

Figure 1 Showing the Positive (CAPE) and Negative (CIN) areas. (from NWS/OSF/OTE, 1991)

Note that Parcel Characteristics shown on the AWIPS Skew-T program are derived in different ways depending on the time of the sounding.

The parcel parameters of T and Td are computed one of two ways:

1) If the sounding is a morning sounding (06 UTC - 18 UTC), then the parcel temperature is the computed forecast max temp, and the parcel dew point is the lowest 50 mb mean B in the sounding. This is labeled in the display as a modified parcel, indicating the parcel has the potential to reach these characteristics during the day.

2) If the sounding is a 00 UTC sounding, then the surface temperature and B are used as the parcel temperature and dew point respectively. This assumes that the atmosphere is pretty much mixed out. This forms the basis of all the parameters on the right side of the table display. Arrays of parcel temperatures, dew points, and dew points are computed containing these parcel characteristics.

(Note: In BUFKIT, starting with version 4.02, there are many options for computing and displaying CAPE, based on selectable parcel lifting level, but once the parcel's lifting level is defined, the CAPE computations are similar to AWIPS; i.e., it sums up the positive energy area above LFC to the EL and does not include any negative areas). In BUFKIT, the average temperature and dew point in the lowest 100 mb is the default CAPE.

However, in BUFKIT, one can account for midlevel inversions and more than two positive/ negative areas on the sounding by using the ECAPE manual parcel lifting options (See Section C-Most Unstable CAPE).

Note: Neither AWIPS Skew-T or BUFKIT CAPE computations incorporate a virtual temperature correction to the parcel path and environmental temperature trace to account for the effect of moisture on air density (buoyancy).

Note: NSHARP does incorporate a virtual temperature correction in their thermodynamic computations.

This effect will slightly increase the temperature of the parcel and the environment in moist low levels. Also, when lifting the parcel with a virtual temperature correction, it does not exactly follow the moist adiabatic lapse rate since the skew-T moist adiabats

Surface based computations will grossly **underestimate** buoyancy in situations where parcels are experiencing elevated ascent.

See this graphic showing two forecast soundings from the Eta and LAPS models from 1200 UTC 25 March 2002 in southern Oklahoma. Both forecast soundings depicted zero net CAPE (Surface-based, most unstable CAPE and mean layer CAPE), which could be misapplied because there is CAPE in the sounding. To compute it, you must manually select (lift) the parcel from above the stable layer, which is ~ 780 mb.

If you use BUFKIT, because the parcel lifting level can be interactively selected, the Eta sounding from the same time and location shows an **elevated CAPE** value of 735 J/kg. (Note: Severe hail occurred in the vicinity of this sounding across portions of southern and southeastern Oklahoma.)

SBCAPE will **overestimate** realized instability when soundings possess shallow moist layers. SBCAPE value alone does not account for effects of vertical distribution of CAPE.

The estimates of maximum updraft strength (Wmax)based on CAPE are usually twice as

high as in observed updrafts because of water loading and mixing effects. In wellorganized convective storms, vertical velocity in updrafts are much closer to W max.

Supercells can have strong updrafts even when the static instability, as measured by CAPE, is modest (See McCaul and Weisman, 2001). This is due to vertical shear effects.

The virtual temperature correction can increase low-level CAPE calculations by 20-50 J/kg (see graph below from Davies, 2002).

For more information on the various lifting methods employed on the Interactive Skew-T Program in AWIPS, refer to the AWIPS User's Manual. Strengths B. Mixed Layer CAPE (often abbreviated MLCAPE) Che SPC web site, this is the CAPE calculated using the lowest 100 mb AGL mean fayer temperature and moisture values. (Note: this is the same parcel characteristic used in BUFKIT's default CAPE calculated uses to mb mean potential temperature layer above the surface, so these values will differ slightly from BUFKIT. MLCAPE in mixing effet parameters lightning) S C. Most Unstable CAPE abbreviated MUCAPE) On the SPC web site, this is CAPE calculated by using a parcel from a pressure level which results in the most unstable CAPE value possible in the lowest 300 mb AGL. MLCAPE in not well-min thundersto Not : this is different than PMAX on AWIPS Skew-T, which uses the most unface parcel the source the various lifting methods employed on the Interactive Skew-T Program in AWIPS, see the AWIPS User's Manual. In BUFKIT showing a provide the source show the parcel from a pressure level which results in the lowest 50 mb, based on highest moist bulb temperature.) In BUFKIT showing a provide and parcel from a pressure level which results in the lowest 50 mb, based on highest moist bulb temperature.) In BUFKIT showing a provide and parcel from a pressure level which results in the lowest 50 mb, based on highest moist bulb temperature.) In BUFKIT showing a provide and parcel from a pressure level which results and the lowest 50 mb, based on highest moist bulb temperature.) In BUFKIT showing a provide and parcel from a parcel from a pressure level which results and the lowest 50 mb, based on highest moist bulb temperature.) In	
B. Mixed Layer CAPE (often abbreviated MLCAPE) On the SPC web site, this is the CAPE calculated using the lowest 100 mb AGL mean layer temperature and moisture values. (Note: this is the same parcel characteristic used in the AWIPS interactive Skew-T, a similar computation is the "Mean Temp Lift" parcel lifting option. However this uses the lowest 50 mb mean potential temperature layer above the surface, so these values will differ slightly from BUFKT. MLCAPE in mixing effer parameter lighting option. However this uses the lowest 50 mb mean potential temperature layer above the surface, so these values will differ slightly from BUFKT. Soundings MLCAPE. C. Most Unstable CAPE (often abbreviated MUCAPE) On the SPC web site, this is CAPE calculated by using a parcel from a pressure level which results in the most unstable CAPE value possible in the lowest 300 mb AGL. MLCAPE in MUCAPE. Note : this is different than PMAX on AWIPS Skew-T, which uses the most unstable parcel in the lowest 50 mb, based on highest moist buib temperature.) In BUFKIT showing a burket the sounding example below of selecting a parcel level on an AWIPS skew-T. In BUFKIT showing a burket the sounding example below of selecting a parcel level on an AWIPS skew-T.	
C. Most Unstable CAPE (often abbreviated MUCAPE) On the SPC web site, this is CAPE calculated by using a parcel from a pressure level which results in the most unstable CAPE value possible in the lowest 300 mb AGL. Strengths (Note : this is different than PMAX on AWIPS Skew-T, which uses the most unstable parcel in the lowest 50 mb, based on highest moist bulb temperature.) MUCAPE is elevated on the lowest 50 mb, based on highest moist bulb temperature.) In BUFKIT For information on the various lifting methods employed on the Interactive Skew-T Program in AWIPS, see the AWIPS User's Manual. In BUFKIT The best way to assess elevated instability using AWIPS skew-T program is to visually inspect the sounding and pick the parcel level where the most CAPE results above the surface (note: use the "User Select" option for lifting method). Usually, this is between 900 and 700 mb. See the sounding example below of selecting a parcel level on an AWIPS skew-T.	 s more representative of realized buoyancy because it incorporates parcel cts. MLCAPE and low-level lapse rates have been shown to be two good s for discrimination of general thunderstorms (i.e., whether convection produces see Craven et al. (2002). taken in proximity of thunderstorms usually posses more than 250 j/kg of when combined with LCL height, has been shown to be a very good or for tornadic supercells (see Craven et al. 2002). s: s likely to underestimate elevated and/or surface-based buoyancy if layers are xed. MLCAPE has more difficulty in discriminating between general rms and severe thunderstorms (lots of overlap). See Craven et al. (2002).
Sector State	<text></text>

		Image: Torus 10 Image: Torus 10	Compared to SBCAPE, PMAX-based CAPE will occasionally result in slightly lower CAPE values when the most unstable parcels originate near ground level (surface). When low-level moisture is "ankle-deep", SBCAPE or CAPE averaged in the lowest 50 mb AGL might provide a more reasonable estimate of actual conditions. "Tall-thin" CAPE is more susceptible to water loading than "short and fat" CAPE. For example, tropical storms, which develop in soundings characterized by high ELs, and tall-thin CAPEs, are not as likely to be as deep (in terms of convective growth) as shallow-topped cool season supercell storms , where representative soundings indicate short-fat CAPE.
D. V Mode C	/arious lel Layer CAPE	 The following are differences in the methods of lifting air parcels used to compute CAPE for various model analysis packages. NAM (ETA) "surface" CAPE (from Volume Browser) uses the highest theta-E in the 70 mb just above the surface. The NAM "boundary layer" CAPE uses the highest theta-E averaged for one of six 30-mb-boundary layers located in the 180 mb just above the surface (for example, if the surface was at 1000 mb, the first layer would be 1000-970, the second 970-940, the third 940-910, etc.). In the RUC, the air parcel used to compute CAPE is from the maximum buoyancy within 300 mb of the surface. Before the most buoyant level is determined, the potential temperature and water vapor mixing ration are averaged in the lowest 7 native levels (about 45-55 mb). In the GFS, the "surface" CAPE uses the highest theta-E from the boundary layer at each grid point. In LAPS, the "surface parcel" uses the latest LAPS surface temperature, dew point and elevation to lift the parcel at each grid point. LAPS CAPE is a net energy calculation subtracting any negative energy from the positive energy. 	Strengths: When evaluating CAPE, it is important to know how the different models compute the quantity. In AWIPS, it is advantages to overlay multiple model soundings (or plan-view plots of CAPE) and assess an ensemble solution of derived CAPE quantities. Limitations: Small differences in parcel conditions can have a significant effect of derived model CAPE.
2.	2. CIN	Defined as Convective INhibition energy (CIN), this parameter is a measure of the "negative area" on a sounding between the surface and the LFC. CIN is the amount of work required to lift a parcel through a layer that is warmer than the parcel. The parcel must be forced upward sufficiently to overcome the negative buoyancy. This negative area is often referred to as a "lid" or "cap". The formula for CIN (from RTM-230) is very similar to CAPE: $CIN = g \int_{ZSFC}^{ZLFC} \left(\frac{T_{vp} - T_{ve}}{T_{ve}} \right) dz,$	Strengths: Assessing Convective Inhibition (CIN) is important to diagnosing the potential for deep convection. Generally speaking, the larger the value of CIN, the more difficult it will be for a parcel of air to reach the LFC. This statement is most applicable for a surface based parcel. For parcels that are not surface based (e.g., elevated convection), an appreciable amount of low-level CIN can be present, but parcels can still become positively buoyant if forced ascent occurs above the stable layer and some CAPE is present above the stable layer (in many of these elevated convection cases, the level above which lifting occurs is from 850 to 700 mb). In these cases, CIN above the LFC is usually minimal. In cases where CIN is large, supercells are less likely to produce tornadoes (Grant 1995). Most models depict CIN as a convective forecast parameter, displayable via the AWIPS Volume Browser. There are differences in both individual model forecast CIN computations and CIN values derived from the AWIPS interactive Skew-T.

where Z_{SEC} is the height of the surface and all other variables are the same as in the

CAPE calculation. The units for CIN are the same as for CAPE, in joules per kilogram. Other computations use temperature (or potential temperature) instead of virtual temperature. The larger the CIN value, the more stable the layer of air is between the surface and LFC, the more difficult it will be to lift a parcel of air to its level of free convection.

In order to get the parcel of air to reach the LFC, the forcing mechanism has to have sufficient strength to push the boundary layer air through the negatively buoyant layer.

See Figure 1 for a depiction of positive and negative areas on a sounding.

Note: In AWIPS, the negative area encompasses the negative energy below the LFC. Similar to AWIPS CAPE calculations, the potential temperatures of both the sounding and the parcels are computed at each level and summed up for **both**: 1) below the LCL (to the ground), and 2) above the LCL (to the LFC).

The negative area then includes both potential temperature calculations. Note: as in AWIPS CAPE calculations, actual negative area in a Skew-T might be underestimated in AWIPS because it only computes one LFC. Once a parcel reaches the LFC, even for just a short time, any negative areas will not be accounted for.

Note: If a sounding contains an LFC beneath a midlevel inversion, the AWIPS CIN computations will not reflect this negative energy. If a sounding has a very small positive area below any CIN area, the AWIPS CIN computation may erroneously display no CIN (see sounding below for an example).

Note: Similar to CAPE, neither AWIPS or BUFKIT incorporates a Virtual temperature correction to parcel trajectory.

Doswell and Rasmussen (1994) mention CIN in their conclusions regarding the virtual temperature correction with respect to calculating CAPE. They point out that CIN values are relatively small in convective situations and that an average virtual temperature change of 1 K can affect CIN by about 35 J/kg which would be significant if the CIN was approximately -100 J/kg. Consequently, they suggest making the virtual temperature correct to CAPE calculations as well as CIN. CIN is also briefly discussed in the COMET CD-ROM module "Anticipating Convective Storm Structure and Evolution" (1996) in relation to CAPE and convection.

(See the AWIPS validation web site for more information on how AWIPS computes CIN.) The differences in CIN calculations are a result of what parcel level is lifted. (See above section on CAPE)

A nowcasting version of CIN is also available as a product derived from the GOES-8 Sounder. GOES derived products (including CIN) are heavily based on the ETA model forecast soundings as a first guess and are only produced in cloud-free regions.

One can relate CIN to a vertical velocity, \mathbf{W}_{lift} , or the estimated amount of lifting required to overcome the negative area by the following expression:

$$W_{lift} = (2 CIN)^{1/2}$$

Limitations:

It is often quite difficult to assess how much lifting will overcome the negative energy (CIN). Normally a parcel will need to be lifted by some external process in order to reach its LFC. Mesoscale sources such as boundaries are the usual mechanisms which supply sufficient lifting.

CIN calculations in AWIPS might **overestimate** the amount of CIN in a sounding because the AWIPS calculation **does not** apply a virtual temperature correction. This is especially likely when the CIN area is quite moist. An average virtual temperature change of 1 deg K can affect CIN by about 35 J/kg which would be significant if the CIN was approximately -100 J/kg (from COMET AWIPS validation page).

CIN is sensitive to changes in boundary layer values. A change in the surface dew point or the mean mixing ratio in the boundary layer will change the value of CIN. When selecting the start point for lifting a parcel, be sure to accurately reflect the boundary layer conditions at the time when you expect convection to begin.

As in all parcel theory indices, **CIN assumes no mixing** with the surrounding environment, and ignores water loading. The value of CIN will vary **depending on the parcel chosen to lift**. In cases of elevated instability surface based CIN may be quite misleading. As a result the operational use of CIN is far from easy. However, for surfacebased convection, given an adequate forcing mechanism, the **probability of deep convection increases** when CIN decreases below 50 to 70 J/kg, **but it is quite difficult to determine an exact threshold value below which convection will (or will not) occur.**

For example, see this tornado proximity sounding from Davies (2001) as an example where significant CIN (150 j/kg) remained in close proximity to a large tornado-bearing storm.

Total CIN below the effective LFC may be grossly underestimated in AWIPS skew-T sounding output (up to 70 j/kg) due to computational restrictions in the AWIPS skew-T program for using only one LFC.

The virtual temperature correction can increase CIN by 20-50 J/kg .

3. LCL

The Lifting Condensation Level (LCL) is the height at which a parcel becomes saturated when lifted dry adiabatically (see Figure 1). The LCL is commonly used to estimate the level of a **cloud base** from surface based convection. The computed LCL using a **Mean 100 mb Layer (MLLCL)** from the surface has been shown to have the **highest correlation** to measured cloud base (Craven et al. 2002).

Representative parcels for determining the LCL and associated stability are **dependent** on temperature and dew point mixing proportions in the boundary layer.

The SPC uses a mean 100 mb layer parcel to compute LCL height.

The image below is an example of a sounding with a relatively **low** (~ 1935 ft AGL) LCL. This is a AWIPS LAPS sounding from 2300 UTC April 8, 1998 at Birmingham, AL (BMX), where a destructive F5 tornado struck a short time later.

The sounding below (from Davies, 2002) shows an example of a considerably **higher** (~ 6000 ft AGL) LCL height. Several supercell storms which developed in the environment characterized by this sounding did not produce tornadoes, only hail and high winds. Note that strong vertical shear (45 kts from 0-6 km) was present in this sounding.

Strengths:

Recent research has related the LCL to the amount of low-level relative humidity which can affect cooling through evaporation of rain in the downdraft portion of supercell storms (See Markowski et al. 2002) . The higher the LCL is in the near-storm environment, the drier the boundary layer will be. Lower LCL heights and thus, lower cloud bases, are associated with greater amounts of boundary layer moisture and appear to indicate a higher frequency of significant tornado events (See again Craven et al. 2002).

Relatively low LCLs suggest greater low-level relative humidity near the ground and thus, more unstable air originating in the Rear Flank Downdraft (RFD), which researchers have claimed is critical to tornadogenesis (Markowski et al. 2002). Lesser values of boundary layer relative humidity (from high LCLs) might increase stability in Rear-Flank Downdrafts (RFDs) and decrease tornado potential. Rasmussen and Blanchard (1998) showed that LCLs in tornadic supercell soundings were significantly lower (Median value was approximately **800 meters** AGL with no occurrences above 1500 meters AGL) than LCLs in nontornadic supercell soundings.

METAR temperature dew point depressions (T_{dd})are a decent proxy to the local LCL

height in a well-mixed boundary layer, so this parameter can be analyzed hourly on the mesoscale. **T - Td spreads** at the surface ranging from **0 to 22 deg F** correspond to LCL heights less than 1500 m AGL in a well-mixed boundary layer and **12 deg F** spreads correspond to 800 m.

A combination of LCL height (using mean 100 mb layer parcel) and 0 to 1 km shear has been shown to be highly correlated to significant tornado occurrence. See figure below from Craven et al.(2002).

The graphed data from Craven et al. (2002) show a strong signal between significant tornadoes (F2 or greater) and significant hail/wind. Significant tornadoes tend to occur with relatively high 0-1 km shear and relatively low LCL height (e.g. less than 1500 m AGL). On the other hand, storms that produce big hail (greater than 2") and/or wind gusts 65 knots or greater , but no strong or violent tornadoes, tend to possess weaker low-level shear and higher cloud bases.

LCL height is not affected by the virtual temperature correction.

Limitations:

Major variations can occur in small time and space scales with LCL. Actual LCL heights in tornadic storms may be considerably lower so RFD approximations by surface or model data are quite crude at times. LCL computations suffer the same limitations as that of CAPE and CIN calculations in terms of parcel origination levels. Be aware of the level where the saturated parcel originated. The Mean Layer LCL may be the best approximation to actual cloud base.

4. LFC

The LFC, or Level of Free Convection, is the height at which a parcel lifted dry adiabatically to saturation at the LCL and moist adiabatically above the LCL would first become warmer (less dense) than the surrounding air. At the LFC, the parcel experiences positive buoyancy and starts to accelerate upward without further need for forced lifting (See figure 1 again for the graphical procedure for determining the LFC).

Figure 1 Showing the Positive (CAPE) and Negative (CIN) areas. (from NWS/OSF/OTE, 1991)

Strengths:

Low-level CAPE and CIN are related to the height of the LFC (see figure 1). Lower LFC heights imply more low-level CAPE and thus, can be correlated to increasing tornadic likelihood in supercells because of the associated potential for stronger low-level vertical accelerations (see this graph of LFC height from Davies' 2002 study of supercell storms), Rasmussen, 2001 and more cases from Davies, 2002).

In addition, higher LFCs tend to imply more CIN, and lower tornado probability.

Limitations:

A relatively low LFC height, by itself, does not say anything about the depth of CAPE or total CAPE. Total CAPE and of course, shear, must also be assessed for severe potential. CIN may be a better indicator of whether a storm is surface based and thus, have a higher tornado potential.

The virtual temperature correction can lower the effective LFC by 200-500 m (see this figure below from Davies, 2002).

5. She A. Bu Shea B. Mea	Bar Bulk shear is calculated by computing the magnitude of the shear vector between two layers, such as the surface or boundary layer (ex. 0 - 500 m AGL mean wind) and a representative middleyer (such as 6 km AGL). Ik In BUFKIT, the bulk shear is labeled "Shear layer difference" and can be plotted on the overview screen (See BUFKIT overview example below).	18 cases in 2002 UPC-212 mb LFC height (m AGL) 19 update 19 update 10 update 19 update <
-----------------------------------	--	--

 $http://wdtbstaging/courses/dloc/svrparams/svrparams.htm\ (8\ of\ 20)8/19/2005\ 2:43:08\ PM$

Mean shear is defined as the length of the hodograph divided by the depth over which the hodograph was measured. This quantity is computable in the BUFKIT overview screen by selecting the button labeled "Shear (length of hodo)" and clicking on units of (m/s) / km.

The value of shear shown below which appears in the lower left of the hodograph graphic in BUFKIT is actually hodograph length (in m/s and in (m/s)/km) as computed from summing around all the points of the hodograph. The ending point that determines the length of the hodograph computations are selectable in kilometer increments from 1 to 6 km. The default is 4 km. (Note: CAPE values are also displayable in layer integral amounts as well).

Note: Bulk shear and mean shear are not computable from an AWIPS skew-T display; however, you can plot the forecast values on plan view from any of the models available. (See this AWIPS D2D example of 0-6 km bulk wind shear vectors from a 36 hr ETA

Other research such as Craven et al. (2002) and Markowski et al. (2002) using proximity soundings, found that the 0-1 km layer AGL shear was the primary distinguishing kinematic parameter separating supercells that produced significant tornadoes from those that did not. See figure from Craven et al. (2002) which shows a remarkable lower threshold of 10 m/s (20 kts) in the statistical distribution.

Limitations:

Bulk shear (surface to 6 km) has limited utility in distinguishing between supercells that produce significant tornadoes and those that do not (see Rasmussen and Blanchard, 1998).

Hodograph length is more sensitive to vertical resolution and noise in the observations. Computations using numerous model sounding layers often yield unrealistic high values of shear and should be smoothed.

Note: Typical AWIPS skew-T shear values derived from model soundings will be based on only 2 or 3 data points in the first kilometer due to the vertical remapping procedures employed in AWIPS (50 mb vertical resolution). Thus, AWIPS model soundings may show unrealistic shear values. If at all possible, use the BUFR files or a sounding with native model resolution in displaying vertical wind shear on soundings, especially when computing mean shear in the lowest 1 or 2 kilometers.

http://wdtbstaging/courses/dloc/svrparams/svrparams.htm (9 of 20)8/19/2005 2:43:08 PM

forecast).

6. Storm-Relative Helicity (SRH)

Storm-Relative Helicity (SRH) is proportional to streamwise vorticity and storm-relative winds and takes into account storm motion. The mathematical expression for SRH, as defined Davies-Jones et al. (1990) is:

$$SRH = \int_0^h (V - C) \cdot w dz$$

where V is the horizontal velocity (ground-relative vector wind), C is the storm motion, and w is the horizontal vorticity vector. The integration is over the inflow layer of the storm from 0 km to some depth h (typically 1 to 3 km).

SRH is computed in AWIPS skew-T soundings from zero to 3 km and it uses a default storm motion of 30R75 (30 degrees to the right and 70 % of the 0-6 km density weighted average wind). The example below shows SRH represented by twice the area swept out by the storm-relative wind vectors in the lowest 3 kilometers.

In BUFKIT, the SRH is labeled "Helicity". The storm motion vector used in the helicity computations incorporates the Bunker's Storm Motion Technique (see this web site for more details), which has proven physically and statistically superior to the storm motion 30R75 used in AWIPS skew-T calculations.

Note: In version 4 of BUFKIT, there are now options to manually integrate SRH at various layers above the ground, such as from 0 to 1 km. See the hodograph example below showing 0-1 km SRH.

Strengths:

Research and operations have found some correlations between increasing SRH values (from the surface to the lowest 3 kilometers) and tornado intensity (Johns et al. (1990), Davies-Jones et al. (1990), and Kerr and Darkow (1996).

Observed 0-3 km mean SRH using Kerr and Darkow's proximity sounding study showed the following SRH values for various intervals of F scale: Mean 0-3 km SRH was 66 m2/ s2 for F0, 140 m2/s2 for F1 tornadoes, 196 m2/s2 for F2, 226 m2/s2 for F3 tornadoes, and 249 m2/2 for F4 tornadoes. (note: No F5 tornadoes were in their study).

However, operational experience has shown that current or projected 0-3 km SRH values exceeding 100 m2/s2 often reflect a potential for supercells. The higher the SRH, the greater the potential for supercells.

Recent research (Rasmussen, 2001) has found that there is a relationship between 0-1 km SRH and supercells that produce significant tornadoes (F2 or greater). See the graphic below which shows a box and whiskers graph of 0-1 km SRH for soundings associated with supercells with significant (F2 or greater) tornadoes labeled "TOR", supercells without significant tornadoes (only large hail), labeled "SUP", and nonsupercell thunderstorms (only lightning was reported near the sounding), labeled "ORD". The gray boxes denote the 25th to 75th percentiles of the data set, with the heavy horizontal bar at the median value. Vertical lines (whiskers) extend to the 10th and 90th percentiles (as in Rasmussen and Blanchard, 1998).

On the AWIPS hodograph plot, one can estimate the SRH for any storm motion using the lines of constant helicity.

Limitations:

SRH is very sensitive to changes in the horizontal wind vector and storm motion and thus, to use it effectively in mesoscale analysis, the parameter inputs must be updated frequently by METARS, profilers, VAD winds, ACARS, or other data sources.

For an example showing the effective use of EHI, refer to the tornado outbreak case of 10 Oct. 2001 in west central OK. The AWIPS graphic shows a 12-hr forecast of EHI from the ETA valid 00 UTC 10 Oct. 2001. In this event, the EHI accurately "bullseyed" the area of where tornadic thunderstorms subsequently developed over west central Oklahoma and eastern Nebraska. Note, the EHI forecasted fields for this event which also indicated a high probability of tornadoes over portion sof KS (EHI values were predicted from 1.0 to 3.0) but no tornadoes occurred in this region. Thus, forecasters can expect a relatively high false alarm rate with this single parameter.

Mean 0-1 km EHI values derived from mixed-layer (ML) parcels (MLEHI) were found by Davies (2004) to be consistently large (near 2.0 and greater) for F1-F4 tornado cases compared non-tornadic and F0 cases.

Limitations:

Thre is some overlap in observed values of EHI between storm "classes", making standard EHI not always a good parameter for discriminating between storms that produce tornadoes and those that do not.

Also, as was observed in the representative example from 10 Oct. 2001, EHI values greater than 3.0 (as was forecast in KS) **do not always correlate to tornadic supercells.** High CAPE can over inflate EHI and render it not as effective. The CIN (or lack of surface-based CAPE) can also wreck the EHI forecast.

In low CAPE environments and high shear, EHI might underestimate tornado potential. Since EHI is derived from CAPE and shear, it inherits the same limitations and uncertainties from computations of those parameters.

8. Vorticity Generation Parameter (VGP)	VGP relates the physical concept of the rate of tilting of horizontal vorticity to vertical vorticity. The equation used by Rasmussen and Blanchard (1998) is :	Strengths: VGP has been shown to have discriminating ability between supercells and nonsupercells (See figure 14 of Rasmussen and Blanchard, 1998).	
	VGP = [S (CAPE) ^{1/2}]	The graph below from Davies (2002) suggests some usable thresholds in the parameter space of 0-3 km CAPE and VGP.	
	where S is the mean shear (hodograph length divided by depth over which the hodo was measured - 4 km in their study). Mean shear is assumed to be proportional to the horizontal vorticity vector and CAPE ^{1/2} proportional to the vertical component of velocity. In Rasmussen and Blanchard's study (1998), the CAPE in VGP used a parcel with the virtual temperature correction and a uniformly mixed theta-E in the lowest 100 m AGL.	0-2 km VGP vs. 0-3 km CAPE: F1-F5 RUC-2 profiles associated with 124 supercell tomadoes (F1-F5) 0.2 km 05 0.2 km 05 0	
		Limitations: VGP is not as good by itself at discriminating between storms with significant tornadoes.	
		See Rasmussen and Blanchard's (1998) figure 13. VGP may underestimate tornado potential in low CAPE environments. As with EHI, since VGP is derived from CAPE and shear, it inherits the same limitations	
9. Bulk	BRN is a rough measure of the buoyancy to shear ratio. The equation for BRN (Weisman	Strengths:	
Richardson Number (BRN)	and Klemp, 1982) is:	BRN can be used to provide an estimate of rotation potential in storms without considering storm motion. Indicates a higher likelihood of supercells when value is between 10 and 50.	
	BRN = CAPE / 1/2 (U ²)	The BRN value is operationally displayable on both AWIPS observed and model skew-t soundings and on BUFKIT model sounding programs.	
	where CAPE is the integrated positive area resulting from surface parcel ascent from the LFC to the EL, U is the bulk shear determined by subtracting the density-weighted mean wind vector in the lowest half-kilometer layer from the density-weighted mean wind vector	The denominator of the BRN equation, known as BRN shear , has been shown in some studies to have the ability to indicate the likelihood of a convective storm to develop low-level mesocyclones (see Stensrud et al. 1997).	
	in the lowest six kilometer layer. The figure below from COMET's CD-ROM, "Anticipating Convective Storm Structure and Evolution" (COMET, 1996) shows various values of BRN for observed and model simulated storm tupos	Based on mesoscale model data , Stensrud et al. (1997) found that BRN shears of 40 - 100 m2/s2 indicated a likelihood for storms to develop low-level mesos.	
http://wdtbstaging/courses/dloc/symarams/symarams.htm (13.0	f 20)8/19/2005 2:43:08 PM	Operational day to day utility is limited due to sensitivity of CAPE value in the numerator of the BRN equation. For large values of CAPE greater than 4000 j/kg , Stensrud et al.	

(1997) found that BRN was large regardless of the value of the denominator, which is

Another limitation of BRN is that is does not take into account the detailed aspects of the low-level curvature, which has been shown to be significant in supercell dynamics (Weisman and Rotunno 1999). In low buoyancy environments, shear-induced pressure forces, which are related in part to the shear from low-level curvature, can be the dominant factor in controlling updraft strength. Conversely, when bulk shear is weak, lowlevel buoyancy (and lapse rates) can dominate updraft rotation (McCaul and Weisman,

For example, in the case example below from MPX on 0000 UTC 10 May 2000, the AWIPS Skew-T computation of BRN showed a value of only 8, but tornadoes occurred 1 hour later and only 20 miles away.

Lapse rates are used to assess convective instability and are sometimes displayed (as in BUFKIT example below) in tabular format (note ALRs greater than 8.0 deg C/km are highlighted in red in the BUFKIT table).

11. Storm-Relative Flow (SR-flow)

SR-flow is determined by subtracting the parent storm motion vector from the environmental wind vector. Vectors on a hodograph represents wind flow that the storm experiences at various levels as the storm moves through the environment (see figure 2 below). The storm-relative flow vectors are plotted on both BUFKIT (blue lines drawn from the tip of the storm motion vector to the sfc and to 3 km) and AWIPS hodograph (dotted lines) displays. Convective instability results from a combination of sufficient moisture at some level in the lower or middle troposphere, and a LR generally greater than the moist adiabatic lapse rate (which depends on pressure and temperature - see Hess, 1979) above the level of free convection.

Low-level lapse rates (i.e. from the surface to 3 km) have been used operationally to assess and forecast strength of low-level vertical accelerations due to diabatic heating effects.

Large sub-cloud temperature lapse rates (at LR_d or even superadiabatic) can enhance dry microburst potential.

Limitations:

Assessment of the environmental lapse rate by itself is insufficient to determine parcel buoyancies. Actual parcel instability leading to deep, moist convection is primarily associated with vertical parcel displacements. Thus, the key to the possibility for growth of convective storms is the presence of CAPE, not the environmental lapse rates alone (Doswell, 2001).

Steep lapse rates may signify very dry air aloft which may actually inhibit the development of deep, moist convection in some situations.

Strengths:

SR-flow is more physically significant in producing a particular storm structure than ground relative winds. **Strong storm-relative flow can produce updraft rotation and tilting.** One can qualitatively assess the amount of SRH by looking at the amount of area swept out on hodograph by the storm-relative flow vectors.

Thompson (1998) found that supercells were more likely to produce tornadoes when midlevel (\sim 500 mb) storm-relative winds were greater than 8-10 m s⁻¹.

Evans and Doswell (2001) found 0-2 km system-relative flow stronger in derecho events than in non-derecho events. This was likely due to faster forward speed and low-level convergence in derecho events.

Near-ground (0-1 km) storm-relative flow (speed) may also be crucial to tornadogenesis (Markowski et al. 2002).

SR-flow significantly influences hail growth because it determines hail trajectories across the updraft.

Limitations:

Storm-relative flow requires an estimate of storm motion, which is often difficult to determine from observations and especially, in forecasts. It can be difficult to determine the appropriate layer in which SR-flow effects are greatest in a storm.

Multiple storm motions can occur simultaneously with storm systems making stormrelative flow estimates difficult with multicell systems.

Most of the differences in storm-relative flow between tornadic storm and non-tornadic storms reside in the lowest kilometer or so above the ground, where observations of

Figure 3. Determination of the Equivalent Temperature (T_{2}) and the Equivale Potential Temperature (3_{E}) . (from AWS/TR-79/006, 1979)

The AWIPS Interactive Skew-T can be used to display wet-bulb potential temperature (theta-W), which is approximately equal to theta-E minus the quantity $w L/C_p$, where w is

the mixing ratio, L is the latent heat, and C_p is the specific heat of water vapor at constant vapor at constant pressure.

Model objective analyses (plan view) of theta-E are displayed on AWIPS D2D using various models (RUC, ETA, MesoETA, LAPS, MSAS, LAMP, etc.) See graphic below showing an example of surface theta-E from the MAPS Surface Analysis System (MSAS).

In BUFKIT, one can view model vertical time sections of theta-E (see this example).

Limitations:

Potential convective instability, as evidenced by decreasing values of theta-E with height, does not by itself result in deep, moist convection. Just as with steep lapse rates, the parcel has to be lifted (by differential advection, front, etc.) for convection to result.

Another limitation (as with most other parameters) is the difficulty in choosing the right parcel to be lifted.

Note: There are some differences in how AWIPS and GEMPAK computes theta-E (see the AWIPS validation web site).

13. Wet-bulb Zero (WBZ) Height

Usually labeled as WBZ, the wet-bulb zero is the height at which the wet-bulb temperature is zero degrees C. This approximates both the height at which falling hail begins to melt and the height at which the downdraft begins (OSF/OTB, 1993). On BUFKIT, the WBZ height is shown on the Indices screen (in ft AGL) and is also plotted (optionally) on the Skew-T display in red (see figure below).

	Data Mop Indices Precip Type Lopse Rate Heavy Pop Stom Type Hodograph CAPE 1135 700 1030 CINS 40 28 HELCTY -2 150 250 EHI -0.01 9.5 1	 Interstations: WBZ values are only general guidelines for hail potential. Should also analyze the CAPE and CIN in a proximity sounding for updraft potential. WBZ only partially predicts severe hail potential because it doesn't consider undraft strength or parcel trajectories. Since
	BRN 105.71 50 45 NCAPE 0.12 0.1 0.2 EQ LVL 38.888 25000 32000 WBZero 10.964 10000 9000	hailstone growth is related to the residence time a potential hailstone covers across the growth region of a storm, broad, moderate updrafts combined with strong midlevel storm-relative flow (and weaker low-level shear), and higher cloud bases are more likely to produce significant hail fall than storms having strong, but very compact updrafts, and weak midlevel SR-flow. That is why storms with deep mesocyclones often produce hail with bits but 0.101 stores to the stores with base whereas stores with be same VII s in
	LI -3.3 TT 51 TO 24.1 K Idx 44 Shwltr -3 SWEAT 235	In addition, since hail volume increases relative to surface area by a factor of the radius r, large hail can be maintained despite high WBZ heights such as in the presence of a Bounded Weak Echo Region (BWER).
	Precipitation: 0.000 Hr 0.047 Total Convect Precip: 0.000 Hr 0.047 Total Pcpble Water: 1.741	
	LCL 738 mb CCL 752 mb LFC 747 mb EQL 187 m 7,447' 6,955' 7,139' 38,883	
14.	Sounding Level (ASL). STP is a multi-parameter index developed by the SPC that incorporates bulk shear,	SRH, Strengths:
Significant Tornado Parameter (STP)	CAPE, CIN, and LCL height. The STP index is calculated as : STP = (MLCAPE/1500 J kg-1) * ((2000-MLLCL)/1500 n (ESRH/150 m2 s-2)* (ESHEAR/20 m s-1) * ((200+MLCL) 150 J kg-1)	The STP has been shown operationally to discriminate between significantly tornadic and nontornadic supercells. A majority of significant tornadoes (F2 or greater damage) have been associated with STP values greater than 1, while most non-tornadic supercells have been associated with values less than 1 in a large sample of RUC analysis proximity soundings (See Thompson et al (2004). The newest version of STP that incorporates CIN can reduce areal false alarms.
	where MLCAPE is the 100 mb mean parcel CAPE, MLLCL is the 100 mb mean par LCL height, MLCIN is the 100 mb mean parcel CIN, ESRH is the effective storm-rel	cel ative

helicity (SRH area confined to lifted parcels that are buoyant with at least 100 J/kg of

Strengths:

In general, WBZ heights between 7000 ft and 10,500 ft AGL are associated with a potential for large hail at the surface. Higher WBZ heights imply mid- and upper-level stability and imply a large melting zone for falling hail. On the other hand, lower WBZ heights suggest that the lower levels of the atmosphere are too cool and stable to support

15. Downdraft Convective Available Potential Energy (DCAPE)

CAPE and not strongly capped with more than -250 J/kg of CIN), and ESHEAR (maximum bulk shear from the most unstable parcel level upward to 40-60 % of the equilibrium height). See SPC mesoanalysis web site for more details.

When the MLLCL is less than 1000 m AGL, the MLLCL term is set to one, and when the MLCIN is greater than -50 J kg-1, the MLCIN term is set to one. The ESHEAR term is capped at a value of 1.5, and set to zero when ESHEAR is less than 12.5 m s-1.

DCAPE is a parameter designed to try and measure the downdraft strength in convective storms. As with CAPE, DCAPE is an integrated quantity. To compute DCAPE graphically (see figure below), one must determine the average wet-bulb potential temperature (theta-W) of the layer in which the downdraft is initiated. By lifting a parcel from the downdraft initiation level (for example, assumed around 700 mb in the figure) to a point where it becomes saturated and then following that parcel down a saturated adiabat all the way to the surface, you can then compute the area between the average theta-W and the environmental temperature (green shaded region in the figure). In the figure below, the dark blue curve represents the downdraft that is completely saturated as it follows the average (mixed) theta-W down to the ground, the thick grey line is the downdraft initiation level at the bottom of the dry layer, and the thick orange line is the theta-W of the updraft.

From Thompson et al (2004), this graph shows box and whiskers plots of the new versions of STP with CIN on the left, and without CIN on the right. The 3 classes of surface-based supercells are : significantly tornadic (sigtor), weakly tornadic (F0-F1), and nontornadic. Top and bottom of the shaded boxes denote the 75th and 25th percentile values respectively, with the median marked in each box.

Limitations:

This multi-parameter index inherits all the other limitations of its constituents. It is used primarily for supercell forecasts of significant tornadoes. There is considerable overlap in the sigtor (F2 and larger) and weaktor (F0 -F1) classes of storms.

Strengths:

DCAPE estimates downdraft potential strength better than just measuring relative humidity or T-Td at some level. It considers diluted updrafts mixing with enivronmental air. It can be used to assess microburst potential for some pulse storms.

Limitations:

DCAPE should be used with caution because it starts the analytical process at some estimated downdraft initiation level, which is not well known. One could just as easily start the integration at a different level than 700 mb. Picking a higher (lower) level most likely creates larger (smaller) DCAPE.

A second caution of using DCAPE is that the downdraft will most likely be unsaturated as evaporation is never efficient enough to compensate for adiabatic compressional heating of dry air. The downdraft consequently never follows the theoretical qw curve and instead warms more quickly in reality. Most likely the realized DCAPE is much less than the theoretical leading to a weaker than expected downdraft.

As a third caution, DCAPE does not account for negative buoyancy due to precipitation loading. A reflectivity core of 60 dBZ or greater may create enough precipitation loading to comparable to negative thermal buoyancy and therefore lead to a stronger downdraft than the DCAPE suggests.

Finally, DCAPE does not account for nonhydrostatic downward directed pressure deficits that result from strong mesocyclogenesis or or divergence beneath the level of interest. Thus, DCAPE will not estimate well the downdrafts in supercells.

	ТОР	INDEX		
	<u>}</u>			
	National Weather Service Office of Climate, Water, and Weather Warning Decision Training Branch 3200 Marshall Ave, Suite 202 Norman, OK 73072 Page Author: WDTB Webmaster Page last modified: August 19, 2005	er Services 5 14:19	Disclaimer Credits Glossary Privacy Policy	About Our Organization Career Opportunities Strategic Plan NWS Mission Statement
http://wdtbstaging/courses/dloc/svrparam	ns/svrparams.htm (20 of 20)8/19/2005 2:43:08 PM			