GEOSTATIONARY SOUNDING:

Current and Future GOES Sounders

Kent Sprunger Chris Archer Chris Lietzke Steve Johnson

March 3, 2002

• ACKNOWLEDGMENTS

- The authors thank Jeanine Murphy/NASA GSFC for granting us permission to use her paper presented in 1996 as a starting point for this paper.
- The CrIS EDR Algorithm developed by AER, Inc. was used to compare the current sounder product to the predicted ABS product.
- Further information can be found on the Internet. Go to the home page of the GOES Project Scientist, Dr. Dennis Chesters, <u>http://rsd.gsfc.nasa.gov/goes/</u> and information from the University of Wisconsin at <u>http://cimss.ssec.wisc.edu/goes/</u>.

• REFERENCES

- Sounder Operations Handbook for the GOES-NOPQ Sounder, Document 8175762, Rev C, ITT Aerospace/Communications Division, April 2001.
- Performance Specification for GOES-NO/PQ Imager and Sounder Instruments, Rev
 , NASA-Goddard Spaceflight Center, Doc No S-415-05, March 28,1996.
- Menzel, W. Paul and James F.W. Purdom, Introducing GOES-I: The First of a New Generation of Geostationary Operational Environmental Satellites, Bulletin of the American Meteorological Society, Vol. 75, No. 5, May 1994.
- Technical Requirements Document for GOES ABS, NOAA/NESDIS, Document N0. NOAA-GOES-2001-0001, January 5, 2001
- Performance and Operation Requirements Document (PORD), DRAFT, NASA-GSFC, Document No. S-xxx-xxx, June 15, 2001
- Menzel, W. Paul, Introducing the Advanced Baseline Sounder (ABS), GOES Users' Conference, May 22-25, 2001
- Murphy, Jeanine E. and Sanford W. Hinkal, GOES Sounder Overview, in GOES-8 and Beyond, Edward R. Washwell, Editor, Proc. SPIE 2812, page numbers 174-181 (1996)
- Preliminary Design Review for GHIS Engineering Model, August 1997

"Long & Winding Road" topics for today:

- Current: GOES-NOPQ Sounder
- Shelved design: GOES Highresolution Interferometric Sounder (GHIS)
- Future: Advanced Baseline Sounder (ABS)
- ABS Modeled Performance

GOES-NOPQ Sounder Overview

GOES-NOPQ Sounder Instrument Modules

GOES-NOPQ Spacecraft

GOES-NOPQ Sounder Sensor Module

GOES-NOPQ Sounder Spectral Characteristics

Channel	Central	Central	Half-Power	Specified NEAN	Meteorological Parameter
	Wavelength	Wavelength	Bandwidth	(mW/(m²/sr/cm)	Determined
	(cm ¹)	(^µ m)	(cm ¹)		
1	680	14.71	13	1.43	Stratosphere temperature
2	696	14.37	13	1.43	Tropopause temperature
3	711	14.06	13	0.69	Upper-level temperature
4	733	13.64	16	0.69	Mid-level temperature
5	748	13.37	16	0.57	Low-level temperature
6	790	12.66	30	0.28	Total precipitable water
7	832	12.02	50	0.23	Surface temp, moisture
8	907	11.03	50	0.16	Surface temperature
9	1030	9.709	25	0.33	Total ozone
10	1345	7.435	55	0.16	Low-level moisture
11	1425	7.018	80	0.12	Mid-level moisture
12	1535	6.515	60	0.15	Upper-level moisture
13	2188	4.570	23	0.013	Low-level temperature
14	2210	4.525	23	0.013	Mid-level temperature
15	2245	4.454	23	0.013	Upper-level temperature
16	2420	4.132	40	0.0080	Boundary layer temperature
17	2513	3.979	40	0.0082	Surface temperature
18	2671	3.744	100	0.0036	Surface temperature, moistu
19	14367	0.696	1000	0.05%Albedo	Cloud cover

GOES-NOPQ Sounder Optical Elements

GOES-NOPQ Sounder Filter Wheel and Channel Separation

- Rotation speed is 600 rpm

GOES-NOPQ Sounder On-orbit Calibration

- IR Channels
 - Internal Calibration Target
 - 4 second view of the internal blackbody every
 20 minutes establishes a high temperature
 baseline for calibration in orbit
 - Space Looks
 - 4 second view of space every 2 minutes for reference
 - Electronic Calibration
 - Amplifiers and data stream are checked by an electronic staircase signal during each blackbody cycle.

GOES High-resolution Interferometric Sounder (GHIS)

-- Engineering Model PDR in 1997 --

GHIS -- in 1997

Key Mission Requirement:

Achieve < 1.0°K temperature retrieval accuracy with < 1 km vertical resolution

Completed Objectives:

- Develop preliminary design for Flight Model EDU
- Detailed design for Engineering Model
- Address key technical risks through technology demonstrations and simulations

In May, 1997, notice was received to terminate the GHIS program due to insufficient out-year funding to support Flight Model development

The ITT GHIS Program Demonstrated the Feasibility of ABS by Adding an Interferometer to the GOES Sounder

GHIS Study Was Funded By the GOES Program Office in 1995-1997 GHIS Reached PDR and Demonstrated a Prototype (w/1,336 channel capability) in the GOES SN02 Sounder

GHIS Activities / Milestones

ITT Successfully Installed an MIT/LL-Built Prototype of the GHIS Interferometer in the SN02 Sounder

MIT/LL Interferometer in Subsystem Test Fixture

Interferometer Installed and Operating in GOES SN02 Sounder

MIT/LL Interferometer Tests in SN02 Were Successfully Completed

SN02 Interferometer Test Results:

- Operation of an interferometer in the GOES Sounder was clearly demonstrated
- Alignment process went smoothly, wit the help of an interface matching plate
- Control and signal processing system worked well
- Integrated test objectives were satisfic

Benefits & Status of GHIS

- Advanced IR Sounder developments have benefited from Synergy between GHIS technologies and NPOESS CrIS instrument requirements
- GHIS Program Restart is a Viable Option at ITT A/CD
 - Personnel remain available for possible program restart
 - Interferometer skills base has been retained and applied to NPOESS / CrIS
 - Synergy with CrIS development and operational applications of new technologies could significantly reduce GHIS non-recurring costs
 - a GEO hyperspectral sounder is still possible within the next 5 years rather than after another 10 years

Advanced Baseline Sounder (ABS)

ABS Sounding Performance (Accuracies and Vertical Resolution in Clear Air)

Altitude	Observational Accuracy		Observational Accuracy		Vertical Resolution	
Range	Temperature	Temperature	Humidity	Humidity	THRESHOLD	GOAL
	THRESHOLD	GUAL	THRESHOLD	GUAL		
Surface –	= 1.0 K	± 0.5 K	± 10%	± 5%	Surface –	Surface –
300 hPa					500 hPa	500 hPa
					0.3 – 0.5 km	< 0.3 - 0.5
					layers	km layers
					500 – 300 hPa; 1 – 2 km layers	500 – 300 hPa < 1 – 2 km layers
300 hPa - 100 hPa	± 1.0 K	± 0.5 K	± 20%	± 10%	1 – 2 km layers	< 1 – 2 km layers
100 hPa and above	± 1.0 K	± 0.5 K	N/A	N/A	2 – 3 km layers	< 2 – 3 km layers

ABS Instrument Requirements (Critical Parameters)

Paran	neter	ABS Threshold	ABS Goal	GOES N/Q		
		Requirement	Requirement	Requirement		
Ground Sample	Visible	1 km	1 km	10 km		
Distance _{max}	650 - 1200 crh	10 km	8 km	10 km		
	1210 - 1740 cm	10 km	4 km	10 km		
	2150 - 2720 cm	10 km	4 km	10 km		
Ensquared	650 - 1200 cm	90%	90%*	73% or 78%**		
energy _{min}	1210 - 1740 cm	90%	67%*	78%**		
(The detector	2150 - 2720 cm	90%	67%*	85%**		
signal produced	*The threshold ensquared energy values are for a ground sample distance (GSD					
by radiance from	>8 km. The goal ensquared energy values are for a GSD ^{seff} km. For other value					
the square grid	of GSD, the ensquared energy requirement shall be scaled linearly between the					
defined by the	requirements for 8 km and 4 km.					
ground sample	** The GOES-N/Q requirement (encircled incident energy) is for detector signal					
distance divided	produced by radiance from one circular IGFOV divided by the total detector sig					
by the total	produced by scene radiance.					
detector signal						
produced by scene						
radiance.)						

ABS Instrument Requirements, Cont'd

(Critical Parameters)

Para	meter	ABS Threshold	ABS Goal	GOES N/Q		
		Requirement	Requirement	Requirement		
IR Spectral bands	650 - 1200 cm ⁻¹	880 bins (0.625	Same as threshold	9 channels (13 -		
and spectral		cm ⁻¹ resolution)		50 cm ⁻¹ half-power		
resolution				bandwidth)		
	1210 - 1740 cm ⁻¹	424 bins (1.25 cm ⁻¹		3 channels (55 -		
		resolution)		80 cm ⁻¹ half-power		
				bandwidth)		
	2150 - 2720 cm ⁻¹	228 bins (2.5 cm ⁻¹		6 channels (23 -		
		resolution)		100 cm⁻¹ half-		
				power bandwidth)		
NEdN _{max}	650 – 670 cm ⁻¹	1.0	1.25*	NA**		
(mW/m ² /sr/cm ¹)	670 – 685 cm⁻¹	0.7	0.88*	1.43		
	685 – 700 cm ⁻¹	0.5	0.63*	1.43		
	700 – 1150 cm ⁻¹	0.15	0.19*	0.69 – 0.33		
	1150 – 1200 cm ⁻¹	0.3	0.38*	NA**		
	1210 – 1740 cm ⁻¹	0.06	0.15*	0.12 – 0.16		
	2150 - 2720 cm ⁻¹	0.008	0.02*	0.013 – 0.0036		
	*The threshold NEd	he threshold NEdN values are for a threshold ground sample distance (GSD). If				
	the GSD is less than the threshold, the NEdN requirement can be increased in					
	inverse proportion of the GSD.					
	**The GOES-N/Q So	/Q Sounder does not have IR channels in this spectral range.				

ABS Instrument Requirements, Cont'd (Critical Parameters)

ABS Threshold **ABS Goal** GOES N/Q **Parameter** Requirement Requirement Requirement In 60 minutes, In 60 minutes, In 60 minutes, **Coverage rate** scan one CONUS scan one full disk scan one region and one Gulf of within 62 degrees local zenith angle* Mexico region** Must be Regional and Must be Must be Mesoscale (when supported and supported and supported and required) selectable selectable selectable *Although only scan half of the region of overlap between the eastern and western satellites, nominally at 105W, as shown in Scan Scenario slide. **An image for one hour of the infrared window channel from the GOES East and West instruments are shown in Scan Scenario slide.

ABS Scan Scenario

IR Spectral Coverage ABS (1,532) and GOES Sounder (18)

Moisture Weighting Functions ABS (1,532) and GOES Sounder (18)

Modeled Performance of Advanced Baseline Sounder (ABS)

Vertical Structure of Retrieved Temperatures (ABS vs. GOES)

Vertical Structure of Retrieved Moistures (ABS vs. GOES)

Conclusions

- Advanced IR Sounders for GEO are climbing a "long and winding road"
- The required technologies are ready
- Eventual benefits will be tremendous with improved:

Resulting in

- Resolutions:
 - » temporal
 - » spectral
 - » spatial

Major data product improvements fc

» nowcasting

- » short-range weather forecasts
- » longer-range NWP updates

