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[1] When intercomparing measurements made by remote sounders, it is necessary to
make due allowance for the differing characteristics of the observing systems, particularly
their averaging kernels and error covariances. We develop the methods required to do this,
applicable to any kind of retrieval method, not only to optimal estimators. We show how
profiles and derived quantities such as the total column of a constituent may be properly
compared, yielding different averaging kernels. We find that the effect of different
averaging kernels can be reduced if the retrieval or the derived quantity of one instrument
is simulated using the retrieval of the other. We also show how combinations of measured
signals can be found, which can be compared directly. To illustrate these methods, we
apply them to two real instruments, calculating the expected amplitudes and variabilities
of the diagnostics for a comparison of CO measurements made by a ground-based Fourier
Transform spectrometer (FTIR) and the ‘‘measurement of pollution in the troposphere’’
instrument (MOPITT), which is mounted on the EOS Terra platform. The main
conclusions for this case are the following: (1) Direct comparison of retrieved profiles is
not satisfactory, because the expected standard deviation of the difference is around half of
the expected natural variability of the true atmospheric profiles. (2) Comparison of the
MOPITT profile retrieval with a simulation using FTIR is much more useful, though still
not ideal, with expected standard deviation of differences of around 20% of the expected
natural variability. (3) Direct comparison of total columns gives an expected standard
deviation of about 9%, while comparison of MOPITT with a simulation derived from
FTIR improved this to 8%. (4) There is only one combination of measured signals that can
be usefully compared. The difference is expected to have a standard deviation of about
5.5% of the expected natural variability, which is mostly due to noise. INDEX TERMS: 0394

Atmospheric Composition and Structure: Instruments and techniques; 3260 Mathematical Geophysics: Inverse
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1. Introduction

[2] Remote-sounding methods are used to make a wide
range of atmospheric measurements, both from satellites and
from the surface. Because a remote sounder measures some
more or less complicated function of the quantity of interest,
a retrieval or inverse process is usually required to derive the
final product. Consequently, profiles obtained from remote
sounding are not usually simple measurements of the actual
state of the atmosphere with independent errors, rather they
are the best estimate the experimenter could make given the

measurements and whatever prior knowledge about the state
of the atmosphere is available, and are often an estimate of
some smoothed function of the profile, with errors which are
correlated between different altitudes. To validate such
methods it is necessary to understand the relationship
between the quantity measured and the true atmospheric
state, and to carry out a detailed error analysis [e.g., Rodgers,
1990; Connor et al., 1995].
[3] It is also necessary for validation purposes to compare

measurements of the same quantity from different instru-
ments. If an ‘‘ideal’’ instrument were available, one which
directly measured the quantity of interest, at the time and
location measured by the remote-sounding instrument, even
though with some measurement error, then a comparison
with a single remote sounder would be straightforward. The
effect of the remote sounder could be simulated using the
direct measurement, and compared with the actual remote
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measurement, either as the original measurements or as the
retrieval.
[4] The question of establishing appropriate criteria for

adequate temporal and spatial coincidence for intercompar-
ison will not be dealt with in this paper. This has been well
covered in the literature, generally in terms of examining the
variation of the statistics of differences as a function of
spatiotemporal separation, for example see the discussion
by [Russell and Smit, 1998]. Rather we will deal with the
techniques needed for comparing remote sounders with
different characteristics, a question which has received little
attention so far. In comparing two remote sounders we try to
validate both without knowing the actual value of the
quantity being measured. The intercomparison of different
remote sounding instruments is not a simple process, and
the proper statistical methods are not often used. Not only
must the effects of random and systematic measurement
error be considered, but also the different observing system
characteristics. The aim of this paper is to set these methods
on a proper footing, illustrating the approach with compar-
isons of real remote-sounding instruments.
[5] In section 2 we describe the basic characteristics of a

measurement and retrieval in the linear approximation, and
outline some of the concepts that will be used. We consider
ways of comparing both the measured signals and the
retrieved profiles. In section 3 we present the formalism
for comparing retrieved profiles, and in section 4 we extend
it for derived quantities such as total column amounts. In
section 5 we consider what can be compared directly with-
out reference to the retrieval process, thus allowing us to
distinguish effects that might be due to the retrieval process.
After some comments on nonlinearity in section 6, we
illustrate the approach in sections 7 and 8 by calculating
the expected sizes of the diagnostics discussed for a
comparison of CO measurements by a ground-based Fourier
Transform spectrometer and the ‘‘measurement of pollution
in the troposphere’’ instrument MOPITT, which flew on the
EOS Terra platform.
[6] At the time of writing, flight data from MOPITT is

not yet at a stage of development where these techniques
can be usefully applied. We hope to hope to make formal
comparisons of real data in a future publication.

1.1. Terminology and Notation

[7] We will use the term ‘‘measurement’’ generically to
refer to both the quantity originally measured and the
quantity retrieved. The quantity originally measured (per-
haps after a simple conversion to appropriate scientific
units), for example radiance or transmittance, will be
described by the term ‘‘(measured) signal’’. The quantity
finally required will be described as the ‘‘retrieved quan-
tity’’ or a ‘‘retrieval’’. The combination of instrument and
retrieval method will be called the ‘‘observing system’’.
[8] The theory will be developed in terms of the algebra

of vectors and matrices. A matrix will be denoted by an
upper case bold symbol, e.g., A, and a column vector by a
lower case bold symbol, e.g., x. The atmospheric state to be
retrieved by the two observing systems is denoted by a state
vector x, of length n, containing for example mixing ratios
on a set of pressure levels. The signal measured by instru-
ment i is denoted by a measurement vector yi, of length mi,
containing such things as signals for each channel. The

instrument model includes a forward model fi(x) and
measured signal error ����������i, both random and systematic, such
that:

yi ¼ f i xð Þ þ ����������i ð1Þ

The statistics of the measured signal error must be known,
and will be described by a covariance matrix S†i ¼ E ����������i����������

T
i

� �
:

1.2. Basic Requirements

[9] The purpose of an intercomparison is to determine
whether the observing systems agree within their known
limitations, i.e. the extent to which the forward models and
the error covariances satisfactorily describe the instruments
and their errors, and the retrieval methods reproduce the
atmosphere. To this end the following considerations are
relevant:
1. For simplicity, the observing systems should both

retrieve the same target quantity. The definition of the state
vector x includes the parameter retrieved, such as trace gas
mixing ratio or concentration, but there may also be
instrument-specific parameters in the state vectors that are
not targets for comparison but need to be retrieved, such as
surface reflectivity or instrumental offsets. The definition of
x also includes the grid on which the targets for comparison
are retrieved, and any interpolation rule implied. For the
purpose of this paper we take all profiles to be represented
on the same vertical grid, fine enough that representation
error can be ignored. If a retrieval is carried out on a
coarse grid, then an interpolation must be used before the
methods described here are applied. It is possible to
compare observing systems that retrieve different repre-
sentations of the state, but this leads to extra complications
in the comparison that we prefer to leave to a future
publication.
2. We must specify an ensemble of states over which the

comparison is to take place. For a theoretical assessment of
instrumental capabilities, this can be chosen to be all-
encompassing, but need not include states grossly outside
the range of atmospheric possibilities. For an actual
intercomparison over an ensemble of real atmospheres, it
should describe the real ensemble as far as possible, but in
many cases it is not well known, so we must be able to treat
these cases too. It need not be the same as any a priori used
by either or both retrieval methods, but it could be if
appropriate. For convenience we will assume the compar-
ison ensemble to be described by a Gaussian distribution,
with mean xc and covariance Sc.
3. The intercomparison must allow for differences bet-

ween a priori states used by different observing systems. In
this analysis the a priori is used primarily as the linearization
point for the characterization of the retrieval process in terms
of its averaging kernel; it is a profile which would be
unchanged by measurement and retrieval in the absence of
measured signal error.
[10] We will develop first the necessary theoretical meth-

ods for linear problems, including cases in which the forward
model can be adequately linearized within the range of the
comparison ensemble. In these cases the instrument model
may be described by:

yi � y0 ¼ Ki x� x0ð Þ þ ����������i ð2Þ
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where K = @f/@x is the m � n weighting function matrix, x0
is a linearization point, and y0 = f(x0).
[11] A retrieval method may be described as optimal. By

this term we will denote one which is, for example, a
maximum a posteriori method, providing some character-
istic of the Bayesian ensemble consistent with the measure-
ment, its noise statistics and some a priori state. However, it
is important to note that an optimal retrieval depends on
both the measurement and the a priori, and an inverse
method which is optimal with respect to its own a priori,
xa, Sa, will not be optimal with respect to a different one
such as xc, Sc. The intercomparison method must be able to
treat observing systems without regard to whether the
retrieval methods are optimal in any sense.

2. Characterization and Information Content
of a Retrieval

[12] An intercomparison of two observing systems should
start with a comparison of their theoretical capabilities. This
will include such things as (1) the averaging kernels, to
characterize the altitude resolution and vertical range of the
retrievals (2) the retrieval noise covariance (systematic and
random components), to characterize the accuracy and
precision of the retrieval (3) the degrees of freedom for
signal, i.e. the number of independent parameters defining
the improvement of the profile over the a priori and (4) the
Shannon information content, as an overall measure of
signal-to-noise ratio relative to the a priori.

2.1. Averaging Kernels and Errors

[13] Following the approach of Rodgers [1990, 2000] we
relate the retrieved quantity x̂ to the true quantity x and to
any a priori used in its retrieval by

x̂� xa ¼ A x� xað Þ þ ����������x ð3Þ

where A is the averaging kernel matrix, ideally (but not
usually) a unit matrix, and the error ����������x in x̂ is due to both
random and systematic errors in the measured signal and in
the instrument’s forward model. If x describes an altitude
profile of some quantity, the l-th row al

T of A can be
regarded as a smoothing function for the altitude corre-
sponding to l. It should be a peaked function, the width of
the peak qualitatively describing the vertical resolution of
the retrieval. The range of altitudes over which the
observing system is sensitive to the profile is indicated by
the range of altitudes for which the area of the averaging
kernel (the sum of its elements) is of order unity. Outside
this range the area will tend toward zero as the retrieval
tends toward xa plus a measurement error component.
[14] Equation (3) may be used as the basis for comparing

real measurements to other measurements or model calcu-
lations with much higher vertical resolution and much less
dependence on their a priori. As pointed out by [Connor et
al., 1994], we may then ignore the influence of the averag-
ing kernels and the a priori on the high resolution profile,
xh, considering it as if it were an ‘‘ideal’’ measurement, and
substitute it for x in (3). We then obtain

xs ¼ xa þ A xh � xað Þ ð4Þ

where xs is a smoothed version of xh. In particular, xs is the
profile which would be retrieved by our lower resolution
measurement in the absence of retrieval error if the high
resolution profile xh were the true atmospheric profile. By
comparing x̂ to xs rather than to xh we eliminate the effects
of the lower resolution measurement’s smoothing. The more
general case, where the smoothing of both instruments must
be considered, is addressed in section 3.
[15] When intercomparing real observing systems,

another complication arises that there may be extra elements
in the state vectors which are not common to the two
observing systems. We wish to compare only the parts of
the two state vectors that are common and refer to the
atmospheric profile. In the case to be examined in this
paper, the FTIR state vector contains a constituent profile to
be compared, plus elements such as those describing the
instrument characteristics and amounts of other constitu-
ents, which are not to be compared. The MOPITT state
vector contains the constituent profile to be compared, plus
the surface temperature and emissivity. Hence the averaging
kernel description of the observing systems, equation (3),
must be generalized.
[16] Let us write the full state vector for an instrument as

s, made up of x, the part to be compared, and e, the extra
elements not to be compared. Then equation (3) becomes

ŝ� sa ¼
x̂� xa
ê� ea

� �
¼ Axx Axe

Aex Aee

� �
x� xa
e� ea

� �
þ ����������x

����������e

� �
ð5Þ

so that the component for x alone is

x̂� xa ¼ Axx x� xað Þ þ Axe e� eað Þ þ ����������x ð6Þ

giving the error in x̂ as

x̂� x ¼ Axx � Ið Þ x� xað Þ þ Axe e� eað Þ þ ����������x ð7Þ

where I is a unit matrix. The error in x̂ now includes an
extra term Axe(e � ea) due to interference between the
profile part and the rest of the state vector. The covariance
of all error terms other than that due to smoothing of x by
the averaging kernel is, taking x and e to be uncorrelated,

Sx ¼ AxeSeaA
T
xe þ S†x ð8Þ

where Sea is the a priori covariance of e. The contribution
Axe(e � ea) and its covariance may be described by the term
‘‘interference error’’.
[17] The term ����������x is due only to errors (noise plus system-

atic errors) in the measured signal and the forward model.
We will call this ‘‘measurement error’’. Measurement error
plus interference error is the error in the profile as smoothed
by the averaging kernel. We will call this ‘‘retrieval error’’.
The total error x̂ � x is the retrieval error plus the smoothing
error.
[18] The measurement error ����������x is not usually independent

between altitude levels. Its covariance matrix S†x is not
diagonal. If the measured signal error ���������� has covariance S†,
often diagonal, then

S†x ¼ GS†G
T ð9Þ
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where G = @x̂/@y is the retrieval gain, or contribution
function matrix. We may characterize the measurement
error, or any error covariance contribution, by its diagonal
elements or more generally by its eigenvectors and values.
The diagonal elements are the traditional variances of the
retrieval at each level, and give an indication of the error in
the retrieval. However, because of the correlations between
levels this is not the whole story. A more general approach
to understanding correlated errors is to consider the ‘‘error
patterns’’, or eigenvectors of S†x scaled by the square roots
of the eigenvalues. These are independent quantities with
unit variance [Rodgers, 1990].

2.2. Information Content and Degrees of Freedom
for Signal

[19] The Shannon information content H of the measure-
ment and its degrees of freedom for signal ds are closely
related. They both characterize the change in the knowledge
of the state as a result of making a measurement, so that
they must be calculated with respect to a specified a priori.
For a particular optimal estimator, take the a priori cova-
riance Sa to describe the quality of knowledge of the state
before the measurement is made, and the total retrieval
covariance Ŝx to describe the knowledge afterward. We can
define a generalization of the noise to signal variance ratio
(i.e. the reciprocal of the s.n.r. squared) by the symmetric
matrix R = Sa

�1/2ŜxSa
�1/2. The information content is then

H ¼ � 1
2
log2 jRj bits, and the degrees of freedom for signal

is ds = trace(I � R).
[20] Information content may also be defined for the

original measured signal in terms of a noise-to-signal matrix
defined as Ry = Scy

�1/2S†Scy
�1/2 where Scy is the covariance of

the signal over the comparison ensemble. For a retrieval
optimal with respect to Scy, the information content of the
signal would be the same as that for the retrieval, but for a
general (nonoptimal) retrieval, this may not be the case.
[21] Information content of a retrieval depends on the a

priori covariance matrix. With respect to a different a priori
covariance, e.g., Sc, a particular retrieval may be nonop-
timal, and contain less (even negative) information.

3. Comparison of Retrieved Profiles

[22] A comparison of the retrieved profiles is an end-to-
end test which depends on both the forward model and the
inverse method being correct. A comparison must be
applicable to any retrieval method, not just ‘‘optimal’’ ones,
so is based on the general linearized description of an
observing system given by equation (3).
[23] In general the two retrievals will have been com-

puted with different a priori, both different from the com-
parison ensemble. To compare them directly it is simpler to
first transform the characterization equation (3) so that both
are expressed in terms of departures from the comparison
ensemble mean. We can put

x̂i � xc þ Ai � Ið Þ xai � xcð Þ ¼ Ai x� xcð Þ þ †xi ð10Þ

so that adding the term (Ai � I)(xai � xc) to each retrieval
will adjust them for different a priori. Remember that even
if the retrievals are optimal with respect to their own a
priori, they will not normally be optimal with respect to the

comparison ensemble. For the rest of this section we will
assume that this adjustment has been carried out and the
linearization point for the characterization is xc.
[24] When comparing two independent scalar measure-

ments, x1 and x2, with variances s1
2 and s2

2, the test to see
whether the error bars overlap involves c2 = (x1 � x2)

2/(s1
2

+ s2
2). Similarly, a test for two independent vector measure-

ments, x̂1, Ŝ1 and x̂2, Ŝ2 would use the following c2:

c2 ¼ x̂1 � x̂2ð ÞT Ŝ1 þ Ŝ2
� ��1

x̂1 � x̂2ð Þ ð11Þ

However this is not appropriate here because the retrievals
may not be independent. If the averaging kernels are not
unit matrices, the total errors will be correlated because both
have a component which depends on the state.
[25] The difference between the retrievals is

ddd ¼ x̂1 � x̂2 ¼ A1 � A2ð Þ x� xcð Þ þ †x1 � †x2; ð12Þ

a random variable with covariance

Sd ¼ A1 � A2ð ÞTSc A1 � A2ð Þ þ Sx1 þ Sx2: ð13Þ

For particular comparisons, given Sd, we might then do c2

tests on x̂1 � x̂2 using

c2 ¼ x̂1 � x̂2ð ÞTS�1
d x̂1 � x̂2ð Þ: ð14Þ

This should indicate whether something is wrong, but of
course would not tell you what. Unfortunately, it is possible
for Sd to be singular, making c2 impossible to calculate in
this manner. This will happen if the two measurements have
some null-space in common. For example Sd will certainly
be singular if the total number of y elements, m1 + m2, is
smaller than the number of elements n in x. For an
underconstrained measurement, the components which are
not measured are provided by the a priori, and the same
components will be provided to both retrievals. The cure is
to calculate c2 only in the subspaces which are actually
measured. A method of doing this using an eigenvector
expansion of Sd is detailed in Appendix A.
[26] Clearly the direct comparison of retrievals is not as

straightforward as it seems at first sight. We therefore look
at other quantities that might be compared.

4. Comparison of Derived Quantities

[27] One particularly useful comparison is that of a total
column from one instrument with a column or profile from
another. Other useful derived quantities include such things
as such as thicknesses in the case of temperature profiles, or
layer amounts for constituent profiles. Derived quantities,
like profile retrievals, are not necessarily perfect estimates
of the desired quantity plus noise, but will have some
imperfect averaging kernel. In order to compare functions
of profiles we will first show how they are best derived from
the measurements, and then consider how these estimates
should be compared.

4.1. Best Estimate of a Function of the State Vector

[28] Is it optimal to determine a function of a profile by
calculating the same function of a retrieved profile, or is
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there some way to obtain it more accurately directly from
the measured signals? Is the total column best estimated by
integrating a retrieval, or is there a better way?
[29] Let us consider estimating some scalar-valued linear

function z(x) = zc + gT (x � xc) of the underlying state
vector. We might expect the best estimate to be ẑ = zc + gT(x̂
� xc) where x̂ is the optimal retrieved state. The following
simple argument, based on the Bayesian approach to
retrieval, shows that it is, taking the retrieval to be the
expectation of x given the measurement. Let the p.d.f. of the
state given the measurements be P(xjy). The expected value
of the function z(x) is

ẑ ¼
Z

P xjyð Þ zc þ gT x� xcð Þ
� 	

dx ð15Þ

where dx is a volume element of state-space. Provided g
does not depend on x, this can be rewritten as

ẑ ¼ zc þ gT
Z

P xjyð Þ x� xcð Þdx

¼ zc þ gT x̂� xcð Þ
ð16Þ

[30] It is easy to show that the error covariance of ẑ is
gTŜg, its measurement error is gTSxg, and its derivative with
respect to the true state @z/@x is gTA. The latter is the same
kind of quantity as a row of the averaging kernel matrix, A =
@x̂/@x, though conceptually different because z is not a state
vector element. Nevertheless we will describe aT = gTA as
an averaging kernel, mainly from a desire not to invent yet
more terminology.

4.2. Best Estimate of a Function Given a Retrieval

[31] This is a slightly different question from that of the
previous section. Given an arbitrary retrieved profile, not
necessarily an optimal one, what is the best estimate of a
function of the state, such as the total column? Any
retrieval may be written in terms of an averaging kernel
(equation (3)):

x̂� xc ¼ A x� xcð Þ þ †x; ð17Þ

after adjusting x̂ to the comparison ensemble as in section 3.
We wish to find, for the comparison ensemble, the best
estimate ẑ of z = zc + gT(x � xc). Clearly we could simply
calculate zc + gT(x̂� xc), i.e. zc + gT(A(x� xc) + ����������x), but g

TA
is not the same as gT, and there may be a better estimate—
though not in the case of the optimal estimator, as shown by
section 4.1.
[32] We note that equation (17) is of exactly the same

algebraic form as the instrument model, equation (1), so we
use it as an instrument model in a linear optimal retrieval:

~x ¼ xc þ ScA
T AScA

T þ S†x
� ��1

x̂� xcð Þ ð18Þ

where ~x gives a retrieval optimized for the comparison
ensemble, insofar as the information content of the measured
signal is still present in the nonoptimal retrieval. The matrix
to be inverted should never be singular, as the error

covariance of the original retrieval should never be singular.
We can now use the result of section 4.1 to obtain

ẑ ¼ zc þ gT ~x� xcð Þ

¼ zc þ gTScA
T AScA

T þ S†x
� ��1

x̂� xcð Þ
ð19Þ

The averaging kernel and retrieval error for this process can
be obtained by substituting equation (17), giving the
averaging kernel for g as

aT ¼ gTScA
T AScA

T þ S†x
� ��1

A ð20Þ

and retrieval error variance

s2 ¼ gTScA
T AScA

T þ S†x
� ��1

S†x AScA
T þ S†x

� ��1
AScg ð21Þ

Incidentally, equation (18) provides a means of converting a
retrieval which is not optimal for the ensemble being
considered into one which is, provided all of the information
in the original measurements has survived the original
retrieval method.

4.3. Comparison of Two Estimates of the Total Column

[33] For instrument i the retrieved total column ĉi is related
to the true state by:

ĉi � cc ¼ aTi x� xcð Þ þ †ci ð22Þ

where ai is the total column averaging kernel, and †ci is the
measurement error of the column retrieval. Remember that
the ideal ai will not necessarily be a vector containing all
ones—it depends on the state vector representation. The
difference between total column estimates for the two
observing systems is:

ĉ1 � ĉ2 ¼ a1 � a2ð ÞT x� xcð Þ þ †c1 � †c2 ð23Þ

and the variance of the difference is

s2 ĉ1 � ĉ2ð Þ ¼ a1 � a2ð ÞTSc a1 � a2ð Þ þ s2c1 þ s2c2 ð24Þ

which is of the same form as the covariance of the
difference of retrieved profiles, equation (13), the first term
being the contribution of the different averaging kernels (the
smoothing error), and the other terms the independent
measurement error contributions.
[34] We may find that for one or both observing systems

the total column averaging kernel is not as close to the total
column operator as might be desired, and consequently the
retrieved total column does not well represent the true total
column. In such a case a comparison with the other
observing system will be poor (unless, of course, it has
the same averaging kernel). As an alternative, we can use
the second observing system to try to retrieve what the first
system claims to produce as its retrieved total column, using
the method described in section 4.1 or section 4.2. If
retrieval 2 is optimal with respect to the comparison
ensemble, the best estimate is

ĉ12 ¼ cc þ aT1 x̂2 � xcð Þ ð25Þ
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and its averaging kernel is a1
TA2. The smoothing error of the

comparison of ĉ12 with ĉ1 should be smaller than that of the
direct comparison of ĉ1 and ĉ2. The difference between
these two estimates is:

ĉ1 � ĉ12 ¼ aT1 I� A2ð Þ x� xcð Þ þ †c1 � aT1 †x2 ð26Þ

and the variance of the difference is

s2 ĉ1 � ĉ12ð Þ ¼ aT1 I� A2ð ÞSc I� A2ð ÞTa1 þ s2c1 þ aT1 Sx2a1 ð27Þ

If retrieval 2 is not optimal with respect to the comparison
ensemble, the algebra is more complicated, following
section 4.2 rather than section 4.1, but is otherwise
straightforward.

4.4. Simulating One Profile Retrieval With the Other

[35] We can apply the same philosophy as in the previous
section to the profile retrieval itself. To reduce smoothing
error in the comparison, that is to compare things which are
more alike, we can use the method of section 4.1 or section
4.2 to attempt to reproduce the (imperfect) profile retrieval
of instrument 1 by modifying the retrieval of instrument 2.
If retrieval 2 is optimal with respect to the comparison
ensemble, the best estimate is

x̂12 ¼ xc þ A1 x̂2 � xcð Þ ð28Þ

and its averaging kernel is A1A2, so that it is simply
retrieval 2 smoothed with the averaging kernel of retrieval
1. The smoothing error of the comparison of x̂12 with x̂1
should be smaller than that of the direct comparison of x̂2
and x̂1. Note that this comparison is not symmetrical, in
that one order of comparison would be expected to give a
more satisfactory result than the other, because the higher
resolution measurement would be expected to reproduce
the lower resolution measurement better than the other way
round. As above, the difference between these two
estimates is:

d12 ¼ x̂1 � x̂12

¼ A1 � A1A2ð Þ x� xcð Þ þ †x1 � A1†x2
ð29Þ

(compare equation (12)) and the covariance of the
difference is

Sd12 ¼ A1 � A1A2ð ÞSc A1 � A1A2ð ÞTþSx1 þ A1Sx2A
T
1 ð30Þ

As in the case of total columns, if retrieval 2 is not optimal
with respect to the comparison ensemble, then equation
(18) should be used to convert it, and to provide an
improved averaging kernel matrix.

5. Comparing Other Functions of the
Measurements

5.1. Functions of Measured Signals

[36] A comparison of the measured signals, if it were
possible, would not involve the retrieval process, so would

test only the understanding of the instrument behavior, i.e.
the forward models. However, two different instruments
typically measure different quantities in different units, and
have different weighting functions measuring different parts
of state-space, so cannot be compared directly. It is likely
that they do not measure any subspace of state-space in
common. Nevertheless, there may be combinations of their
weighting functions that are similar enough for a useful
comparison to be made for states within the comparison
ensemble. To identify these, we look for linear combinations
of the measured signals whose differences are expected to be
less than noise for states comprising the comparison ensem-
ble. The linear combinations themselves should have large
variability compared with noise. This process is closely
related to the time series analysis technique known as
‘‘maximum covariance analysis’’ [Bretherton et al., 1992].
[37] Let both instruments be described by equation (2):

y1 � yc1 ¼ K1 x� xcð Þ þ †1 ð31Þ

y2 � yc2 ¼ K2 x� xcð Þ þ †2 ð32Þ

with xc, the mean of the comparison ensemble, as the
linearization point. If the original instrument description
uses a different linearization point, x0, y0, it can be rewritten
in terms of x � xc using

yi � y0 þKi xc � x0ð Þ½ 
 ¼ Ki x� xcð Þ þ †i ð33Þ

so that yci = [y0 + Ki(xc � x0)]. Any instrument-specific
extra elements ei of the state vectors can be included by
taking both instruments to use the same full state vector,
including the extra instrument-dependent terms, i.e. (x, e1,
e2), but with zero elements in the weighting function matrix
for each instrument corresponding to the extra elements
relating to the other instrument. For simplicity, in the rest of
this section we will denote this full state vector by just x.
[38] We look for linear functions li, i = 1, 2, with the

corresponding combination of signals

zi ¼ ITi yi � ycið Þ; ð34Þ

such that the expected value over the comparison ensemble
of the squared difference, E{(z1 � z2)

2}, is as small as
possible. To avoid the trivial solution zi = 0 we will take
E{zi2} = 1, with the consequence that minimizing E{(z1 �
z2)

2} is the same as maximizing E{z1z2}. Using the linear
instrument models for yi � yci we find the problem becomes
one of maximizing

E lT1 K1 x� xcð Þ þ †1ð Þ
�

K2 x� xcð Þ þ †2ð ÞT l2
o

¼ lT1K1ScK
T
2 l2 ð35Þ

subject to the constraint

E lTi Ki x� xcð Þ þ †ið Þ Ki x� xcð Þ þ †ið ÞT li
n o

¼ lTi ðKiScK
T
i þ S†iÞli ¼ 1 ð36Þ
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Using the transformation li ¼ KiScK
T
i þ S†i

� ��1
2mi so that

the constraint becomes mi
TmI = 1 is easy to see that m1 and

m2 are the left and right singular vectors respectively of

K1ScK
T
1 þ S†1

� ��1
2K1ScK

T
2 K2ScK

T
2 þ S†2

� ��1
2 ð37Þ

and the corresponding combined weighting functions are

�Ki ¼ mT
i KiScK

T
i þ S†i

� ��1
2Ki ð38Þ

The singular value lj corresponding to the j-th pair of
singular vectors indicates the closeness of the fit, because
E{(z1 � z2)

2} = 2 � 2lj. Consequently the singular values
should lie between zero and unity, and the closer to unity
the better the fit. For any particular singular vector, the
variance of z1 � z2 can also be expressed as the sum of
terms corresponding to noise and smoothing error:

E z1 � z2ð Þ2
n o

¼ lT1S†1 l1 þ lT2 S†2 l2

þ l1K1 � l2K2ð ÞSc l1K1 � l2K2ð ÞT : ð39Þ

[39] For instruments with large numbers of channels, the
matrices to be diagonalized are large, and the evaluation of
e.g., KiScK

T
i þ S†i

� ��1
2 may be difficult. A method of

dealing with this by means of a singular vector decom-
position of ~K ¼ S�

1
2

†i
KiS

1
2
c, thus reducing the effective num-

ber of channels to not more than the length of the state
vector, is given in Appendix B.

5.2. Functions of Retrieved Profiles

[40] Because the averaging kernels are different, the
retrievals from two different observing systems are different
functions of the atmospheric state. As with the comparison
of measured signals, it is pertinent to ask whether there are
any functions of the retrievals that can be properly com-
pared. Are there any functions of the retrieved profiles that
can be compared with negligible contribution from smooth-
ing error?
[41] The retrieval characterization, equation (3), is of the

same algebraic form as the linearized instrument model,
equation (2), so the same formalism as described for direct
measurements can in principle also be used for retrievals.
We can therefore follow the approach of section 5.1, with A
replacing K and S†x replacing S†.
[42] It is often felt desirable to plot profiles from two

different instruments on the same diagram in order to
compare them. If the averaging kernels are significantly
different, this can be misleading. An alternative which is
less so is to use this technique to identify which components
of the retrieved profiles can be properly compared, and
which cannot. Reconstructed profiles using only the linea-
rization point and the properly comparable components can
then be plotted for comparison. The omitted components
which should not be compared can be plotted separately.

6. Nonlinearity

[43] We have developed the theory for linear or weakly
nonlinear systems so far. However, most real observing
systems are nonlinear, so any intercomparison must be able

to treat this aspect. We distinguish between moderately
nonlinear, meaning that a linear expansion is adequate to
carry out an error analysis, even if it is not adequate to solve
the inverse problem, and grossly nonlinear, for cases when
nonlinearity must be treated within the bounds of the errors.
The latter case is sufficiently difficult that Monte-Carlo
techniques would be a suitable approach. We will only treat
moderately nonlinear cases here.
[44] Moderately nonlinear retrievals can be compared

using the linear formalism because we are only interested
in the behavior of differences within the error bars. If
differences are larger than that, then a linear analysis should
indicate a problem, but the size of the problem may be
wrongly estimated. We linearize about some point near the
retrievals being compared, for example about x0 = (x̂1 + x̂2)/
2. Let the nonlinear relation between the true profile and the
retrieval be expressed in terms of a transfer function Ti for
instrument i:

x̂i ¼ Ti x; xiað Þ þ †xi ð40Þ

An expansion about x = x0 will be valid provided that x0 is
more or less within the error bars of both retrievals:

x̂i ¼ x̂i0 þ Ai0 x� x0ð Þ þ †xi ð41Þ

where x̂i0 = Ti(x0, xia) is the retrieved state corresponding to
the linearization point, and the averaging kernel matrix Ai0

is @Ti/@x evaluated at x = x0. Express this in terms of
departures from the comparison ensemble mean:

x̂i � xc ¼ x̂i0 � xc � Ai0 x0 � xcð Þ þ Ai0 x� xcð Þ þ †xi ð42Þ

If, for the purpose of comparison, we replace x̂i by

x̂0i ¼ x̂i � x̂i0 � xc � Ai0 x0 � xcð Þ½ 
 ð43Þ

then we have the retrieval characterization in the original
form but with the averaging kernel evaluated at or near the
retrieval, and any of the methods discussed can be applied,
provided that they do not require averaging or sampling
over the whole comparison ensemble. For example the
profile comparison c2 test of section 3 is still valid.

7. FTIR and MOPITT Observing Systems

7.1. FTIR Ground-Based Sounder

7.1.1. Instrument Characteristics
[45] Solar absorption spectra in the midinfrared are rou-

tinely recorded at a number of stations world-wide, espe-
cially in conjunction with the Network for Detection of
Stratospheric Change [Kurylo and Zander, 2001]. CO and a
variety of other gases have strong, well-resolved spectral
lines in this region, which can be used for retrieval of
column densities or low-resolution profiles. Fourier trans-
form spectrometers are used for these measurements, hence
we refer to them as ‘‘FTIR’’.
[46] In the current context we will focus on a measure-

ment of the R3, P7, and P10 CO lines in the fundamental
vibrational band, near 2100 cm�1 (4.7 mm). These lines
were chosen for analysis because they are relatively free of
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interference, close enough together for convenient simulta-
neous observation, and span a large range of opacities. This
last feature provides good sensitivity from the ground into
the lower stratosphere. A high quality spectrum measured at
the NDSC site in Lauder, New Zealand is shown in the
upper panels of Figures 1 and 2. The saturated absorption
near the center of the region in Figure 1 is the CO R3 line.
The strong absorptions to either side are due to N2O. There
are also weaker features from H2O, CO2, O3, and CO in the
solar atmosphere. In Figure 2, the slope in the P7 region is
the wing of a CO2 feature. The P10 line is blended with and
ozone line of approximately equal strength. All other
significant absorptions in the P7 and P10 windows are
due to ozone.
[47] For the purpose of the current illustration we will

assume that the basic measurement signal-to-noise is 300:1
and the maximum optical path difference is 130 cm (reso-
lution of 0.006 cm�1). While it is possible to achieve a
measurement signal-to-noise of 300:1, there are regions
where the spectroscopic data is poor, and systematic errors
in the forward model will be the dominant source of error.
In the R3 window shown in Figure 1 the vicinity of the solar
CO lines and of a weak isotopic CO line at 2158.6 cm�1 are
such regions. These effects introduce off-diagonal elements
into the large measurement covariance matrix S†, and hence
introduce computational difficulties into the retrieval. To
prevent the systematic errors in the forward model from
being mapped into the retrieval, we have made the simpli-
fying assumption that the signal-to-noise in the vicinity of
those lines is much lower, in the range 10–100, but
uncorrelated between spectral elements so that Se can be
taken as diagonal. Consequently the retrieval will not be
strictly optimal.
7.1.2. Retrieval Method
[48] We use a retrieval based on [Rodgers, 1976]. The

state vector includes the mean CO mixing ratio for 2 km
layers from 0 to 26 km, scaled by the a priori mixing ratio,
plus several extra terms making up the vector e discussed in

section 2.1: a wavelength shift, a background slope, column
densities for the four interfering species, and parameters for
a solar CO model. The CO column density is derived by
integrating the retrieved profile, as described in section 4.2.
[49] The profile part of the a priori covariance matrix for

FTIR is assumed to be a unit matrix, that is, the standard
deviation of CO at each layer is assumed to be 100% and to
be uncorrelated from layer to layer. This admittedly unre-
alistic assumption is one adopted by many investigators in
an attempt to stabilize the retrieval without too much
influence from the a priori information. With the state
vector used, this corresponds to an a priori standard devia-
tion of the total column of 43%. The a priori profile used is
the same as that used for MOPITT, see section 7.2.2.
[50] The weighting functions for the FTIR measurement

all peak at the surface and decrease monotonically with
height. Therefore it is more useful in this case to plot the
profile part of the weighting function, K(n, z), as a function
of n for each altitude z, rather than as a function of z for each
n. These are shown in Figures 1 and 2, evaluated for the a
priori profile. The structure of the spectrum can clearly be
seen in the weighting functions.
7.1.3. Retrieval Characteristics
[51] The Shannon information content and the number of

degrees of freedom for signal can be calculated as described
in section 2.2 and are found to be 12.0 bits and 2.8 respec-
tively for the profile part of the state vector. There are a
further 116 bits of information and 14 degrees of freedom
associated with the nonprofile elements of the state vector.
[52] The profile retrieval averaging kernels for FTIR are

shown in Figure 3. These peak at or near their nominal
altitude from 1 to 13 km, with near unit area in this range.
There is an apparent resolution (full width at half height) of
about 2 km near the surface and about 6 km between 5 and
11 km altitude.
[53] The r.m.s. error of the retrieved profile (square root of

the error variance) and its components are shown in Figure 4.
Remember that this is not a complete description of the
errors, because they will be correlated between different
heights, but it does provide an indication of the expected
precision of the retrieval. The standard deviation of the

Figure 1. Measured R3 spectrum (upper) and weighting
functions (lower) for the FTIR measurement. Each curve in
the lower panel is the weighting function for CO at a
selected altitude as a function of wave number, computed
for the a priori state. 2 km: ——; 4 km: — —; 6 km: – � � �;
10 km: – � – – �; 14 km: – – – and 20 km: � � �.

Figure 2. As Figure 1, but for the P7 and P10 CO lines. 2
km: ——; 6 km: — —; 10 km: – � � �; 14 km: – � – – �; 16
km: – – – and 30 km: � � �.
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comparison ensemble is plotted for reference. The three
components of the total error covariance are retrieval noise
(the largest), smoothing error (somewhat smaller except
around 11–13 km), and interference error (the smallest). It
can be seen that retrieval noise comprises most of the total
error in this case. The total error is greater than the compar-
ison ensemble standard deviation above about 20 km
because the FTIR retrieval is not optimal for this ensemble.

7.2. MOPITT Satellite-Based Sounder

7.2.1. Instrument Characteristics
[54] MOPITT is a nadir-viewing satellite-borne instru-

ment which is part of the Earth Observing System’s Terra
platform. It uses a gas correlation technique to observe
upwelling radiation in the 4.7mm and 2.3mm bands, where
the fundamental and first overtone vibrational bands of CO
are located [Drummond, 1992; Drummond and Mann,
1996]. It also observes the 2.2mm CH4 band, but that does
not concern us here. In addition to gas profiles, the surface
emissivity and temperature are retrieved from the measured
radiances, so the state vector of interest contains those two
quantities along with the CO mixing ratios. The relevant
radiative transfer in the atmosphere and instrument are
discussed by [Pan et al., 1995]. The MOPITT CO retrieval
algorithm is described by [Pan et al., 1998].
[55] There are 12 MOPITT radiance measurements perti-

nent to CO, eight thermal radiances in the 4.7mm band and
four solar reflection signals in the 2.3mm band. The solar
signals are preprocessed by dividing the gas correlation
(difference) signal by the wideband (average) signal in order
to eliminate the surface reflectivity, resulting in 10 signals as
input to the retrieval [Pan et al., 1995]. The weighting
functions were kindly supplied by Dr Liwen Pan; the parts

corresponding to the CO profile are shown in Figure 5. The
4.7mm band is dominated by thermal emission from the
atmosphere, its weighting functions peaking in the upper
troposphere. By contrast the 2.3mm band is dominated by the
reflection of solar radiation from both the surface and the
atmosphere, and its weighting functions peak at the surface.
This difference between the two wavelength bands is the
primary source of height information in the MOPITT meas-
urements. In addition, some further height discrimination is
achieved by use of different gas correlation cell pressures.
7.2.2. Retrieval Method
[56] For the purpose of this paper we have not used the

current MOPITT operational retrieval, as this uses a differ-
ent vertical grid from FTIR, leading to complications that
are beyond the scope of this paper. We have used an optimal
estimator, with the same CO component of the state vector
as FTIR, i.e. the mean CO mixing ratio for 2 km layers from

Figure 4. Standard deviations of the FTIR retrieval error
and its components. Comparison ensemble (——); total (– �
� �); smoothing (– –); measurement error (� � � �);
interference error (– � – �).

Figure 5. Weighting functions for the ten MOPITT CO
channels, showing the contribution of CO as a function of
altitude to the signals in the given MOPITT channel.

Figure 3. Averaging kernels for the FTIR retrieval for CO
from 1–19 km. The dotted line to the right is the area of the
kernels as a function of height. The nominal height of each
kernel is marked by a filled circle.
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0 to 26 km, scaled by the a priori mixing ratio, plus surface
temperature and emissivity as extra terms. The a priori
profile is based on an ensemble of aircraft CO measure-
ments and the covariance matrix is calculated from the
statistics of the ensemble. At altitudes above aircraft range a
set of model output profiles was used [Pan et al., 1998].
The measured signal errors are assumed to be uncorrelated
noise (i.e. S† is diagonal), with values based on one orbit of
level 1 flight data. The total column is obtained by integrat-
ing the retrieved profile.
7.2.3. Retrieval Characteristics
[57] The MOPITT profile retrieval averaging kernels are

shown in Figure 6. Relative to the FTIR kernels (Figure 3)
there is less resolution in the lowest 1–2 kilometers, and
they are less well shaped than the FTIR averaging kernels,
with peaks at or near their nominal altitude only up to 11
km. However, they have an area near unity from 0 km to
about 15 km, with a resolution of about 5 km. The Shannon
information content is 12.0 bits for the profile and 13.7 bits
for the surface parameters. There are 3.1 degrees of freedom
for signal for the profile and 2.0 for the surface parameters.
[58] The r.m.s. error of the retrieved profile and its

components are shown in Figure 7. The standard deviation
of the comparison ensemble is plotted for reference. The
three components of the total error covariance are smooth-
ing error (the largest), retrieval noise, and interference error
(the smallest). It can be seen that smoothing error comprises
most of the total error in this case.

8. Comparisons: Agreement to be Expected

[59] To assess the level of agreement we would expect
between FTIR and MOPITT, we have taken the comparison

ensemble to be described by the MOPITT a priori. For this
ensemble, the FTIR retrieval is not an optimal estimate
because it uses a different a priori. Note that when carrying
out actual comparisons, the real ensemble is likely to be
unknown, so this assessment can only be a guide.

8.1. Profile Retrievals

[60] For a direct intercomparison of MOPITT and FTIR
profiles, we expect to find differences in accordance with the
statistics calculated by the method developed in section 3.
The standard deviations of the errors to be expected from
each of the three terms in equation (13) are given in Figure 8,
i.e., the square roots of the diagonals of the matrices. The
standard deviations of the comparison ensemble and the total

Figure 6. Averaging kernels for the MOPITT CO retrieval
for 1–19 km. The dotted line to the right is the area of the
kernels as a function of height. The nominal height of each
kernel is marked by a filled circle.

Figure 7. Standard deviations of the MOPITT retrieval
error and its components. Comparison ensemble (——);
total (– � � �); smoothing (– –); measurement error (� � � �);
interference error (– � – �).

Figure 8. Expected standard deviations of the MOPITT
and FTIR retrieval difference, and its components according
to equation (13). Comparison ensemble (——); MOPITT
retrieval noise (– –); FTIR retrieval noise (� � � �);
smoothing error due to difference in averaging kernels (–
� – �); total comparison error (– � � �).
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difference covariance Sd are also shown for reference. We
see that the difference is dominated by the FTIR noise term
(� � � �), with MOPITT noise (– –) being somewhat smaller,
and the smoothing error term (– � – �) also being smaller
except around 15–17 km. However, the total (– � � �) is large
enough compared with Sc that single profile comparisons of
these FTIR retrievals with MOPITT may not be very useful.
Note that this conclusion is mainly a consequence of using a
unit matrix as a priori covariance for FTIR, but illustrates the
effect of a retrieval which is not optimal for the comparison
ensemble.
[61] An alternative approach is to use the FTIR to

simulate a MOPITT retrieval, or vice versa, according to
the method described in section 4.4. As the FTIR retrieval is
not optimal for the comparison ensemble, it is necessary to
use the method of section 4.2. The resulting averaging
kernels are shown in Figure 9. Qualitatively this appears
to be a good simulation in comparison with Figure 6.
[62] The expected size of the differences between

MOPITT retrievals and the FTIR simulations are shown
in Figure 10. The square roots of the diagonals of the three
terms in equation (30) are plotted, to be compared with the
corresponding terms in Figure 8. We see that the FTIR
retrieval simulation noise (� � � �) is significantly smaller than
the original FTIR retrieval noise (Figure 4), largely because
the fine structure has been eliminated by the MOPITT
averaging kernels, and the smoothing error (– � – �) is
much smaller, because the averaging kernels are much more
alike. Consequently the total error in the comparison is now
usefully smaller than the comparison ensemble standard
deviation, so this kind of comparison is worthwhile.
[63] Further improvement is possible by tuning the FTIR

a priori constraint. Reducing it to 0.1 times a unit matrix

(not shown) reduces the total error estimate still further in
this case. However, simulating FTIR retrieval using
MOPITT is not productive. We find that the total error in
this case is little different from the direct comparison,
mainly because the dominant FTIR retrieval noise is not
reduced by this means, and the MOPITT averaging kernels
are unable to reproduce the FTIR averaging kernels as well
as the other way round.

8.2. Total Column Retrievals

[64] Comparison of the MOPITT and FTIR total columns
will probably be the most direct and important use of FTIR
measurements for MOPITT validation. The total column
operator and the instrument total column averaging kernels
are shown in Figure 11. These functions are to be multiplied
by the scaled mixing ratio profile and integrated to derive
the total column. The total column operator gives the true
value, the instrument averaging kernels give approximations
to it. The standard deviations of the error components for
the total column estimates and the comparisons are given in
Table 1.
[65] The FTIR averaging kernel is so close an approx-

imation to the true total column operator that it cannot be
distinguished on this plot. The MOPITT kernel is less so,
having limited sensitivity near the surface and oscillating
about the true operator through the troposphere. However,
both measurements give good estimates of the total column:
the MOPITT smoothing error is 2.9%, and the FTIR 0.06%,
to be compared with the ensemble variability of 32%.
[66] Also shown in Figure 11 is a combination of FTIR

averaging kernels derived using the procedure of section 4.2
to give the best possible reproduction of the MOPITT
kernel. The coefficients of this combination can be applied
to a profile retrieved by FTIR to give an estimate of the total
column as retrieved by MOPITT, as a way of reducing the
smoothing error in the comparison. For the case at hand the

Figure 9. A simulation by FTIR of the MOPITT CO
Averaging kernels for 1–19 km. The nominal height of each
kernel is marked by a filled circle.

Figure 10. Expected standard deviations of the difference
between the MOPITT and a simulation using FTIR, and its
components according to equation (13). Comparison
ensemble (——); MOPITT retrieval noise (– –); FTIR
retrieval simulation noise (� � � �); smoothing error due to
difference in averaging kernels (– � – �); total comparison
error (– � � �).
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smoothing error to be expected in a simple difference of the
MOPITT and FTIR total columns is 1.7%. If the FTIR
estimate of the MOPITT kernel is used, this is reduced to
1.1%.
[67] Figure 12 shows the ratio of the averaging kernels in

Figure 11 to the total column operator (thus an ‘‘ideal’’
averaging kernel would have a value of one at all altitudes).
The FTIR kernel has values near unity at all altitudes. The
MOPITT kernel is oscillatory in the troposphere but is
reasonably close to unity up to about 15 km. At higher
altitudes it has too small values, but in practice the amount
of CO at those altitudes is insignificant, so the shape here is
of little concern. The dash-dotted line in Figure 12 is the
FTIR estimate of the MOPITT kernel, which shows that
FTIR is able to reproduce the broad features of the MOPITT
kernel, but not its oscillations, up to 15 km.

8.3. Measured Signals

[68] Applying the formulation of section 5.1 to the
MOPITT and FTIR weighting functions leads to the con-
clusion that there are three linear combinations of measure-
ments with singular values near unity, and which may hence
show significant correlation, given the range of atmospheric

variability embodied in the MOPITT a priori covariance.
These are shown in Figure 13, and the r.m.s differences
between the corresponding combinations of measured sig-
nals are given in Table 2, together with a breakdown into the
components corresponding to instrument noise and smooth-

Figure 11. Comparison of total column operators. Note
that the FTIR operator is coincident with the total column
operator on this scale.

Table 1. Expected Error Components for Total Column Estimates

and Comparisonsa

Noise, %
Smoothing
Error, % Total, %

MOPITT 2.4 1.7 2.9
FTIR 0.33 0.06 0.34
MOPITT–FTIR 2.4 1.7 2.9
MOPITT–simulation by FTIR 2.4 1.1 2.6

aPercentages of the total CO, to be compared with the ensemble
variability of 32%.

Figure 12. The ratio of the operators in Figure 11 to the
total column operator. MOPITT (� � � �); FTIR (——); FTIR
approximation to MOPITT (– � – �).

Figure 13. Combinations of the MOPITT and FTIR
weighting functions which approximately match. The solid
lines are for MOPITT and the dotted ones for FTIR.
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ing error due to the mismatch between the weighting
function combinations. These are all scaled so that the total
variance of the combinations of the measured signals is
unity for the comparison ensemble. Thus if the signals were
uncorrelated the r.m.s. difference would be 2

1
2.

[69] In the case of the first weighting function combina-
tions a good match is obtained, but at the expense of
relatively large noise, equally from both instruments. This
indicates that it is quite difficult to find a good match with
the basic weighting functions being so different, and it is
necessary to take rather extreme combinations, so that noise
is amplified. Nevertheless this is the best option - any other
combination with less noise would have a larger smoothing
error.
[70] With regard to the other combinations, it is clear by

inspection that the match between the functions is much
poorer, and indeed the variance of the difference between
the combined signals much larger. Thus only the first
combination of weighting functions will provide a strong
test of the consistency of the instruments. With an r.m.s.
error of 5.5% of the variability, it is a better test than the
profile or total column comparisons.

9. Summary and Conclusions

[71] In this paper we have provided a description of
methods which are needed to properly intercompare meas-
urements and retrievals from remote sounders with different
weighting functions, averaging kernels and errors. We have
shown how to compare measured signals, retrieved profiles,
and derived quantities such as total columns of constituents
making due allowance for the differing characteristics of the
observing systems. The differences in the characteristic
imply that the comparison is not straightforward; the fol-
lowing considerations are relevant:
1. Observing systems to be compared should retrieve the

same quantity, both in its representation and the grid on
which it is obtained. For example it is not easy to make a
proper statistical comparison of concentrations on a height
grid with mixing ratios on a pressure grid. However, we
hope to relax this requirement in a future publication.
2. The comparison must be general, and be able to deal

with any kind of retrieval method, not only optimal
estimators.
3. Profile comparisons must allow for the difference in

averaging kernels as well as retrieval noise.
4. Comparison of derived quantities such as total column

must also allow for the difference of averaging kernels.

5. We find that the effect of different averaging kernels
can be reduced if the retrieval or derived quantity of one
instrument is simulated from the retrieval of the other. This
also has the effect of reducing the noise component of the
second instrument.
6. We have also shown how combinations of measured

signals can be found which can be compared directly.
[72] We illustrated the techniques by reference to the

expected differences between a satellite instrument MOPITT
and a ground based instrument FTIR, both measuring CO.
FTIR instruments are being used in the validation campaign
for MOPITT, so proper statistical intercomparison is
required. In this case we find:
1. Direct comparison of retrieved profiles is not satisfac-
tory, because the expected standard deviation of the dif-
ference is a large fraction of the ensemble standard deviation,
mostly due to noise.
2. Comparison of the MOPITT profile retrieval with a
simulation using FTIR is much more useful, though still not
ideal. The expected standard deviation is of order 20% of
the ensemble standard deviation in the troposphere.
3. Direct comparison of total columns gives an expected
standard deviation of about 9% of the ensemble standard
deviation. Comparison of MOPITT with a simulation
derived from FTIR gives an expected standard deviation
of 8%.
4. There is only one combination of measured signals that
can be usefully compared. The difference is expected to
have a standard deviation of about 5.5% of the ensemble
variability, mostly due to noise. This quantity has the
smallest expected error of all those whose comparison we
have considered.
[73] At the time of writing, flight data from MOPITT is

not yet at a stage of development where these techniques
can be usefully applied. We hope to hope to make formal
comparisons of real data in a future publication.

Appendix A: Treatment of C2 for a Singular
Covariance

[74] This can be done by using a pseudo-inverse based on
an eigenvector expansion of Sd, ignoring vectors with zero
eigenvalue, which correspond to components of x̂1 � x̂2
which are exactly zero. If we expand:

Sd ¼ ~LT ~��� ~L ðA1Þ

where ~��� is a p � p diagonal matrix containing only the p
nonzero eigenvalues, and ~L is the corresponding p � n
matrix of eigenvectors, then

c2 ¼ x̂1 � x̂2ð ÞT ~LT ~����1~L x̂1 � x̂2ð Þ ¼ wT ~����1w ðA2Þ

is the appropriatec2 with p degrees of freedom. Each element
wj of w = ~L (x̂1 � x̂2) should be independently distributed
with variance ~lj, the corresponding diagonal element of ~+�1.
Even if Sd is numerically nonsingular, its eigenvalues should
be checked in case the nonsingularity is due to rounding
errors. It is also worth noting that components with small
eigenvalues may be subject to numerical error, and may not
be useful.

Table 2. Expected r.m.s. Differences Between the Three Best

Matching Combinations of Measured Signals, and its Components,

as a Fraction of the Total Variance of Signals of One Instrument for

the Comparison Ensemble

First
Combination

Second
Combination

Third
Combination

Singular value 0.9985 0.9774 0.8145
Total r.m.s. 0.0556 0.213 0.609
Smoothing error 0.0148 0.143 0.169
Total noise 0.0536 0.158 0.585
FTIR noise 0.0387 0.088 0.479
MOPITT noise 0.0371 0.131 0.337
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Appendix B: Comparison of Measured Signals:
Large Numbers of Channels

[75] By scaling the measurement vector by S†
�1/2 and the

state vector by Sc
�1/2 we can write

~y ¼ S
�1

2
† y� ycð Þ

~† ¼ S
�1

2
† † ~x ¼ S

�1
2

c x� xcð Þ

thus reducing x and y to nondimensional forms with ~† and
both having unit covariances. The corresponding linearized
forward model for instrument i is

~yi ¼ ~Ki~xþ ~†i ðB2Þ

where ~Ki ¼ S�1=2
†i

KiS
1=2
c . Replacing ~Ki by its singular

vector decomposition Ui�iVi
T, and premultiplying both

sides by UT gives

y0i ¼ UT
i ~yi ¼ ���iV

T
i ~xþ UT

i ~†i ¼ K0
i x� xcð Þ þ †0i; ðB3Þ

thus defining y0i and †0i, and where K0
I = �iVi

TSc
� 1

2. Note
that †0 ¼ UT

i ~†i has unit covariance, while �iVi
T~x has

covariance �i
2, so elements of y0i corresponding to singular

values much smaller than unity can be ignored without loss
of information. Therefore we consider only the pi singular
vectors for which the singular value is not insignificant.
Thus pi is the effective rank of the weighting function
matrix. Note that whereas yi and ~yi are vectors of length mi,
very large in the case of FTIR, yi

0 is of length pi, at most
equal to the smaller of mi and n.
[76] Following the analysis of section 5.1, but with this

transformed version of the forward model, the vectors m1

and m2 are obtained as singular vectors of

+2
1 þ I

� ��1
2+1V

T
1V2+2 +2

2 þ I
� ��1

2 ðB4Þ

and the combined weighting functions are

�K ¼ mT
i +2

i þ I
� ��1

2UT
i S

�1=2
†i

Ki ðB5Þ
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