Luminosity Leveling & 132 nsec Operation

132 nsec Study Group April 13, 2000

John Marriner

Beams Division Fermilab

Run II Luminosity Goals

- The luminosity goal for Run IIa is 2 fb⁻¹
 - » Peak luminosity up to 2x10³² cm⁻²sec⁻¹
 - Switch to 103 bunches at 1x10³² cm⁻²sec⁻¹
 - » Length of Run IIa is about 2 years
- The luminosity goal for Run IIa+Run IIb is 15 fb⁻¹
 - » Increase antiproton intensity by 2-3
 - » Peak luminosity up to 5x10³² cm⁻²sec⁻¹
 - » 103 bunch operation
 - » Length of Run IIb is about 4 years

Operating Modes

The Number of Interactions per Crossing

- Normal 36×36 operation up to 5×10³¹ cm
 sec⁻¹ luminosity
- •Use of "luminosity leveling" at (perhaps) 1×10^{32} cm $^{-2}$ sec $^{-1}$. The β^* is increased to limit the luminosity to a maximum value.
- Use 132 nsec bunch spacing 140×103* at higher luminosities
- * 103 is the current best guess for the number of antiproton bunches.

 Older slides say 121. It will probably change again, but it is expected to be "about" 100.

Run II Parameters

RUN	Ib (1993-95)	Run IIa	Run IIa	Run IIb	Î
	(6x6)	(36x36)	(140x103)	(140x103)	
Protons/bunch	2.3x10 11	2.7x10 ¹¹	2.7x10 11	2.7x10 ¹¹	
Antiprotons/bunch*	5.5x10 10	3.0x10 10	4.0x10 10	1.0x10 ¹¹	
Total Antiprotons	3.3x10 11	1.1x10 12	4.2x10 12	1.1x10 13	
Pbar Production Rate	6.0x10 ¹⁰	1.0x10 ¹¹	2.1x10 ¹¹	5.2x10 ¹¹	hr ⁻¹
Proton emittance	23π	20π	20π	20π	mm-mrad
Antiproton emittance	13π	15π	15π	15π	mm-mrad
β*	35	35	35	35	cm
Energy	900	1000	1000	1000	GeV
Antiproton Bunches	6	36	103	103	
Bunch length (rms)	0.60	0.37	0.37	0.37	m
Crossing Angle	0	0	136	136	μrad
Typical Luminosity	0.16x10 ³¹	0.86x10 ³²	2.1x10 ³²	5.2x10 ³²	$\mathrm{cm}^{-2}\mathrm{sec}^{-1}$
Integrated Luminosity †	3.2	17.3	42	105	pb ⁻¹ /week
Bunch Spacing	~3500	396	132	132	nsec
Interactions/crossing	2.5	2.3	1.9	4.8	

[†]The typical luminosity at the beginning of a store has traditionally translated to integrated luminosity with a 33% duty factor. Operation with antiproton recycling may be somewhat different.

Evolution of a Typical Store

Luminosity Leveled Store

One can limit the peak luminosity in a store by dynamically modifying the β^* . Most of the integrated luminosity is retained.

7 rf bucket Bunch Spacing & Crossing Angles

- A crossing angle is required for 132 nsec spacing but is not required for 396 nsec.
- We are still working on determining the best crossing angle geometry. The "Run II Handbook" contains a strawman proposal
 - There is a luminosity penalty for introducing the crossing angle - about a factor of 2 in initial luminosity compared to zero crossing angle with the same bunch parameters
 - There are uncertainties in the dynamics of the beam-beam interaction with this mode of operation

The Need for a Crossing Angle

With a 7 rf bucket spacing a crossing angle is required

Luminosity Penalty for a Crossing Angle

- There is a significant luminosity penalty for colliding the beams at an angle
- Higher rf voltages reduce the bunch length and can eliminate the penalty

Integrated Luminosity Comparisons

Calculations are made under the following assumptions

- » A stacking rate of 20×10¹⁰ hr⁻¹
- » High antiproton intensities are obtained by long stores and long stacking times
- » Emittance growth and loss of particles cause the luminosity to decrease during the course of a store
- » Recylcing efficiency is reduced by larger emittances
- » Inefficiencies in cooling large antiproton stacks and transferring them to the Tevatron are not included but are much higher than historical values

Luminosity versus Antiproton Intensity

Interactions per Crossing vrs Antiproton Intensity

Store Length versus Antiproton Intensity

Average Integrated Luminosity

Tevatron Collider Luminosity

Luminosity versus Antiproton Intensity

Luminosity versus Antiproton Stack Size

Model Parameters

- Shot setup time=1 hr
- Stacking rate = 10¹⁰ antiprotons/hr
- Acceleration efficiency = 90%
- Mean time between store loss = 72 hr
- Recycling Efficiency ranges from 70→90% (assume all beam with ε_H>35π mm-mrad, ε_V>35π mm-mrad, or ε_I >3.5 eV-sec)