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Summary. A simple maximum entropy image deconvolution
algorithm, now implemented in the Astronomical Image Process-
ing System AIPS as task VM, is described. VM uses a simple
Newton-Raphson approach to optimise the relative entropy of the
image subject to constraints upon the rms error and total power
enforced by Lagrange multipliers. Some examples of the appli-
cation of VM to VLA data are given.
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1. Introduction

In contrast to simple linear arrays, modern radio interferometric
arrays such as the VLA (Thompson et al., 1980), MERLIN (Davies
et al.,, 1980) and the proposed VLBA (NRAO staff, 1982) provide
irregular, sparse coverage of the aperture plane. The resulting
sidelobes in the Fourier synthesised image seriously degrade the
dynamic range, usually to less than about 20dB. The non-linear
deconvolution algorithm CLEAN (Hogbom, 1974) was developed
to circumvent this problem and has, until recently, performed
spectacularly well. Used in conjunction with selfcalibration tech-
niques (see, e.g, Cornwell and Wilkinson, 1984; Pearson and
Readhead, 1984) CLEAN has improved the dynamic range in the
best images to about 35 to 40dB.

However, CLEAN has three major drawbacks: first, it is slow
and inefficient since pixels are adjusted individually [a simple
modification may improve this aspect substantially, Steer et al.
(1984)]. Secondly, extended emission is reconstructed rather
poorly [see, e.g., Cornwell (1983) for an example and Schwarz
(1984) for a discussion of the causes]. Thirdly, in general the
CLEAN image cannot be expressed in any simple mathematical
form, closed or open; consequently, it is impossible to make
statements about, for example, the effect on noise on a CLEANed
image.

These criticism of CLEAN les us to re-consider the advantages
of the Maximum Entropy Method of deconvolution. The MEM
was introduced in image reconstruction some years ago (see, e.g.,
Frieden and Wells, 1978; Wernecke and D’Addario, 1976) but has,
for a variety of reasons, not been widely accepted in radioastron-
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omy. Early algorithms were relatively very slow and not very
robust and, furthermore, claims about the propriety of the MEM
based upon esoteric discussions of information theory and sta-
tistics were disquieting to many astronomers. [ For those interested
in the history of the attempts to justify the MEM in image
reconstruction we recommend the following articles: Ables (1974),
Wernecke and D’Addario (1976), Gull and Daniell (1978), Gull
and Skilling (1984), and Cornwell (1984). For an overview of the
maximum entropy principle in general we recommend the collec-
tion of the papers of E.T. Jaynes edited by Rosencrantz (1983).]

However, in recent years these two main objections to the
MEM have been answered. Firstly, it has recently been demon-
strated that the MEM in image reconstruction can be justified on
purely heuristic grounds as a device for introducing a priori
information (see, e.g., Nityananda and Narayan, 1983; Narayan
and Nityananda, 1984, and below). Secondly, the advent of
modern interferometric arrays allowing the imaging of fields
spanning many resolution elements has increased the typical run
time of the CLEAN algorithm by up to two orders of magnitude
(although note that the Clark (1980) modification regained a factor
of 2 to 5) while the typical run time of MEM algorithms, measured
in terms of the number of two dimensional FFTs required, has
remained approximately constant. Consequently it is now possible
for MEM algorithms to be competitive with CLEAN in some
applications. Although it is now in widespread use we felt that the
powerful algorithm developed by Skilling and co-workers (Burch
etal., 1983)is, for radio astronomical applications, made inefficient
by its generality. Consequently, we were encouraged to develop a
simple yet fast algorithm, which we will call VM, specifically
tailored for radio interferometric applications.

The heart of our algorithm is a simple Newton-Raphson
technique for optimising the relative entropy of the image subject
to various constraints enforced by Lagrange multipliers. The large
dimensional matrix inverse required by a second order method is
approximated by taking the inverse of the diagonal elements
(Cornwell, 1980). We will show that this is tantamount to
neglecting the sidelobes of the point spread function, an approxi-
mation whichis acceptablein the second order. Some trivial control
procedures governing the Lagrange multipliers and the stopping
criterion complete the algorithm. We have found that VM
converges to a reasonable proximity to the true MEM image in
about 10-50 iterations, where the major computational cost per
iteration is two fast Fourier transforms. The total computational
cost is comparable to or may be less than that of CLEAN when the
image is well filled with emission. For objects which are well
represented by a relatively small number of point components
CLEAN is faster by an order of magnitude.
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The layout of this paper is as follows: we discuss the rationale
behind the MEM in Sect. 2, some properties of MEM images in
Sect. 3, our algorithm in Sect. 4. Finally in Sect. 5 we give examples
of its application to radio interferometric imaging, which is our
main area of interest.

2. The maximum entropy method

In this section we will give two justifications for the maximum
entropy approach to image reconstruction, neither of which is
founded in information theory.

For simplicity in the following discussion we use a discrete
representation of the images:

b=(bji=1,N)

where the images have N pixels. We should emphasize that no
commitment to one dimension is implied in this notation.

The first justification is based upon the observation that we
often have some a priori information concerning the object which
we are to reconstruct from a data set. Suppose for concreteness
that this knowledge can be expressed in the form of an image m
which we expect the reconstructed image b to resemble. A
reasonable reconstruction of the true image should obviously lie as
near to m as the data allows. A measure of the distance between b
and mis thus required. Some of the more obvious measures can be
rejected immediately; for example, it is easy to show that the
Euclidean distance, formed by the sum of the squares of the pixel
differences, leads to linear filter when the data constraints are
added. Adding supplementary non-holonomic constraints such as
positivity is possible and produces a suitably non-linear filter but
leads to an awkward optimisation problem. The “city-block”
measure, formed by the sum of the absolute values of the pixel
differences, is again awkward to optimise. The relative entropy:

H(blm)= — X b;1n(b;/m;)

has proved to be a useful measure of the difference between two
probability distributions b and m (see, e.g., Shore and Johnson,
1980, for references). We should note that the negativity of the
relative entropy is conventional and unimportant. Although in
image reconstruction we are not directly concerned with proba-
bility distributions, we can use this as our measure of distance of b,
the reconstructed image, from m, the image expected a priori. Of
course, one may object that many other choices are possible (see,
e.g., Nityananda and Narayan, 1982). However, a second,
although admittedly weak, argument in favor of the relative
entropy, again divorced from information theory, has been
advanced by Shore and Johnson, 1980 (see Gull and Skilling, 1984
for a vivid illustration of the basic argument). Shore and Johnson
showed that if one wished to construct a consistent theory of
inference based upon the minimisation of some distance measure
between a priori and a posteriori “degrees of belief” then the
relative entropy must be used as the distance measure. Consistency
in their terms means that restating the problem in an equivalent
form, for example performing an intermediate grouping of possi-
bilities to be considered, must lead to the same answer. Gull and
Skilling (1984) noted that the same argument can be used for image
reconstruction if one substitutes “image” for “degree of belief”. The
consistency requirement is then tantamount to requiring that an
intermediate notional division of the image into sub-images, each
with its own relative entropy, should not affect the final re-
construction. Similarly, neither should the pixel labelling be

relevant. For an elaboration of these ideas the reader is referred to
the original paper by Shore and Johnson (1980).

Thus to summarise our interpretation of the maximum entropy
method as applied to image reconstruction: we wish to find an
image b as close as is allowed by the data to an “a priori” image m.
A mild consistency argument dictates that the relative entropy be
used as the distance measure. We do not believe that Jaynes’
maximum entropy principle (see, e.g., Rosencrantz, 1983) can be
directly applied to image reconstruction since the required
identification of some attribute of an image with a probability
distribution is not possible. A paper by one of us (Cornwell, 1984)
expands upon this point (but see also the answer by Gull and
Skilling, 1984).

3. Properties of images reconstructed with maximum entropy

The MEM image is obtained by maximising the relative entropy H
subject to whatever data constraints apply. In the simplest and
trivial case of no data we thus obtain the a priori image:

b=m.

Data constraints will drag the reconstructed image b away from
the a priori image m but, given any freedom in obeying the
constraints, for example because of noise, b will be biased towards
m. This has important and obvious implications for the treatment
of noisy data since then the MEM image must then necessarily be
biased. Of course, if m is close to the true image then this bias is
unimportant. A simple procedure which makes the bias negligible,
at least a low spatial frequencies, may be easily devised: we find the
MEM image appropriate to a flat a priori image, then convolve
this image with a broad beam to retain only the large-scale
structure, and finally find the MEM image appropriate to this
lower resolution a priori image. We are then implicitly using the a
priori information that the true image contains little power at high
spatial frequencies, an assumption which is also implicit in the
smoothing with a CLEAN beam performed in the CLEAN
algorithm. Alternatively, it is possible to use a lower resolution
image as the a priori image. It should be clear that the a priori
image allows a great deal of flexibility in that a specific model for
the object to be imaged can be inserted directly in the algorithm. A
further advantage is that a priori information can be expressed in
terms of images rather than the properties of an algorithm. In a
similar vein Frieden and Wells (1978) developed an algorithm in
which knowledge of the background is used and showed that an
increase in resolution results. However, the background is additive
and must be chosen so that the foreground image is always
positive. By contrast, the use of the a priori image is less restrictive
and acts more as a position dependent scaling of the brightness.

Another cause of bias is the inflexibility of the logarithm term,
which constrains b and m to be positive (or both negative if we
change the minus sign). Thus, for example, if m is totally positive
then so is b and therefore, given zero mean noise, b is biased.
Although this “one-sidedness” constraint has a useful role to play
in increasing the resolution [see, e.g., Frieden (1976) for a simple
explanation of this point] it also forces us to acknowledge the
inevitable presence of noise in any data which we may collect. In
concrete terms we cannot simply add data points, e.g., noisy
Fourier coefficients of b, as separate constraints each with its own
Lagrange multiplier since the resulting optimisation problem will
almost certainly have no solution. This point was first emphasized
by Ables (1974) who suggested requiring only that the global y? of
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the misfit between the observed data points and those predicted
from b be equal to the expected value. For large numbers of data
points this somewhat less stringent constraint will nearly always
be consistent with a “one-sided” image b. However, as emphasized
above, such extra latitude will result in a small amount of bias in
the final image. Other noise tolerant constraints, such as forcing
the residuals to have the expected normal distribution (Bryan and
Skilling, 1980), can be used to reduce the bias but we believe that
choosing m appropriately is more efficient and usually reduces the
bias to an acceptable level.

In order to discuss further the properties of MEM images we
must be rather more specific about the constraints. Restricting our
attention to an interferometer, our observed data are samples of
the visibility function. These can be expressed in the form:

Vi=2t;exp(2mju; - x;) + 1y,

where n represents noise, ¢ is the true image, u, is the position
vector of the k’th sample in the u, v plane and x; is the position
vector in the image plane of the i’th pixel. The corresponding data
predicted from b are:

Vi =Z2b;exp(2mju, - x;).
Forming the y2 for n:
1 =ZmlVi— V%,

where w, is the relevant weighting factor for the k’th visibility
point.

Maximising the relative entropy subject to the constraint that
x2 be equal to the expected value we find that the solution is:

b;=m;exp[ —a(0x*/0b)],

where o is a Lagrange undetermined multiplier and in this
particular case:

0x*/0b; =2 Re[ Zwi (Vi —V,) exp(—j2muy - x,)] .

Since this represents an inverse Fourier transform of the error in
prediction of the true visibility the MEM image must be biased. In
the image plane:

6x2/6bi = 2(iji,jbj_ d),

where d is the Fourier transform of ¥ and p is the point spread
function, given by the Fourier transform of the weights.

p; ;=Re{Zw,exp[ —j2mu; - (x;— x)1}.

Constraining only the global y2 leads to a significant systemat-
ic bias in the MEM image since to maximise the relative entropy it
is advantageous to arrange the errors to be much smaller than the
noise on all data points except the total power which is biased by
about K - g where K is the number of independent visibility points.
The resulting image fits the data far too well and is thus too noisy.
Furthermore, since positivity is the main constraint effective in
eliminating sidelobes these sidelobes are poorly suppressed. For
these reasons when possible we add an extra constraint that the
total power of the MEM image be that expected:

F= Z‘ibi = Fobserved .

Using Lagrange’s method of undetermined multipliers we can
now restate the optimisation problem as: maximise the objective
function:

J=H—o-y*-B-F,

where o and ff are chosen so that 32 and F are equal to the expected
values. In the next section we will discuss possible methods of
solving this problem.

4. An algorithm to optimise the relative entropy

The optimisation problem consists in finding an image such that
the gradient of J, VJ, is zero. The gradient of J is to be evaluated
with respect to the pixel values b; i.e. (VJ);=0J/0b;. The implicit
solution has the form:

b;=m; exp(—a(0x*/0b)—B) .

Skilling and Gull (1984) have reported that utilization of this
solution in an iterative substitution algorithm leads to slow
convergence and instabilities. Thus the direct optimisation of J is
to be preferred. Although this optimisation is conceptually simple,
in practice the large dimensionality of the space over which J is
defined restricts the feasible set of algorithms. For example,
schemes involving explicit second order methods such as the
various variable metric optimisation algorithms (e.g., Adby and
Dempster, 1974) are impractical. However, the steepness of the
relative entropy near zero brightness renders unattractive any
simple first order approach based purely upon the gradients of H,
x%, and F since the low brightness parts of the trial image dominate
the gradient of the objective function. In order that the gradient of
J can be weighted down near zero brightness we require an
approximation to a second order method. In the exact Newton-
Raphson method the step to the next trial image is given by:

Ab=(—VVJ))"1.vJ,
where
VIi=VH—aVy*—p1
and
VVJ=VVH—2uap.

Since V'V H is purely diagonal the non-diagonal elements of this
matrix are due entirely to the point spread function p. This
suggests one simple and viable approximation: neglect the non-
diagonal elements of the Hessian of J in the standard Newton-
Raphson approach. Since the main purpose of the use of
(=VVJ)~lis to weight down the effect of weak points upon Ab we
may, for our purposes, neglect the sidelobes of p by using in place
of p a suitably scaled identity matrix:

VVvJ=VVH—-2aql

where ¢ is a scaling parameter required to convert Jy(beam area)
to Jy/pixel. The exact value of g is relatively unimportant but it
should represent the power in the main lobe of the point spread
function. We then have that:

(_VVJ)_li,iN 1/(1/b;+ 20q)
(—VVJ)iTj1~0 if isj.

This also provides a useful metric for the b-space: the lengths of all
vectors are measured in this metric. For example, the vector scalar
product between X and Yis:

IXY || =, X~ PV},
which is, under the above approximation:

XY ~2:X;Y/(1/b; + 2ag) .
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Thus, in calculating norms the effect of weak points is weighted
down linearly by the brightness. This serves to tame the steep
gradient of V H near zero brightness and allows the step to the new
image to be of reasonable length. In contrast to the metric used by
Burch et al. (1983) this form does not over-emphasize the brighter
points in the image. In fact, as iteration continues we increase « and
so the metric tends towards the ideal case of a flat metric.

Since the length of 4b is dependent upon the approximations in
VVJ it is advantageous and relatively inexpensive to perform a
linear search for the zero of ¥V'J along 4b. This involves calculating
the residuals for two images and hence two convolutions are
required. Fortunately, the residuals of the optimum interpolated
image resulting from the linear search can themselves be inter-
polated. Therefore the net cost per iteration is dominated by one
two-dimensional convolution, which can be efficiently calculated
by FFT techniques.

Judging nearness to the true MEM image is difficult and
somewhat arbitrary. We use the criterion that the norm of V.J
should be much less than the norm of a unit vector. Typically, we
require:

[VJ-VI|<el1-1],

where ¢ is of order 0.01 or less.

The Lagrange multipliers « and f must be adjusted as the
iteration proceeds so that the final constraints are met. A simple
Taylor series expansion of y? and F allows us to calculate that, to
first order, the required changes at any stage are:

da=—A* |V -V
AB=—AF/|VF-VF|.

Since changing o and f§ affects the gradient of J we limit the
changes so that an analog to the above stopping criterion is always
obeyed. For example, if  is to be changed by Ao then the condition
becomes:

(VT —da-Vy?)-(VJ—Ax-Vy?)| <ell1-1].

Thus we obtain a quadratic equation for the maximum allowed
change in o which can be solved for the upper and lower bounds. A
sequence of maximum entropy images are thus obtained as
iteration continues. The ratio |FJ-VJ|/|1-1| can also act as a
diagnostic. If the deconvolution has no solution or is ill-
conditioned then this number increases to of order unity or greater
as iteration proceeds.

All that remains is to protect against negative values of
brightness; this we do with a simple clip, decreasing the minimum
brightness allowed by an order of magnitude at each iteration.
Usually, this protection is only necessary for the first few
iterations.

This algorithm is coded in the Astronomical Image Processing
System (AIPS) as task VM. Since within AIPS it is more
convenient and efficient to work the dirty image and dirty beam
rather than the visibility data, we approximate 2 by E/q where E,
the misfit in the image plane, is given by:

E=2i(szi,j. bj—dl)z .

It is impossible to calculate > directly since the gridding
process in the formation of the dirty map and beam introduces
small but significant errors into the weighting terms w;. This
shortcut of using E/q is unimportant because y2 is only used
directly in changing a.

Choice of a reasonable value for g will help convergence. The
most obvious choice would seem to be the sum of the point spread
function but, unfortunately, this is zero in the application to radio
interferometry. We have found that usually the sum of either the
equivalent Gaussian fitted to the main lobe or the main lobe itself
is satisfactory. From the equation for the step length can see that if
q is too high then the step length is underestimated. Therefore, we
can use the result of the linear search in VJ to adjust g so that the
next step taken will be of the correct length.

Setting g to zero yields a metric similar to that used by Burch et
al. (1983). We find that this metric drastically over-estimates the
step length and that an arbitrary clip of the step is necessary. By
contrast, in our algorithm such clipping of the step length is rarely
needed. This “zero-g” metric also over-emphasizes the importance
of the bright points and hence leads to spuriously strong peaks.
Dulk et al. (1984) report that the Burch et al. (1983) algorithm

"appears to over-resolve peaks of components as is expected from

use of the “zero-q” metric.

With careful coding the main cost of the VM algorithm is two
fast Fourier transforms per iteration. The number of iterations
typically required lies in the range 10-50 and so the total
computational cost is of order 20-100 FFTs. For comparison we
note that for objects spanning many resolution elements the Clark
CLEAN algorithm (Clark, 1980) can take in excess of S00 FFTs. At
the other extreme, for simple high dynamic range images CLEAN
can be faster than VM by about two orders of magnitude.

In summary, the main elements of our algorithm are:

1. Optimisation of the relative entropy subject to constraints
upon the rms error and total flux enforced by Lagrange
multipliers.

2. A Newton-Raphson approach to optimising the objective
function. In calculating the inverse Hessian non-diagonal elements
are neglected. We have found this approximation to be perfectly
adequate if the number of pixels per beam is restricted (g < 50). If
not, then convergence can be very slow.

3. Iterative adjustment of the Lagrange multipliers so that the
resulting gradient is small compared to the size of the unit vector.

Before leaving this section, we would like to point out the
similarities of the VM algorithm to the enhanced CLEAN
algorithm described by Steer et al. (1984). In both algorithms
corrections are made to a trial image on the basis of discrepancy of
the predicted dirty image from that observed. In the Steer et al.
algorithm all points above a “trim” level are scaled and added to
the current estimate whereas in VM, ignoring the entropy term, the
metric weights down all points much less than the inverse of «
before adding a correction to the current image. The effective trim
level is thus decreased as « is increased to obtain agreement with
the dirty image. This accidental convergence of different approachs
to similar algorithms may be useful in suggesting new areas of
research in image reconstruction.

Finally, it should be noted that this algorithm is effective for
other forms of “entropy” e.g. ZbY? or XIn(b), at the same
computational cost.

5. Some examples of MEM images

The VM algorithm has been used often in analyzing VLA data,
most successfully when applied to observations of radio sources
covering many resolution elements (> 10,000) for which CLEAN
is inefficient and produces poor results. It is most successfully
applied to data in which the sidelobe level is small (<5% peak)
and for which the total flux F and the rms noise level are both
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a

Fig. 1a and b. Tests of VM on model data: a Clockwise from top left, model convolved with CLEAN beam, dirty image, best VM image convolved with CLEAN beam,
CLEAN image. b Model, best VM image, difference between VM image and model convolved with CLEAN beam, difference between CLEAN image and model
convolved with CLEAN beam. The latter two images are saturated a factor 20 times lower

Fig. 2. Tests of superresolution (from left): CLEAN image made from C-configuration data only, VM image made from C-configuration only, CLEAN image made
from B- and C-configuration data, CLEAN image made from C-configuration data only with CLEAN beam appropriate to B-configuration data
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Fig. 3. Tests on very extended source (from left): CLEAN image, VM image, VM image after point source removed, difference between last two images (saturated a

factor of 20 lower)

known. It works rather poorly on very high dynamic range images
since the convergence is then slow. We note that these attributes
are complementary to those of the CLEAN algorithm and so
MEM will not replace CLEAN as the main deconvolution
algorithm but rather will be used in those circumstances where
CLEAN fails.

Our three examples of MEM images are designed to illustrate
both the strengths and weaknesses of MEM and the VM
algorithm.

First, we show the application of VM and the standard AIPS
CLEAN program APCLN to an artificial data set. This simulates a
VLA snapshot of a linear source somewhat resembling a jet in an
extragalactic radio source. Figure 1a shows the model, the dirty
image, the best CLEAN image (made using the stabilised CLEAN,
see Cornwell, 1983), the best VM image, both raw and convolved
with the CLEAN beam for comparison with the CLEAN image.
The best VM image was made using the procedure described in
Sect. 2: namely, the initial a priori image is flat, the resultant VM
image is convolved with the CLEAN beam and then used as the a
priori image for a final VM image. This final VM image produced
in this way shows better noise suppression and less bias than the
VM image made using a flat a priori image. Also, the finishing
value of « is smaller since the a priori image closely resembles the
final image. Figure 1b shows the errors made by CLEAN and VM

in reconstructing the model (convolved with the CLEAN beam). It
is interesting to see that the errors are comparable both in location
(within the main brightness) and magnitude (about 5%).

Our second example shows the potential for superresolution
in MEM images. The four scaled arrays of the VLA (Thompson et
al., 1980) allow the testing of superresolution of real data: we make
observations of a source in two adjacent configurations, the high
resolution of the MEM image made from the smaller configu-
ration data then allows comparison with a CLEAN image made
from data collected with the larger configuration. Figure 2 shows
the result of such a test on data on the radio source 3C449. The
CLEAN image made from C-configuration data only shows far
less resolution than the MEM image made from the same data.
Comparison with a CLEAN image made using B-configuration
data as well shows that the super resolution is reliable qualita-
tively. An attempt to super-resolve the C-configuration CLEAN
image by using a CLEAN beam appropriate to the B-
configuration results in very blobby structure both in the jets and
the extended structure.

In this test the best MEM image took approximately 60 FFTs
to converge whereas the CLEAN required about 10 major cycles,
equivalent to about 15-20 FFTs.

Our final example concerns the application of VM to the
deconvolution of an image spanning a very large number of
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resolution elements. The image is of the radio source 3C449
observed in the VLA A, B, and C-configurations at a wavelength of
20 cm (Cornwell et al., in preparation). Figure 3 shows the CLEAN
image, the best MEM image using a previous MEM image
convolved as the a priori image, the latter with the point source
removed prior to deconvolution, and the difference between the
last two images. VM took about 50 FFTs to converge in each
case.

The VM image made with the point source not removed has
reconstructed the source structure reasonably well except in the
neighborhood of the point source where sidelobes are still present.
Removal of the point source prior to deconvolution considerably
improves the image. Such hybrid approaches combine the best
features of both CLEAN and MEM but require intervention to
split the work.

6. Summary

We have described a simple algorithm, now implemented in AIPS,
for performing a maximum entropy deconvolution of radio
interferometric data. Tests show that for objects covering many
resolution elements the performance of this algorithm can match
or exceed that of the Clark CLEAN algorithm (Clark, 1980). A
priori information about the image can be easily introduced in the
form of an image which the reconstructed image will resemble as
closely as the data allows. Tests of the new algorithm on real and
simulated data indicate that some useful superresolution, by about
a factor of 2 or 3, is possible.

Both the ease of coding VM and its presence in the AIPS
package allow experimentation with Maximum Entropy Methods
of deconvolution. We therefore wish to encourage others to
experiment so that a wide base of practical knowledge about
MEM and its application to astronomical imaging may be built
up. That the CLEAN algorithm was only accepted after a similar
process indicates the importance of such testing. We also feel that
this may spur the development of new and improved deconvo-
lution algorithms. Finally, we note that the analysis of MEM
performed by Nityananda and Narayan (1982) indicates the
usefulness of a pragmatic and non-information theoretic approach
to MEM which may be fruitful in suggesting further avenues of
research.
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