

Microwave Sounding in All-Weather Conditions and Plans for NPP/ATMS

October 16th 2008

S.-A. Boukabara, K. Garrett, Q. Liu, F. Iturbide-Sanchez, C. Grassotti, F. Weng and R. Ferraro

Atmospheric Sounding Science Team Meeting, October 14-17, 2008, Marriott Greenbelt, Maryland, USA

- Context
- Description of MiRS
- Results of MiRS for NOAA and Metop
- Plans for NPP ATMS

- NOAA/NESDIS/STAR is developing a consistent, unique physical algorithm for all microwave sensors (called MiRS: Microwave Integrated Retrieval System)
- MiRS applies to imagers, sounders, combination
- MiRS uses the Community Radiative Transfer Model (CRTM) as the forward operator
- MiRS is applicable on all surfaces and in all-weather conditions (including in presence of cloud, rain, ice)
- MiRS is running operationally for NOAA-18, Metop-A and DMSP SSMI/S
- Purpose: Get ready for the NPP and NPOESS era.
 To use MiRS for ATMS and potentially for MIS.

Description of MiRS

Mathematical Basis

• Cost Function to minimize:

$$J(X) = \left[\frac{1}{2} \left(X - X_0\right)^T \times B^{-1} \times \left(X - X_0\right)\right] + \left[\frac{1}{2} \left(Y^m - Y(X)\right)^T \times E^{-1} \times \left(Y^m - Y(X)\right)\right]$$

• To find the optimal solution, solve for:

$$\frac{\partial J(X)}{\partial X} = J'(X) = 0$$

Assuming local Linearity

$$\mathbf{y}(\mathbf{x}) = \mathbf{y}(\mathbf{x}_0) + \mathbf{K} \begin{bmatrix} \mathbf{x} - \mathbf{x}_0 \end{bmatrix}$$

• This leads to iterative solution:

$$\Delta X_{n+1} = \left\{ BK_n^T \left(K_n BK_n^T + E \right)^{-1} \right\} \left[\left(Y^m - Y(X_n) \right) + K_n \Delta X_n \right]$$

More efficient (1 inversion)

The first retrieval attempt includes only clear and cloudy (non-precipitating) parameters

- Temperature & Water vapor profiles @ 100
 layers
- Skin Temperature
- Surface Emissivity Spectrum
- Non-precipitating cloud amount vertical profile
- Liquid and frozen rain vertical profiles

Assumptions Made in Solution Derivation

- The PDF of X is assumed <u>Gaussian</u>
- Operator Y <u>able to simulate measurements-</u> <u>like</u> radiances
- Errors of the model and the instrumental noise combined are assumed (1) <u>non-biased</u> and (2) <u>Normally</u> distributed.
- Forward model assumed <u>locally linear</u> at each iteration.
- Independence of errors (instrumental and background)

Retrieval in Reduced Space (EOF Decomposition)

- All retrieval is done in EOF space, which allows:
 - Retrieval of profiles (T,Q, RR, etc): using a limited number of EOFs
 - More stable inversion: smaller matrix but also quasi-diagonal
 - Time saving: smaller matrix to invert
- Mathematical Basis:
 - EOF decomposition (or Eigenvalue Decomposition)
 - By projecting back and forth Cov Matrx, Jacobians and X

Purpose(s) of Retrieving Precipitation Parameters

- #1: Be able to retrieve Temperature mainly (possibly water vapor as well) under precipitating conditions
- #2: Retrieve precipitation parameters themselves ONLY if enough information content present (not the case currently)
- Think of it as a 'PRECIP- CLEARING' but highly non-linear : Account for precip only to absorb extinction effects on radiances and allow retrieval of T/Q.

MIRS Convergence Criteria

Convergence should check for minimal cost function J

- In practice, we use non-constrained cost
 Function:
 - $\varphi^{2} = (Y^{m} Y(X))^{T} \times E^{-1} \times (Y^{m} Y(X))$
- Convergence threshold

$$\varphi^2 <= 1$$

Convergence Example

- Convergence is reached everywhere: all surfaces, all weather conditions including precipitating, icy conditions
- This is a major achievement: a radiometric solution is found even when precip/ice present. With CRTM physical constraints and covariance-based correlations.

Current version

List of products (Official)

Metop-A and NOAA-18

NOAA

- 1. Temperature profile (ocean)
- 2. Moisture (ocean and non-costal land)
- 3. Total Precipitable Water (TPW) (ocean and non-costal land)
- 4. Land Surface Temperature (LST)
- 5. Emissivity Spectrum (All surfaces)
- 6. Surface Type (sea, land, snow, sea-ice)
- 7. Emissivity-based Snow Water Equivalent (SWE)
- 8. Emissivity-based Snow Cover Extent (SCE)
- 9. Emissivity-based Sea Ice Concentration (SIC)
- 10. Vertically Integrated Non-precipitating Cloud Liquid Water (CLW)
- 11. Vertically Integrated Ice Water Path (IWP)
- 12. Vertically Integrated Rain Water Path (RWP)

DMSP F16 SSMIS

- 1. Temperature profile (ocean)
- 2. Moisture (ocean and non-costal land)
- 3. Total Precipitable Water (TPW) (ocean and non-costal land)
- 4. Land Surface Temperature (LST)
- 5. Emissivity Spectrum (All surfaces)
- 6. Surface Type (sea, land, snow, sea-ice)

Total: 30 products

Note: The hydrometeor profiles dropped from official list (lack of information content in radiances, see next slide)

List of unofficial products

(Delivered For Testing purposes)

Metop-A and NOAA-18

- 1. Cloud Liquid Water Profile (CLWP) over ocean
- 2. Surface Temperature (skin) of snow-covered land
- 3. Sea Surface Temperature (SST)
- 4. Effective grain size of snow (over snow-cov
- 5. Multi-Year (MY) Type Sea Ice concentra
- 6. First-Year (FY) Type Sea Ice Concer

DMSP F16 SSMIS

7.

- 1. Extended Total Precipitable
- 2. Emissivity-based Snow
- 3. Emissivity-based Sp 20 T Extent (SCE)
- 4. Emissivity-based
- 6. Sea Surface (SST)
 - Effective covered land surface)

Concentration (SIC)

- 8. Multi (Y) Type Sea Ice concentration
- 9. Find (FY) Type Sea Ice Concentration

Total: 21 test products

Note: Close made availed the sting purposes (se availed availe

d surface)

Sver non-coastal Land

quivalent (SWE)

Results of MiRS for NOAA-18 and Metop-A

Assessment of Sounding Performances in Clear/Cloudy

Comparisons made daily wrt:

- GDAS fields
- ECMWF fields
- COSMIC profiles
- Radiosondes profiles
- Heritage sounding algorithms (ATOVS)

NoData

The temperature is officially

delivered over ocean only. But over non-ocean (land, snow, sea

ice), temperature is still valid.

Validation is performed by

comparing to:

-GDAS

-ECMWF -RAOB

OC fail

75 30 -15-30 -45 -60**GDAS** -75-90 -180-150 -120 -90 30 60 90 120 150 180

205

210

200

215

220

225

230

N18

Bias of roughly 1 K noticed at the surface

Collocation criteria (COSMIC, ATOVS, SSMIS, RAOB): +/- 5 hours, +/- 100 Kms Data spanning 42 days

Temperature Profile (4/4)

(Performances)

I and

		Ocean		Lano	
	Layer	Bias (K)	Std (K)	Bias (K)	Std (K)
MIRS	100 mb	0.281	1.883	1.019	1.787
VS ECMWE	300 mb	0.273	1.504	0.548	1.701
	500 mb	0.059	1.311	0.241	1.806
	800 mb	1.169	1.823	1.157	3.410
	950 mb	1.727	2.736	0.860	4.480
MIRS	100 mb	-0.0485	1.541	0.017	1.708
VS CD4S	300 mb	0.183	1.589	0.151	1.801
UDAS	500 mb	-0.197	1.401	0.245	1.847
	800 mb	1.152	1.711	1.277	3.826
	950 mb	1.107	2.808	0.881	4.826
MIRS	100 mb	0.080	1.739	0.259	2.085
VS RAOR	300 mb	0.851	1.858	0.489	1.774
KAUD	500 mb	0.123	1.578	-0.062	1.811
	800 mb	0.681	2.082	1.501	2.789
	950 mb	0.810	2.882	1.702	3.146

Note*: IORD-II requirements for temperature in cloudy:

-Uncertainty (surface to 700 mb: 2.5K per 1km layer, 700 mb to 300 mb: 1.5K per 1 km layer, 300 to 30 mb: 1.5K per 3km layer, 30 to 1mb: 1.5K per 5km layer)

*These requirements are for CrIS and ATMS, which have more channels and higher sensing skills in general than AMSU, MHS or SSMIS

565 672

799

-100

-50

50

Mean Bias (%)

__ Sea Ice

100

20

Ser

Moisture Profile (1/4)

(over open water and land, against GDAS)

MIRS N18 EDR Water Vapor Content (g/kg) at 500mb 2008-06-04 Asc (V1306) NWP GDAS Collocated N18 Water Vapor(g/kg) at 500mb 2008-06-04 Asc (V1316) 90 Validation of WV 75 done by 60 63 comparing to: -GDAS 45 -ECMWF 30 -RAOB **Retrieval done** over all surfaces -15 in all weather -30-30 conditions -45 **MIRS** GDAS -60 -60 -75 -75 -90 -90 -180 -15030 60 90 120 150 180 -150150 180 -120-90 -60 -30 0 -180-120-90 -60 -30 0 30 60 90 120 1.00 1.50 NoData OC fail 0.50 1.50 2.00 2.50 3.00 3.50 NoData OC fail 0.50 1.00 2.50 3.00 3.50 0.00 0.00 2.00 MIRS Retrieval - NWP Analysis (GDAS) at 500mb 2008-06-04 Asc (V1316) MIRS N18 Water Vapor Mean Bias Vert. Distri. 2008-06-04 Combined (V1316) MIRS N18 Water Vapor. STD Vertical Distribution 2008-06-04 Combined (V1316) -land 238 ₹ Bias (6×//6) 283 Assessment Sea Bids includes: 336 Content 0.0 -Angle 400 E 400 dependence /apor -Statistics profiles 475

Stdev

80

100

40 60 Standard Deviation (%)

__ Sea Ice

-Difference maps

₹ -0.5

-1.0

-60

-40

-20 0 20 Local Zenith Angle (degree)

N10

60

4<u>0</u>

Moisture Profile (2/4)

(over open water and land, against ECMWF)

Moisture Profile (4/4)

(Performances)

-		Ocean		Land	
	Layer	Bias (%)	Std (%)	Bias (%)	Std (%)
MIRS	100 mb				
VS ECMWE	300 mb	8.0	41.0	1.5	54.0
	500 mb	-0.5	42.5	-1.5	41.0
	800 mb	11.0	28.0	-1.0	32.5
	950 mb	-5.0	17.0	-5.5	32.0
MIRS	100 mb				
vs GD4S	300 mb	-29	40.5	-30.0	53.0
012/15	500 mb	-10.0	39.5	-15.0	38.5
	800 mb	2.0	22.0	8.0	30.0
	950 mb	-5.5	13.5	3.0	30.0
MIRS	100 mb				
vs RAOR	300 mb	21.5	75.0	21.0	83.0
NIOD	500 mb	2.0	65.0	1.0	60.0
	800 mb	2.0	38.0	7.0	41.0
	950 mb	0.5	21.5	4.0	30.0

Note*: IORD-II requirements for Water Vapor Mixing Ratio (in g/Kg), for cloudy:

-Uncertainty (surface to 600 mb: greater of 20% or 0.2 g/ Kg, 600 mb to 100 mb: greater of 40% or 0.1 g/Kg) [expressed as percent error of average mixing ratio in 2km layers]

- No measurement precision

*These requirements are for CrIS and ATMS, which have more channels and higher sensing skills in general than AMSU, MHS or SSMIS

Assessment of Sounding Performances in Hurricane conditions

A tricky issue to say the least because of:

- Highly variable meteorological conditions (in time and space)
- Collocation errors
- Moving target (sondes sample different parts of the atmosphere while dropping/ascending)
- Representativeness errors (spot vs footprint)
- Intra variability of ground truth measurements
- 3D effects on TBs

Assessment of Sounding in Hurricane Conditions

• Case of July 8th 2005

Collocation with GPS-Dropsondes

Plans for ATMS

Running MiRS for ATMS

- Same code used for ATMS (leverage a lot of effort performed for N18, Metop-A, DMSP, AMSR-E, etc)
- External files needed:
 - Noise file (both instrument and RTM uncertainty)
 - Emissivity Covariance Matrix
 - CRTM Look-Up-Tables
- Data access: through NDE NPOESS Data Exploitation (NDE): MiRS will run on NDE
- Work accomplished:
 - Reader of HDF-5 files ready to process data

ATMS Radiances

- ATMS SDR sample files provided through NDE (by NGST) in HDF-5 format.
- Decoder/encoder ready.
- Plan: simulate ATMS radiances on a daily basis to generate proxy ATMS data to test MiRS on

Conclusions & Talking Points

Discussion (1/2)

- MiRS sounding Performances were assessed using different sources. Sometimes results are different, reflecting inter-truth variability.
- When consistent behavior is noticed, assumed that MIRS is the likely reason
- SSMIS is found, as expected from radiances noisiness, to have slightly more degraded performances (than N18) –*Not shown here-*
- N18 and Metop-A running at AMSUA resolution
- SSMIS running at UAS resolution
- TPW is extended to all surfaces [Ocean, Land, Sea ice and Snow] operationally for NOAA-18 and Metop-A, for the first time.
- Retrieval is performed (and convergence reached) in cloudy, rainy, ice-impacted scenes

- MiRS is ready to be applied to ATMS (NPP): No issues expected
- Leverage of previous work for N18, MetopA and DMSP SSMIS will have direct positive impact on ATMS readiness (and likely validity)
- MiRS will assimilate (retrieve) all ATMS data (over all surfaces and in all-weather conditions)
- Assessment in clear/cloudy conditions pretty good.
- Assessment in all-weather conditions much tougher.
- Suggested further work:
 - Use ATMS retrievals as first guess to CrIS/ATMS?
 - Given that CRTM is valid in IR/MW and MiRS technology is not spectrum-dependent, Use MiRS for IR/MW synergy?

BACKUP SLIDES

all radiances together

Handling Channel Degradation / Failure

- Instrument NEDT (AMSU/MHS) is computed dynamically from Level1B data, then fed to retrieval, along with RTM uncertainty
- If a channel' NEDT is high, channel will have less weight in retrieval
- Similarly, if RTM precision for a channel is low, it will have less weight in retrieval
- If channel is declared *failed*, MIRS has ability to turn it OFF by a switch

MIRS 1DVAR Algorithm is still valid (by concept) even if: -Noise becomes higher,

- If channel fails

Illustration of the System Functionality

Assessment in a Precipitating Case

MID ATMOSIN

noaa

PTWENT OF

Comparison of Performances (N18 vs SSMIS)

Temperature Performances (Sea)

