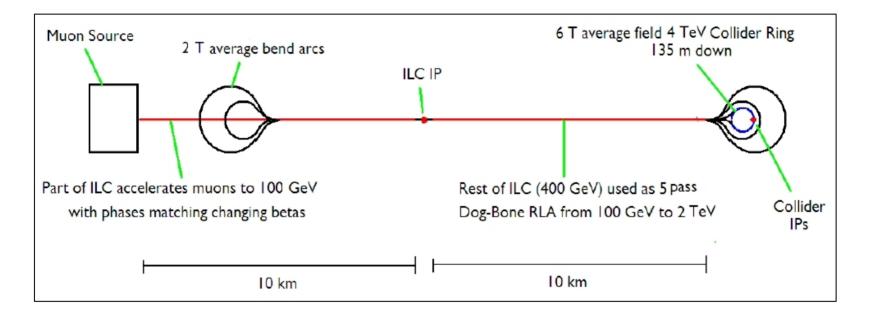
Alan Bross



A Muon Collider Cooling Scenario

28

Low-Emittance Muon Collider (LEMC)


Fermilab

Jeutrino Far

Alan Bross

Heutrino Factor

An ILC Upgrade?

In this schematic we see the real power of the Muon Collider concept. A 2x2 TeV machine based on a 500 GeV linac.

The Collaboration has entered a very exciting phase

- Neutrino Factory
 - Compelling case for a precision neutrino program
 - With present assumptions Neutrino Factory out-performs other options. However, more is needed before concluding this is the right path
 - What the on-going Neutrino Physics program tells us
 - Process must include cost and schedule considerations
 - International Design Study
- Muon Collider
 - New concepts improve the prospects for a multi-TeV Muon Collider
 - LEMC concept HCC/REMEX/PIC (Muons Inc.)
 - Front-end is the same (similar) as for a Neutrino Factory
 - First complete cooling scenario has emerged
 - Palmer Scheme

The Way Forward

- Technical Progress
 - MERIT and MICE will be taking data in the near future and will address some of the fundamental technical issues in high-power targetry and muon cooling

• Expanded Emphasis on MC

- New ideas in Muon Cooling have led to a renewed interest in Muon Collider studies with very exciting prospects
 - Creation of the Fermilab Muon Collider Task Force (MCTF) is a positive step

• Resource Limitations

- The collaboration is still funding limited and progress in a number of areas is considerably slower than is technically possible
- Expansion of our activities into new initiatives is extremely constrained

5	Fe	rm	ila	b