A review of frequency measurements of optically pumped lasers from 0.1 to 8 THz

M. Inguscio and G. Moruzzi

Dipartimento di Fisica dell'Università di Pisa and Gruppo Nazionale di Struttura della Materia del CNR, I-56100 Pisa, Italy

K. M. Evenson and D. A. Jennings

National Bureau of Standards, Time and Frequency Division, Boulder, Colorado 80303

(Received 20 February 1986; accepted for publication 14 July 1986)

We present a list of more than 800 far-infrared laser lines emitted by optically pumped molecular lasers whose frequencies have been measured. For each line, frequency, wavelength, wave number, lasing molecule, CO₂ pump line, and, if available, the assignment of the lasing transition, are given. The list is accompanied by a survey of the techniques of frequency measurement in the far infrared. Accuracies and limitations of the various techniques are also discussed.

INTRODUCTION

The first successful far-infrared (FIR) laser emission by an optically pumped molecular laser was reported by Chang and Bridges in 1970. In an optically pumped FIR molecular laser, vibrational transitions of molecules displaying a permanent electric dipole moment are excited by a pump laser (usually CO₂). Population inversion is thus obtained in some of the rotational levels of the excited vibrational state. This extremely simple laser cycle, the richness of rovibrational spectra, and the large number of candidates as possible laser-active molecules have led to over a thousand FIR laser emissions in the spectral region between 35 μ m and 2.9 mm. Before the introduction of optically pumped lasers, only a few lines emitted by discharge lasers were available in the FIR region. The short life of the recent FIR laser line catalogs²⁻⁷ is good evidence for the steady growth of the number of laser emissions discovered.

Moreover, since this spectral region almost completely lacks alternative sources of coherent radiation, far-infared molecular lasers have found wide applications in several fields of physics. A few examples are atomic and molecular spectroscopy, where laser magnetic resonance is playing an important role⁸; astrophysics, where FIR molecular lasers have been used as local oscillators for heterodyne detection of atomic and molecular species in interstellar space; and metrology, where the FIR radiation in the THz region has been used in frequency synthesis connecting the microwave region to the visible. 10,11 It was by fortuitous accident that one could find two nearly harmonically related lines, one from HCN at 337 μ m and one about 12 times higher from H_2O at 28 μ m, for extending frequency measurements between lasers in the first frequency-synthesis chain leading to the frequency measurement of methane 12 at 3.39 μ m. The discovery of optically pumped molecular lasers provided hundreds of new frequencies and allowed a much simpler chain using only one FIR laser operating at $70 \,\mu\text{m}$.

The study of FIR laser emission from optically pumped molecular lasers also plays a very important role in the spectroscopy of the laser active molecule itself. These applications are possible because of the very good frequency reproducibility and stability obtained from optically pumped lasers. During the last few years several laboratories interested in the spectroscopic and metrological applications of these radiation sources have undertaken systematic frequency measurements.

The purpose of the present work is to provide a survey of the techniques of frequency measurements in the FIR region, with a discussion of accuracies and limits, and a current list of the FIR laser emissions whose frequencies have been measured.

CHARACTERISTICS OF THE FIR LASER LINES

The lasing transition occurs between two molecular levels yielding a gain profile which is inhomogeneously broadened by the Doppler effect. Typical Doppler widths range from 1 to 10 MHz, depending upon the particular frequency and molecular weight. Collisions and saturation result in a homogeneous broadening of

$$\gamma_{\text{hom}} = \gamma_{\text{coll}} \sqrt{(I + I/I_s)}, \tag{1}$$

where I is the laser intensity and I_s is the saturation intensity, and $\gamma_{\rm coll}$ is the collisional broadening. The shape of the FIR gain curve is also affected by the relative position of the pump frequency with respect to the center of the Dopplerbroadened vibrational transition. In fact, the levels involved in the optical pumping cycle constitute a three-level system coupled by the IR and FIR laser radiations. A potential problem is the possible FIR frequency shifts and splittings originating in the IR pump transition.¹⁴ The collisional broadening γ_{coll} is relatively high (10 – 40 MHz/Torr) for the polar molecules which constitute the active medium.

At typical pressures of continuous wave lasing (5-500 mTorr), γ_{hom} is of the order of a few megahertz. It is nearly independent of pressure because the saturation intensity I_s decreases with pressure, and the collisional broadening increases. The wide gain profile makes it possible to tune the FIR laser emission over a range of a few tens of megahertz by sweeping the cavity length, the actual tunability depending on the particular transition and on threshold conditions.

On the other hand, very narrow linewidths, on the order of or less than 1 kHz, can be obtained due to the absence of a plasma in the cavity with its inherent fluctuations in the index of refraction. It has been possible to obtain fractional frequency instabilities as low as 2×10^{-12} by phase-locking techniques in an apparatus especially designed for metrological purposes.¹⁵

For a transversally pumped, open structure resonator, the uncertainty in the frequency reproducibility is determined mainly by the accuracy in the determination of the maximum (center) of the gain curve. For a transversely pumped open-structure resonator the frequency reproducibility is of the order of two parts in 10⁷. Frequency measurements on these lasers are therefore less accurate than in the case of saturation stabilized (sub-Doppler) gas lasers; nevertheless, their accuracy is much higher than that of wavelength measurements. These frequency measured FIR lines are therefore of considerable value for FIR spectroscopy.

DIRECT FREQUENCY MEASUREMENTS

Conceptually, the simplest scheme for measuring a laser frequency ν_L is by beating the laser radiation directly with a harmonic of the radiation of a microwave oscillator of known frequency ν_M in a harmonic generator mixer such as a Josephson junction, a Schottky diode, or a metal-insulator-metal (MIM) diode. The value of ν_L can thus be evaluated from the beat frequency $\delta \nu_r$, and its sign and the harmonic order n by means of the equation

$$v_L = nv_M + \delta v. \tag{2}$$

Both n and the sign of δv can be established by varying v_M , and for this purpose a wide band spectrum analyzer of the order of 1 GHz is useful.

The microwave oscillator (usually a klystron oscillating at less than 100 GHz) can be phase-locked to a quartz-crystal-controlled oscillator typically at 100 MHz or lower. In the multiplication process the phase noise of the crystal oscillator is also multiplied to the laser frequency broadening the carrier. ¹⁶ If the multiplication is too large, the carrier can totally disappear. Using the best available crystal oscillators, direct frequency multiplication to a few terahertz is theoretically possible. ¹⁶

In the original work by Chang and Bridges¹ the FIR laser emission was heterodyned with the higher harmonics of a tunable microwave source in a point contact diode. The accuracy of this method, ± 3 MHz for frequencies of the order of 600 GHz, was limited mainly by the free running instability of the microwave oscillator. This first work on an optically pumped FIR molecular laser also provided clear evidence for the significant contributions that precise frequency measurements of the laser emission could make to the spectroscopy of the lasing molecule itself. FIR laser transitions typically occur between high J levels, which involve centrifugal distortions and other perturbative effects not observable at the low J values typical of the microwave transitions. In particular, Chang and Bridges were able to significantly improve the accuracy of the rotational constant B_1 and of the centrifugal distortion constants D_{J+} and D_{JK+} for the first excited v_3 state of CH₃F.

Locking the microwave oscillators to quartz oscillators significantly reduces the linewidth of the reference source, so that the experimental error in determining the laser frequen-

cy is due only to the determination of the maximum of the laser emission profile.

The most common microwave sources are klystrons, operating either in X or K band, and several klystrons are required in order to cover the FIR region continuously. However, the most severe limitation to the technique of Eq. (2) is the highest harmonic which can be generated in the harmonic generator mixer.

The Schottky barrier diode constitutes a very good high harmonic generator at room temperature; its responsivity, however, decreases dramatically above 1 or 2 THz. The highest harmonic (n=33) was obtained in measuring the 2.5-THz frequency of the very strong CH₃OH laser emission at 119 μ m. ¹⁷ The highest frequency in harmonic generation in a Schottky barrier diode was 5.3 THz, ¹⁸ which, however, was obtained using only the 13th harmonic of a 408-GHz oscillator.

Faster detectors, like point contact MIM diodes, on the other hand, are limited to about the 20th harmonic, thus their measuring range from microwave sources does not reach frequencies much higher than 1 THz. 19

Josephson junctions easily generate high-order harmonics, allowing good measurements up to about 2 THz. They become much less sensitive at 4 THz, probably because the photon energy becomes high enough to split the paired electrons required for superconductivity. The CH₃OH laser line at 70 μ m (4.25 THz) was phase locked to a 99 GHz by 43rd harmonic mixing in a Josephson junction. 13 Higher-order harmonic generation (up to the 100th order) has been used to measure frequencies up to 2.06 THz. 20

Thus, although the procedure described by Eq. (2) is extremely convenient because the unknown laser frequency can be directly connected to an easily measurable microwave frequency referenced to an excellent frequency standard, there are important limitations at high frequencies mainly due to the fact that the harmonic order must increase with the laser frequency.

The need to use very high harmonic orders can be eliminated by using two stabilized CO_2 lasers to synthesize a FIR frequency. This technique has been introduced at the NBS Laboratories in Boulder^{21,22} and is schematically illustrated in Fig. 1. A point contact W-Ni MIM diode is used as a harmonic generator mixer, so that we have three-laser mixing, with the unknown FIR laser frequency v_L obtained by

$$v_L = n_1 v_{L1} - n_2 v_{L2} \pm m v_M \pm \delta v, \tag{3}$$

where v_{L1} and v_{L2} are the frequencies of the two CO₂ lasers operating in the 9.4- or 10.4- μ m bands, v_M is a microwave frequency (X band or less), and δv is the beat frequency measured by a spectrum analyzer. n_1 , n_2 , and m are small positive or negative integers such that the mixing order is less than about 10. The several hundred CO₂ frequencies available from eight isotopic species cover the spectrum from 25 to 30 THz (9 to 11 μ m). Each line can be stabilized to a narrow saturated absorption feature very close to the true molecular frequency. These frequencies are easily reproducible to within one part in 10^{12} . $^{23.24}$ Over 7000 difference frequencies in the region between 0.025 and 5.8 THz can thus be produced with an uncertainty of about 35 kHz for most

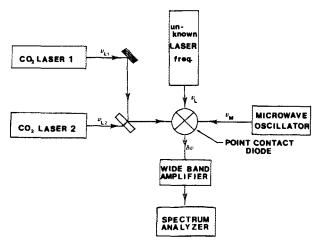


FIG. 1. Schematic diagram of the two CO₂ laser frequency synthesis experiment at the National Bureau of Standards, Boulder, CO. The frequencies of the two CO₂ lasers v_{L1} and v_{L2} , the frequency v_M of the microwave oscillator, and the unknown laser frequency v_L are fed into a point contact MIM diode used as a harmonic generator mixer, and the beat frequency δv is measured by means of a spectrum analyzer. The unknown laser frequency is obtained from Eq. (3).

pairs using the 85 lines from just one isotope of CO_2 . In most cases this scheme can be used to synthesize a frequency to within 10 GHz of ν_L . Since the bandpass of the frequency measurement system is only about 1500 MHz it is usually necessary to reduce $\delta\nu$ by adding a frequency ν_M from an X-band klystron. The X-band klystron can be stabilized to a quartz-crystal-controlled oscillator, resulting in an uncertainty of less than 100 kHz for the synthesized frequency. The beat signal is amplified (25 dB) and measured on a spectrum analyzer. This experimental technique has been used to measure most of the FIR laser lines. Almost all of the frequencies higher than 3 THz have been measured by this technique.

Because of the limited bandpass of the frequency measurement system, a wavelength uncertainty of at least about one part in 10^4 is required (e.g., 1500 MHz at $40 \mu m$ implies

 $\Delta \lambda / \lambda = 2 \times 10^{-4}$). This was achieved by using a single-mode FIR resonator and calibrating the cavity length scan by comparison to known wavelengths.

With essentially the same scheme the MIM point contact diode has been used to detect a FIR difference frequency $v_{L1} - v_{L2}$, and to generate FIR radiation.²⁵ Furthermore, the use of a tunable (high-pressure) CO₂ laser provides several hundred megahertz of tunable FIR radiation on each CO₂ line.

Precise frequency measurements made using the above methods are now available for more than 800 FIR laser lines. This makes a new, simpler technique possible. The idea of this technique, which was first used by Tittel²⁶ and is now used in Pisa,⁶⁶ is to heterodyne the investigated emission, for which a wavelength measurement only is available, with another FIR laser line whose frequency has already been measured by means of one of the preceding methods. If needed, microwave radiation can also be mixed in the diode. The limit to the accuracy of this method is set by the uncertainty in tuning both optically pumped FIR lasers to the centers of their emission profiles.

The accuracy is thus just a factor $\sqrt{3}$ larger than that of the other methods. On the other hand, the limit to the applicability of this technique is set by the availability of a frequency measured laser line in the neighborhood of the investigated line. This availability is, of course, becoming better with every new frequency measurement. Thus it was almost accidental, when Tittel's measurement was made, that HCN oscillated at a frequency close to the investigated HCOOH line at 311 μ m. The situation is by far better now. Figure 2 displays the density of available lines with measured frequencies as a function of frequency, thus indicating the probability of being able to use this technique for frequency measurement.

The accidental redetermination of 20 or 30 lines from mixed isotopes at the National Bureau of Standards has indicated a fractional uncertainty in the frequency measurements of the FIR lines of about $\pm 2 \times 10^{-7}$. This uncertain-

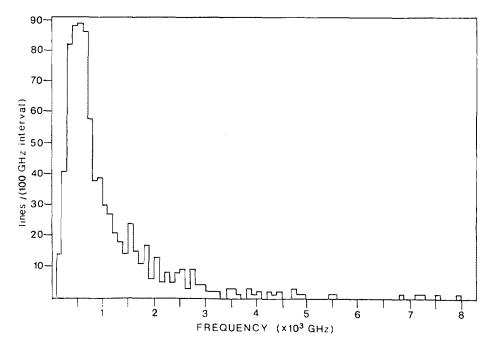


FIG 2. Available frequency measured laser lines in the FIR spectral region. The ordinate reports the number of lines for each 100 GHz interval.

ty is due almost entirely to the resettability of the transversally pumped open structure resonator used. Longitudinally pumped resonators exhibit pump pulling effects which increase the fractional uncertainty to about $\pm 5 \times 10^{-7}$.

THE TABLES

Table I reports all the measured frequencies we have located either in the literature or from private communications. Column 1 gives a number for the line; column 2 gives the frequency in GHz; and column 3 reports the lasing molecule (any isotope different from the naturally most abundant one is specified by its mass number in the molecular formula). Column 4 reports the assignment of the laser tran-

sition, when available and column 5 gives the CO₂ pump line. Columns 6 and 7 report comments and references. The most frequent comments refer to the fact that a line has been independently measured in different laboratories. In this case Table I reports only one frequency value, either an average or the measurement which seems to be the most reliable (all of the independent measurements with their respective experimental accuracies are reported in the footnotes to Table I).

In Table II, columns 1 and 2 give again the line number and the frequency in GHz; columns 3 and 4 report the wave numbers and the wavelengths, in cm⁻¹ and μ m. The CO₂ pump line is given in column 5 and the lasing molecule in column 6.

At the end of each appropriate reference we list the molecules investigated and the experimental accuracies.

TABLE I. Frequencies, lasing molecules, assignments, and CO2 pumps of the FIR laser lines.

	Frequency			CO ₂		
No.	(GHz)	Molecule	Transition	pump	Comment	References
1	144.8141	CH ₂ F ₂		10P(14)		28
2	147.5879	$(H_2CO)_3$	$v_5(J,K):[14,5(4)]-[13,5(4)]$	10R(30)		29
3	150.5922	CD ₃ 37Cl	$v_5(J,K):(1,7,0)-(1,6,0)$	9P(14)		30,31
4	152.5155	CH ₃ ⁷⁹ Br	$v_6(J,K):(8,1)-(7,1)$	10P(28)		32,33
5	157.7947	C ₂ H ₃ Br	-	10P(20)		34
6	158.8981	CH ₃ Cl		9P(26)		79
7	164.0159	ClO ₂		10P(20)		5
8	173.2070	HCOOD		10R(24)		35,36
9	174.8948	CD ₂ F ₂		9P(30)		37
10	185.6429	C ₂ H ₃ Br		10P(26)		34
11	189.5375	$(H_2CO)_3$		9P(26)		29
12	189.7537	$(H_2CO)_3$	$\nu_5(J,K):(18,13)-(17,13)$	10R(12)		29
13	193.4763	CD ₃ I	$v_s(J,K):(16,5)-(15,5)$	9R(10)		31,38
14	194.4494	HCOOD	2 · · · · · · · · · · · · · · · · · · ·	9P(30)		35,36
15	197.0535	C,H,F		9P(10)		5
16	200.9539	H ¹³ COOH	$v_6(J,K_a,K_c):[9,8,2(1)]-[8,8,1(0)]$	9P(14)		27,35
17	207.0253	CH ₂ F ₂	0 4767 - 6-7-7-X-77 - 6-7-7-X-71	9R(44)		39,40
18	215.0495	C ₂ H ₃ Br		10R(20)		34
19	216.6315	C ₂ H ₃ Br		10P(24)		34
20	228.7186	ClO ₂		10P(14)		5
21	228.7498	CH ₃ ⁷⁹ Br		10R(4)		5
22	231.9041	$(H_2CO)_3$	$v_5(J,K):(22,14)-(21,14)$	10R(10)		29
23	233.9116	DCOOD	, , (=,=,, , (==,=,,	9P(38)		35,36
24	237.8247	CDF,	qR(11,4)+1	10R(16)		41
25	239.0958	CH ₄ I	$\nu_6 (J,K,F) : (16,6,33/2) - (15,6,31/2)$	10P(32)		5,42
26	239.1028	CH ₃ I	$v_6(J,K,F): (16,6,29/2)-(15,6,27/2)$	10P(32)		28,38,42,43,44
27	239.1042	CH ₃ I	$v_6(J,K,F): (16,6,35/2)-(15,6,33/2)$	10P(32)		5,42
28	239.1192	CH ₃ I	ν_6 (J,K,F): (16,6,27/2)-(15,6,25/2)	10P(32)	g	28,38,42,43
29	240.2965	C,H,Br	V ₆ (3,14,1) . (10,0,2//2)—(13,0,23/2)	10R(12)	5	34
30	241.8696	CD ₃ 35Cl	$v_s(J,K): (11,2)-(10,2)$	9P(12)		30,31
31	242.1654	DCOOH	75 (4)16) · (11)2/-(10,2)	10R(24)		35,36
32	244.9966	CH ₁ OH	$(n,\tau,K;J):(0,1,0;11)-(0,3,1+;10)$	9P(16)		45,46
33	245.3507	13CH ₃ F	(11,1,12,1) . (0,1,0,11)-(0,3,1 + ;10)	9P(32)		43,40
34	245.3508	¹³ CH ₂ F ₂		9P(32)	i	47,48
35	247.0758	H ¹² COOH	$v_8(J,K_a,K_c): (11,4,8)-(10,4,7)$	9P(28)	1	35,36
36	252.9726	(H ₂ CO) ₃	$v_8(J,K_a,K_c) \cdot (11,4,8) - (10,4,7)$ $v_5(J,K) : (24,13) - (23,13)$	10R(22)		29
37	258.0688	HCOOD	rs (V) x () . (L T) 1 U) - (L U) 1 U)	10R(22)		35,36
38	259.0407	HCOOD		10R(20)		35,36
38 39	264.3409			• •		55,36 5
39 40		ClO ₂		10P(16)		28
	265.8319	C ₂ H ₃ CN	(IF F). (12210) (11.20)	10P(26)		
41	268.5148	H ₁₃ COOH	$v_6(J,K_a,K_c):(12,3,10)-(11,3,9)$	9R(30)		27,35
42	272.6516	CD,I		10P(22)	_	28,31,38
43	274.6260	CH ₂ F ₂		9P(16)	c	79 41
44	277.4476	CDF ₃	cascade qR(13,10) - 1	10R(12)		41
45	280.1195	DCOOD		9P(12)		35,36
46	283.6654	CH ₃ Br		10P(18)		28

No.	Frequency (GHz)	Molecule	Transition	CO ₂ pump	Comment	References
47	284.5744	(H ₂ CO) ₃	$v_5(J,K): (27,14)-(26,14)$	10R(22)		29
48	286.1766	DCOOH	-3 (about 1 / -11) / (male 1)	10R(12)		35,36
49	288.3021	C ₂ H ₃ Cl		9P(24)		28
50	290.9538	H ¹³ COOH	$v_6(J,K_a,K_c):(13,3,11)-(12,3,10)$	9R(30)		27,35
51	291.9936	C ₂ H ₃ Cl		10R(28)		28
52	292.0018	C ₂ H ₃ Cl		10R(38)		28
53	294.4169	CH_2F_2	$v_9(J,K_a,K_c):[20,8(7),13]-[19,8(7),12]$	10P(14)		28,42
54	295.0688	C ₂ H ₃ CN		10P(32)		28
55	296.9979	DCOOD		10 R (18)		35,36
56	297.2486	CDF_3	qR(14,10)-1	10R(12)		41
57	298.1978	CD_3I	$v_2 + v_3 (J,K) : (26,10) - (25,10)$	10P(34)		28,38
58	300.2386	DCOOD		9P(12)		35,36
59	302.6280	C_2H_3Br		10R(4)		34
60	302.6466	CH ₃ ^{B1} Br		10P(10)		28,33
61	303.0685	C ₂ H ₃ Br		10P(16)		34
62	303.2203	C ₂ H ₃ Cl		10R(28)		28
63	303.3540	C₂H₃Cl		10P(24)		28
64	303.9415	C ₂ H ₃ CN		10P(28)		28
65	303.9528	HCOOD		10R(32)		35,36
66	304.0275	CHD₂F		10R(20)		2
67	304.0927	C ₂ H ₃ Br		10R(2)		34
68	304.4211	CHD₂F		10P(46)		49
69	305.3780	CD ₃ I		10P(22)		28,38
70	308.4899	DCOOH		10R(28)		35,36
71	311.1535	C ₂ H ₃ Br	/ I P P \ . (AE 16 30\ /AE 16/1E\ 30\	10P(10)		34 28
72 72	314.0943	CH ₂ F ₂	$v_4(J, K_a, K_c): (45,16,29)-(45,16(15),30)$	10P(30)		28 31,38
73	314.2874	CD ₃ I	$v_{s}(J,K):(25,3)-(24,3)$	9R(28)		51,58
74 75	315.6757	ClO ₂		10P(16) 9R(24)		29,50
75 76	315.9286 316.1534	$(H_2CO)_3$ $(H_2CO)_3$	$v_s(J,K):[30,9(10)]-[29,9(10)]$	9R(24) 10R(6)		29,30
			ν ₅ (J,K): [30,5(10)]-[25,5(10)]	9R(12)		79
77 78	317.5675 317.5703	CH₃Cl CH₃Cl		9R(12)		79
78 79	317.5703	CD ₃ Br		10R(18)		28,51
80	320.0851	DCOOD		10P(26)		35,36
81	320.2367	C ₂ H ₃ Br		10R(32)		34
82	320.4268	¹³ CH ₂ F ₂		9R(10)		47,48
83	320.6304	DCOOD		9P(16)		35,36
84	320.9003	C ₂ H ₃ Br		9P(28)		34
85	323.0587	DCOOD		10P(20)		35,36
86	323.6770	HCOOD	$v_3(J,K_a,K_c):(15,9,6)-(14,9,5)$	10R(14)		35,36,42
87	325.8842	HCOOD	73 (4 11 2 11 11 11 11 11 11 11 11 11 11 11 1	10R(32)		35,36
88	326.3544	CD ₃ I	$v_5(J,K):(26,3)-(25,3)$	9R(28)		31,38
89	326.5187	CH ₂ F ₂	$v_9(J_1K_a,K_c): (22,9(8),14]-[21,9(8),13]$	10P(22)		28,42
90	326.6138	CH ₂ F ₂	$v_9(J,K_a,K_c):[21,10(9),12]-[20,10(9),11]$	10P(22)		28,42
91	327.7208	ClO ₂	A CAMP TO A COLUMN TO THE COLUMN TO A COLUMN TO THE COLUMN	9R(14)		5
92	327.7297	ClO ₂		9R(14)		5
93	327.7368	ClO ₂		9R(14)		5
94	331.1058	CHCl ₂ F		9R(4)		52
95	332.0738	¹³ CH ₂ F ₂		9R(30)		47,48
96	332.6626	C ₂ H ₃ CN		10R(12)		28
97	333.0532	C ₂ H ₃ Br		10R(18)		34
98	333.3309	CF₂HC1		9R(38)		53
99	334.0229	¹³ CH ₂ F ₂		9P(14)		47,48
100	335.3303	¹³ CH ₂ F ₂		9R(16)		47,48
101	336.4344	H ¹³ COOH	$v_8(J,K_a): (15,5)-(14,5)$ (tentative)	10R(32)		27,35
102	336.9529	$(H_2CO)_3$		9R(26)		29
103	337.0478	$(H_2CO)_3$		9R(20)		29
104	337.1919	CH_2F_2	$v_9(J,K_a,K_c):[23,9(8),15]-[22,9(8),14]$	10P(22)		28,42
105	337.2767	CH_2F_2	$v_9(J_*K_a,K_c):[22,10(9),13]-[21,10(9),12]$	10P(22)		28,42
106	339.2860	CD ₃ Cl	-	9P(34)		28,30
107	341.6251	DCOOD		10P(26)		35,36
108	343.9624	CD ₃ OH		9R(14)		54
109	347.5680	CHD₂F		10R(20)		49
110	349.3051	CD ₃ OH		10R(18)		54
111	350.8048	CH ₃ CN	$v_7 + v_8 A (J,K) : (19,3) - (18,3)$	9P(16)		55
112	351.2762	C ₂ H ₃ Br		10P(10)		34
113	352.1484	CD ₃ Br		10R(18)		28,51
114	355.5258	DCOOD		9P(12)		35,36
		CH ₂ F ₂	$v_4(J,K_a,K_c):(15,4,1)-(14,2,2)$	10P(30)		28

No.	Frequency (GHz)	Molecule	Transition	CO ₂ pump	Comment	References
		<u>.</u>	2 : WHATELEVAL		Comment	
116	355.9952	CF ₂ HCl	(IF F) . [144.11(10)] [144.10(1)	9R(16)		53
117	357.5897	H ¹³ COOH	$v_6(J, K_a, K_c) : [16,6,11(10)] - [15,6,10(9)]$	9P(12)		27,35
118	359.9999	CHCl ₂ F	(IV) (100) (180)	9R(4)		52
119	360.6451	CH ₃ ⁸¹ Br	$v_6(J,K):(19,0)-(18,0)$	10P(28)		32,33
120	362.5304	C ₂ H ₃ Br		10P(22)		34
121	367.3051	C ₂ H ₃ CN		10P(16)		28
122	367.7880	C ₂ H ₃ Cl		9P(24)		28
123	368.4053	HCOOD		9P(12)		35,36
124 125	368.4522 379.5612	(H ₂ CO) ₃ H ¹² COOH		9P(32)		29
125	379.7628	DCOOD		9R(36)		35,36
127	380.0040	H ¹³ COOH	(IF F) . [17613(11)] [16611(10)]	10R(20)		35,36
128	380.2149	r coon CD₁I	$v_6(J, K_a, K_c) : [17,6,12(11)] - [16,6,11(10)]$	9P(12)		27,35
129	380.2149	H ¹² COOH	$v_2 + v_3 (J,K) : (30,?) - (29,?)$	10P(12)		28,38
130	381.3369	H COOH	$v_6(J,K_a,K_c):(17,3,15)-(16,3,14)$	9R(32)		35,36
131	382.2576	C ₂ H ₃ Br	$V_6(J, K_a, K_c) : (17, 3, 13) - (10, 3, 14)$	9R (40)		35,36,56
132	384.2838	C_2H_3Br C_2H_3Br		10P(24) 10P(14)		34
133	384.4112	DCOOD		10P(26)		34 35,36
134	388.8169	(H ₂ CO) ₃		• •		
135	389.8201	$(H_2CO)_3$ C_2H_3CN		10P(20) 10R(44)		29 28
136	390.3488	CHD ₂ F		10R(44) 10R(26)		48
137	393.5515	DCOOD		10P(10)		35,36
138	398.2638	DCOOH		10R(34)		35,36
139	398.2966	CD,O		9R(32)	a	28,50
140	398.7497	C ₂ H ₃ CN		10P(28)	g	28
141	399,4006	(H ₂ CO) ₃		10P(20)		29
142	400.0487	CH ₃ ⁷⁹ Br	$v_6(J,K):(21,3):(20,3)$	10R(14)		32,33
143	400.0584	(H ₂ CO) ₃	76 (8,21) . (22,3) . (20,3)	9P(30)		29
144	400.0587	CH ₃ ⁷⁹ Br	$v_6(J,K):(21,0)-(20,0)$	10P(14)		32,33
145	400.0603	CH ₃ Br	(0,22) (22,0)	10R(14)		28
146	401.3017	CF ₂ HCl		9R(10)		53
147	402.9196	H ¹² COOH	$v_6(J,K_a,K_c): [18,8,11(10)]-[17,8,10(9)]$	9R(24)	g	35,36,56,57,58
148	403.7217	H ¹² COOH	$v_6(J,K_a,K_c):(18,3,16)-(17,3,15)$	9R(40)	g	35,36,56,57,58
149	404.5155	C ₂ H ₃ Br	0 (10P(20)	•	34
150	405.9951	¹³ CH ₂ F ₂		9R(12)		47,48
151	406.7117	CD ₂ O		10R(32)		28
152	407.4264	CH ₃ Br		10R(12)		5
153	407.8089	CD ₃ ³⁷ Cl	$v_5(J,K):(19,0)-(18,0)$	9P(6)		28
154	407.9038	¹³ CH ₂ F ₂	3 () ,	9P(36)		47,48
155	408.2906	CD_3I	$v_3 + v_5 (J,K) : (33,0) - (32,0)$	9P(22)		28,38
156	408.3467	N_2H_4		10R(38)		5
157	408.6611	CD ₂ O	$v_6(J,K-K+):(7,4,4)-(6,4,3)$	9P(32)		59
158	408.6738	CD ₂ O		9P(32)	g	28,50
159	410.4927	CD ₃ I	$v_5(J,K):(35,7)-(34,7)$	9R(28)	· ·	31,38
160	411.8316	HCOOD		10R (42)		35,36
161	412.0463	C ₂ H ₃ CN		10P(16)		28
162	412.4145	DCOOD	•	10P(10)		35,36
163	413.5523	CH ₂ F ₂	$v_9(J,K_p,K_0):(35,6,30)-(35,5,31)$	9P(4)		39,40
164	413.9980	C ₂ H ₃ Br	A STATE OF THE STA	10P(14)		34
165	415.0184	¹⁸ O ₃		9P(10)		60
166	419.0617	CH ₃ ⁷⁹ Br	$v_6(J,K):(22,3)-(21,3)$	10R(14)		32,33
167	420.4040	DCOOH		10R(34)		35,36
168	421.2037	$(H_2CO)_3$		9R(32)		29
169	423.9021	C₂H₃Br		10R(24)		34
170	425.2827	C₂H₃Cl		9P(18)		28
171	428.6285	CH ₃ OH	$(n,\tau,K;J):(1,2,5;9)-(1,2,5;8)$	9P(34)	a,g	28,44,45,46,61,62
172	429.1607	CD ₃ ³⁷ Cl	$v_5(J,K):(20,1)-(19,0)$	9P(6)	_	28,30
173	429.8376	DCOOH		10 R (36)		35,36
174	430.9394	HCOOD		10R(36)		35,36
175	431.1390	CH ₃ OH		10R(16)		45,46
176	431.2307	C ₂ H ₃ Cl		9P(22)		28
177	431.7114	$(H_2CO)_3$		9R(16)		29
178	431.8598	CH ₃ OH		9P(24)		45,46
179	432.5138	C ₂ H ₃ Br		10R(16)		34
180	433.2106	CD ₃ ⁷⁹ Br	$v_5(J,K):(28,2)-(27,2)$	9P(26)		28,51
181	433.6958	CHD ₂ F	• • • • • • •	10R(26)		49
182	433.7782	CD ₃ I	$v_3 + v_5 (J,K) : (35,5) - (34,5)$	9R(20)		28,38
183	434.4830	HCOOD		10R(26)		35,36

No.	Frequency (GHz)	Molecule	Transition	CO_2 pump	Comment	References
85	435.8481	CDF ₃	cascade $qR(21,17) - 1$	10R(10)		41
86	438.4607	C ₂ H ₃ Cl	1 () /	10R(20)		28
187	439.4656	CF ₂ HCl		10P(14)		53
188	440.5205	C_2H_3Br		10R(16)		34
189	441.0232	$(H_2CO)_3$		10P(34)		29
190	442.1967	CH_2F_2		9P(12)	c	79
191	444.7554	¹³ CH ₂ F ₂		9P(4)		47,48
192	447.3751	CD ₃ I		10R(8)		28,38
193 1 94	447.3887 447.7650	CD ₃ I H ¹² COOH		10R(8)	~	28,38
195	449.3075	CD ₃ I	$v_3 + v_5 (J,K) : (38,10) - (37,10)$	9R(30) 10P(10)	g	35,36,56,57,61 28,38
196	449.7310	C_2H_3Cl	$v_3 + v_5 (3, K) \cdot (36, 10) - (37, 10)$	10R(20)		28
197	450.2164	CF ₂ HCl		10P(18)		53
198	452.3015	CH_2F_2		10P(24)	g	28,61
199	453.4389	CHCl ₂ F		9R(30)	8	52
200	453.6246	¹³ CH ₃ ⁷⁹ Br		10R(20)		5
201	453.8306	CD ₃ I		10P(46)		28,38
202	455.5062	CDF ₃	qR(22,6)+1	10P(6)		41
203	455.6191	CDF_3	qR(22,17)-1	10R(10)		41
204	455.6547	CDF ₃	qR(22,15)+1	10P(12)		41
205	456.1391	CH_2F_2		9P(10)		39,40
206	461.5862	C ₂ H ₃ Cl		9P(20)		28
207	461.6272	C_2H_3Br		10P(18)		34
208	463.1083	DCOOH		10R(30)		35,36
209	463.7324	CD ₃ OH		10R(8)		54
210	465.8664	CD_2F_2		9P(22)		37
211	466.5305	CH_2F_2		10R(44)		39,40
212	469.0647	DCOOH		10P(8)		35,36
213	469.6041	¹³ CH ₂ F ₂		9P(26)		47,48
214	471.8505	C ₂ H ₃ Br		10R(26)		34
215	472.5077	C ₂ H ₃ Cl		9P(20)	g	28,61
216	474.3180	CH ₃ ⁷⁹ Br		10P(22)		28,33
217 218	475.7356 475.9787	HCOOD 13CH3OH		10R(10)		35,36 63
219	480.1057	CH ₃ OH	$(n,\tau,K;J):(0,2,5;10x)-(0,2,5;9x)$	9P(12) 9P(38)		45,46
220	480.3629	C ₂ H ₃ Br	$(n,7,\mathbf{A},\mathbf{J}): (0,2,3,10x)-(0,2,3,9x)$	10R(18)		34
221	484.3987	¹³ CH ₂ F ₂		9R(8)		47,48
222	484.7511	C_2H_3Br		10R(30)		34
223	485.3713	CF ₂ HCl		9P(28)		53
224	486.4115	CH ₂ DOH		9P(26)		64
225	487.2066	CF ₂ HCl		10R(14)		53
226	488.0347	CH ₃ OH		9P(24)	g	28,45,46
227	488.1740	CD_3I	$(v_3,J,K):(2,42,4)-(2,41,4)$	10R(22)	_	28,38
228	493.3118	$(H_2CO)_3$		10P(36)		29
229	497.5916	CH ₃ OH		9P(24)		45
230	498.0791	CH ₂ CHCl		10P(38)		61
231	500.0292	CD ₃ I	$(\nu_3,J,K):(2,43,4)-(2,42,4)$	10R(22)		38
232	504.0828	C ₂ H ₃ Br		10P(32)		34
233	505.1214	CH,CH₂F		9P(36)		61
234	505.3141	CD ₂ F ₂		9P(30)		37
235	505.7584	CH ₂ F ₂		9R(16)		79 53
236	506.0294	CF ₂ HCl		9R(40)		53
237	506.7351	DCOOD		10R(26)		35,36
238 239	506.8851 507.1214	CH ₂ F ₂		10P(26)	_	28 79
239 240	507.1214	CH ₂ F ₂		9P(14)	С	53
241	507.1311	CF₂HCl C₂H₃Cl		10R(24) 9P(18)		28
242	508.7082	CH ₃ CI CH ₃ CN		9P(18) 9P(30)		5
243	509.8272	CH ₂ F ₂		9P(30) 9R(46)		39,40
244	509.9513	CH ₂ F ₂		9P(16)	c	79
245	511.2581	C ₂ H ₃ CN		10P(20)	·	28
246	511.7858	CH ₃ ⁸¹ Br	$v_6(J,K):(27,8)-(26,8)$	9P(40)		32,33
247	513.4555	C ₂ H ₃ CN	a 1-2-1 - 1-1-1-1 (=-1-1)	10P(12)		28
248	514.6178	HCOOD		9P(18)		35,36
249	515.1211	CDF,	qR(25,21)+1	10R(28)		41
250	516.1102	CHCl₂F	<u>, , .</u>	9R(12)		52
251	516.1707	H ¹² COOH		9P(38)		35,36
252	516.5387	H12COOH		9R(22)		35,56

No.	Frequency (GHz)	Molecule	Transition	CO ₂ pump	Comment	References
254	522.2622	C ₂ H ₃ CN		10R(16)		28
255	523.4797	C ₂ H ₃ CN		10R(20)		28
256	523.8104	H ¹³ COOH	$v_6(J,K_a,K_c):(24,2,23)-(23,2,22)$	9R(32)		27,35
257	525.4275	CH ₃ OH	$(n,\tau,K;J):(0,1,0;11)-(0,1,0;10)$	9P(16)	a,g	21,28,41,43,45,46,61
258	525.6453	¹³ CH ₂ F ₂	, , , -, -, -, -, -, -, -, -, -, -, -, -,	9R(20)	,5	47,48
259	526.4344	CD ₃ I	$v_2(J,K):(46,9)-(45,9)$	10P(36)		28,38
260	527.8541	C ₂ H ₃ Cl		10P(16)	g	28,61
261	527.9260	DCOOD		10R(26)		35,36
262	528.2392	CH ₂ F ₂		9R(28)		39,40
263	528.6352	HCOOD		10P(14)		35,36
264	533.0118	CF,HCl		9R(34)		53
265	534.1096	DCOOD		10P(20)		35,36
266	534.3628	CHCl ₂ F		9R(40)		52
267	534.5774	CDF ₃	qR(26,10) + 1	10R(40)		41
268	534.6727	CDF ₃	cascade $-qR(26,18) - 1$	10R(36)		41
269	536.7073	$(H_2CO)_3$	• ' ' '	9R(10)		29
270	538.3473	CD ₃ I	$v_2(J,K):(46,9)-(45,9)$	10P(36)		28,38
271	538.4178	$CD_3^{81}Br$	$v_5(J,K):(35,2)-(34,2)$	9R(30)		28,51
272	539.1013	CF₂HCl	P	9R(34)		53
273	540.7851	CH_2F_2	$v_9(J,K_a,K_c): [32,19(18),14]-[31,19(18),14]$	10P(14)	g	28,61
274	541.2562	$CD_3^{79}Br$	$v_5(J,K):(35,3)-(34,3)$	9P(32)	5	28,51
275	541.4385	C ₂ H ₃ Br	·	10P(40)		34
276	545.3882	C ₂ H ₃ CN		10P(14)		28
277	545.8132	CHCl₂F		9R(8)		52
278	546.2253	H ¹³ COOH	$v_6(J,K_a,K_c):(26,1,26)-(25,1,25)$	9P(20)		27,35
279	547.5376	CHCl ₂ F		9 R (10)		52
280	549.6628	CH ₃ ⁸¹ Br	$v_6(J,K):(29,7)-(28,7)$	10R(32)		28,33
281	549.7960	CH ₃ ⁸¹ Br	$v_6(J,K): (29,3)-(28,3)$	10P(38)		28,32,33
282	554.1590	CH ₂ F ₂		9R(42)		39,40
283	554.4156	CDF,	qR(27,18) - 1	10R (36)		41
284	559.2141	H ¹³ COOH	$v_6(J,K_a,K_c): [25,7,19(18)]-[24,7,18(17)]$	9P(24)		27,35
285	560.9570	CF ₂ HCl		9R(34)		28,53
286	561.7240	H ¹² COOH	$v_6(J,K_a,K_c):(25,5,21)-(24,5,20)$	9R(28)		35,36
287	561.7475	H12COOH		9P(16)	g	28,35,56
288	561.7720	N_2H_4		10R(8)	Ū	5
289	561.8586	CH ₂ F ₂		9R(6)		79
290	562.3174	CF ₂ HCl		10R(16)		53
291	564.1953	¹³ CH ₂ F ₂		9P(8)		47,48
292	564.2953	¹³ CH ₂ F ₂	•	9P(8)		47,48
293	564.5407	CH ₃ ⁸¹ Br		10R(18)		28,33
294	564.7361	CHCl ₂ F		9R(6)		52
295	565.0778	C ₂ H ₃ Ĉl		9P(16)		28
296	565.5051	CD ₃ ⁷⁹ Br	$v_2(J,K):(37,0)-(36,0)$	10R(10)		28,51
297	565.7742	CD ₃ CN	$v_6 + 2v_8 (J,K) : (36,11) - (35,11)$	9R(4)		28,55
298	566.8436	CH ₂ F,	V - 0 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9P(18)	С	79
299	567.2553	C ₂ H ₃ Br		10R(40)	-	28,34
300	567.9254	N_2H_4		9P(12)		61
301	568.6346	DCOOD		10P(34)		28,35
302	569.4219	DCOOD		10P(34)		28,35
303	572.7721	CD ₃ I	$v_2(J,K):(49,13)-(48,13)$	10P(38)		28,38
304	573.1168	CH₂DOH	<u> </u>	9P(40)		64,65
305	575.1561	CDF ₃	ground-state refilling transition	10R(24)		41
306	577.2975	CD ₃ Cl		9P(36)		28,30
307	577.5511	CH ₃ CH ₂ F		9R(4)		61
308	580.7082	CD ₃ CN	$v_6(J,K):(37,1)-(36,1)$	9P(30)		28,55
309	581.9297	H ¹² COOH	$v_6(J,K_a,K_c):(26,12,15)-(25,12,14)$	9P(16)	g	28,35
310	582.1770	DCOOD	S	10P(34)	•	28,35
311	584.3729	H12COOH		9R(28)		28,35
312	584.3882	H ¹² COOH	$v_6(J_1K_a,K_c):(26,5,22)-(25,5,21)$	9R(28)	g	35,36,56,57,61
313	586.1674	CH ₂ F ₂	On a mar for an instance a summary	9R(28)	•	39,40
314	587.9556	(H ₂ CO) ₃		10P(40)		29
315	587.9911	ClO ₂		9R(36)		28
316	588.5534	CH ₂ DOH		10P(46)	ь	 ₹
317	589.2250	DCOOD		10P(8)	J	28,35
	590.6184	C ₂ H ₃ Cl		10P(22)		28
41¥				10P(22)	g	28,61
318	ና ያብ ራንፉን				×	~~~
319	590.6263 593.9401	C₂H₃Cl	cascada aP(29.20) 1		•	
	590.6263 593.9401 595.9417	CDF ₃ CH ₂ F ₂	cascade - qR(29,20) - 1	10R(38) 9R(6)	6	41 39,40

	Frequency			CO_2		
No.	(GHz)	Molecule	Transition	pump	Comment	References
323	598.1924	(H ₂ CO) ₃		10P(18)		29
324	598.8937	CD_2F_2		10R(24)		37
325	602.3839	CD_2F_2		9P(28)		37
326	603.6172	¹³ CH ₂ F ₂		9P(14)		47,48
327	604.2369	CH ₃ F	$v_3(J,K):(12,3)-(11,3)$	9P(20)		66
328	604.2973	CH ₃ F	$v_3(J,K): (12,2)-(11,2)$	9P(20)	g	41,43,61,67,68
329	604.3347	CH ₃ F	$v_3(J,K): (12,1)-(11,1)$	9P(20)	J	66
330	604.4650	CHCl ₂ F	3 (-) , - ()- , ()- ,	9P(8)		52
331	606.0747	CH ₃ CN	$v_7(J,K):(33,4)-(32,4)$	9P(6)		55,61
332	607.4312	CH ₃ OH	,	10R(4)		45
333	607.9057	HCOOD		10R(40)		28,35
334	609.2846	CHCl ₂ F		9R(36)		52
335	609.4698	DCOOD		10P(8)		28,35
336	610.1083	$(H_2CO)_3$		10P(30)		29
337	611.3336	CD_3I		9R(22)		28,38
338	611.7178	C_2H_3Br		10P(16)		28,34
339	612.7748	CD_2F_2		10R(26)		37
340	613.0250	¹⁸ O ₃	$v_1(J,K_a,K_c):(25,1,25)-(24,0,24)$	9R(32)		60
341	613.6653	CDF ₃	qR(30,20) - 1	10R(38)		41
342	613.9815	CD_2F_2		9P(42)		37
343	615.3046	CD ₃ I	$v_5(J,K):(50,3)-(49,3)$	9P(10)		28,38
344	615.4085	CF ₂ HCl		9R(32)		53
345	615.8833	CH_2F_2	$\nu_9 (J, K_a, K_c) : [22,10(9),13] - [21,8(7),14]$	10P(22)		28
346	618.4175	CH_2F_2	$v_9(J,K_a,K_c):(33,25,9)-(32,25,8)$	10R(28)		28
347	620.7378	C ₂ H ₃ Br		10P(26)		28,34
348	622.6836	CF ₂ HCl		9R(30)		53
349	624.1643	CD ₃ Cl		9P(36)		28,30
350	624.6926	DCOOH		10P(14)		28,35
351	625.7115	¹³ CH ₂ F ₂	(177) (00 10) (070) (9R(40)		47,48
352	627.2291	H ¹³ COOH	$v_8(J,K_a): (28,\approx 12)-(27,?) \ (tentative)$	9P(30)		27,35
353	637.3326	CHCl₂F	/ KD (034 - 35) (013 - 35)	9R(34)		52
354	639.1846	CH ₃ OH	$(n,\tau,K;J):(0,3,4+;25)-(0,1,3-;25)$	10R(38)		45,46,61
355	639.2646	¹³ CD ₃ OH		10R(26)		69
356	640.2595	CH ₂ DOH		9P(26)		64
357	641.2469	CHCl ₂ F		9R(6)		52
358	642.4451	CD ₃ Br		10R(26)		28,51
359	642.5784	DCOOH	(IP) . (20 10) . (20 10)	10P(14)		28,35
360 361	645.0524 645.2318	CD ₃ 35Cl H ¹³ COOH	$v_2(J,K): (30,10)-(29,10)$ $v_6(J,K_a,K_c): (28,3,25)-(27,3,24)$	10R(20) 9R(26)		28,30 27,35
362	645.5309		$V_6(J, \mathbf{R}_a, \mathbf{R}_c) : (20, 3, 23) - (27, 3, 24)$	9P(6)		39,40
363	646.6281	CH ₂ F ₂ CH ₂ CF ₂	$v_9(J, K_a, K_c): [48,13(12),36]-[47,13(12),36]$	10R(20)		28
364	649.7667	¹³ CH ₃ OH	$(n, \tau, K; J) : (0, 3, 4 - ; 27) - (0, 1, 3 + ; 27)$	9P(12)		63,70
365	649.9410	HCOOD	(n, 1, K, J) : (0, 3, 4 - 3, 27) - (0, 1, 3 + 3, 27)	10P(16)		28,35
366	650.2077	N ₂ H ₄		10P(16)		61
367	650.9275	CD ₃ I	$v_s(J_sK):(54,3)-(53,3)$	9R(12)		28,38
368	651.8845	ClO ₂	v ₅ (v,n) : (34,3)=(33,3)	10R(24)		28
369	652.5339	(H ₂ CO) ₃		9R(22)		29
370	653.6245	CH ₃ Br		10R(20)		28
371	653.8214	НСООН		9R(38)	g	36,56,61
372	653.8222	H ¹² COOH	$\nu_6(J,K_a,K_c):(30,1,29)-(29,1,28)$	9R(38)	g	28,35,56,57,61
373	655.5119	DCOOD	a vicialization (motivated)	10P(30)	8	28,35
374	658.7786	CD ₃ CN	$v_6(J,K): (42,2)-(41,2)$	9P(8)		28,55
375	661.2134	CH ₃ CN	$v_7(J,K): (36,7)-(35,7)$	9R(16)	g	28,55,61
376	662.6350	¹³ CH ₂ F ₂	/ S Part - Name / Name	9P(16)	•	47,48
377	664.0284	CH ₂ DOH		9P(32)		64
378	664.7579	HCOOD		10P(12)		28,35
379	666.5020	CD ₃ 35Cl	$v_2(J,K): (31,10)-(30,10)$	10R(20)		28,30
380	668.3836	H ¹³ COOH	$\nu_6(J, K_a, K_c): (29,3,26)-(28,3,25)$	9R(26)		27,35
381	668.5001	CH ₃ OH	$(n,\tau,K;J):(0,2,5L;14)-(0,2,5L;-13)$	9P(12)		45
382	670.4630	CH ₃ I	$v_6(J,K,F): (45,6,93/2)-(44,6,91/2)$	10P(18)	g	28,38,43,61
383	670.8672	H ¹² COOH	A Section Control of C	9R(16)	•	28,35,56
384	671.4195	H ¹² COOH	$v_6(J,K_a,K_c):[30,12,19(18)]-[29,12,18(17)]$	9R(22)		35,56
385	672.3318	H ¹² COOH	$v_6(J_1K_a,K_c): (32,0,32)-(31,0,31)$	9R(20)	g	28,35
386	672.6895	CDF ₃	cascade $-qR(33,13) + 1$	10P(20)	0	41
387	674.6213	CD ₃ I	$v_3(J,K): (56,5)-(55,5)$	9R(32)		28,38
388	676.3285	CD ₃ 35Cl	$v_2(J,K): (31,7)-(30,7)$	9P(10)		28,30
389	678.0061	CH ₂ CHCI	· 2 3-9-7 (3-9) / 3-3) /	10P(16)		61
390	678.7644	CD ₃ Br		9R(16)		28
391	679.9798	CD_2F_2		10P(32)		37

392 682 8004 CH, F; 9R (18)	Frequency (GHz)	Molecule	Transition	CO ₂ pump	Comment	References
934 684,365 C, H, Br 946 687,331 °CH, F, 977 688,503 C, HD, F 978 687,374 N, H, 979 687,374 N, H, 979 688,503 C, HD, F 970 689,503 C, HD, F 970 712,103 C, HD, F 970 71	 682.8004	CH,F,		9R(18)		79
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				·		28,34
935 687,316 H. P. COOH	684.4233					47,48
See	685.3166		$v_8(J,K_a,K_c):(30,4,26)-(29,4,25)$			28,35
398 689-2551 CH,F, 9R(6)	687.9574	N_2H_4	•			61
691.6624 CF,HCl 10R(34)	688.5030	CHD ₂ F				49
400 691,9833 DCOOH 10R(14) 401 692,195 CD,I	689.2551	CH_2F_2		9R(6)		39,40
402 692.955 CD,1	691.6624	CF ₂ HCl		10R(34)		53
402 692.3815 CPF_1 $qR(34,13) + 1$ $10P(20)$ 403 692.990 $H^{1}COOOH$ $v_{v_{c}}(JK_{w},K_{s})$: (33,0,33) - (32,0,32) $9R(20)$ g 404 692.9514 $H^{1}COOH$ $v_{v_{c}}(JK_{w},K_{s})$: (33,0,33) - (32,0,32) $9R(20)$ g 405 693.7529 $CF_{H}CI$ $v_{v_{c}}(JK_{w},K_{s})$: (33,0,33) - (32,0,32) $9R(20)$ g 406 693.7884 $D_{s}^{1}^{1}^{1}^{1}^{1}^{1}^{1}^{1}^{1}^{1$	691.9853	DCOOH		10R(14)		28,35
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	692.1955	CD_3I		9P(28)		28,38
404 692.9514 $H^{12}COOH$ $v_{6}(JK_{a},K_{c}):(33,0,33)-(32,0,32)$ $98(20)$ g 405 693.7529 $CF_{a}HC$ 406 693.7884 $H^{12}COOH$ $v_{6}(JK_{a},K_{c}):[31,12,20(19)]-[30,12,19(18)]$ $98(20)$ g 407 694.8884 $D_{3}^{12}DC$ $v_{5}(JK):(44,1)$ $98(18)$ $98(20)$ g 408 695.915 $D_{3}^{12}DC$ $v_{6}(JK_{a},K_{c}):[31,12,20(19)]-[30,12,19(18)]$ $98(22)$ g 409 696.4109 $CH_{3}CN$ $v_{7}(JK):(45,1)-(44,1)$ $108(34)$ 410 696.423 $HOOOD$ $10P(6)$ 411 697.6951 $HOOOD$ $10P(6)$ 412 707.662 $CF_{3}HCl$ $HOOOD$ $10P(24)$ 413 708.1371 $C_{3}H_{1}^{12}DC$ $CH_{3}^{12}DC$ $CH_{3}^{12}DC$ $CH_{3}^{12}DC$ $CH_{4}^{12}DC$ CH_{4			qR(34,13) + 1	10P(20)		41
495 693,5729 CF, HCI 9R (40) 640,666 637,884 H ¹ COOH V _k (JK, K) : [31,12,20(19)] - [30,12,19(18)] 9R (22) 9P (18) 9P (18	692.8950		$v_6(J,K_a,K_c):(33,1,33)-(32,1,32)$	9R(20)		28,35
406 693.7884 $\text{CD},^{\text{D}}$ By v_{s} (J,K_{s},K_{s}) ; $ 31,12,20(19) - 30,12,19(18) $ 9R(22) 49 696.4109 CH_{3} CD, OH 409 696.4109 CH_{3} CD, OH 407 696.4823 HCOOD 10P(18) 10R(34) 410 696.4823 HCOOD 10P(24) 411 697.6821 HCOOD 10P(24) 412 700.7662 CF_{7} CF, HC 10P(18) 10P(24) 414 710.1543 CH_{3} CH, DOH 10P(18) 10P(24) 414 710.1543 CH_{3} CH, DOH 9R(8) 415 710.2123 CH_{3} CH, CD 9R(36) 416 710.2123 CH_{3} CH, CD 9R(36) 417 713.263 CDF_{1} q_{1} q_{1} q_{2} q_{3} q_{3} q_{4} q_{1} q_{3} q_{4} q			$v_6(J,K_a,K_c):(33,0,33)-(32,0,32)$		g	35,36,43,56,57,58,61
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						53
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					g	28,35
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			$v_5(J,K):(45,1)-(44,1)$			28,51
10P (6) 10P (6) 10P (6) 10P (6) 10P (6) 10P (7) 10P						54
411 697,6951 HCOOD 10P(24)			$\nu_4 + \nu_8 (J,K) : (38,6) - (37,6)$			28,55
1412 700.7662 CF,HCI 9R(26) 414 710.1543 CH,DOH 9R(8) 415 710.2123 CH,DOH 9R(8) 416 710.2058 CH,F.2 9P(14) 417 712.1306 CDF,						28,35
1414 708.1371 C,H,Cl						28,35
1414 710.1543 CH,DOH 9R(8) 10P(24) 1415 710.2123 CH ₃ CN 10P(24) 1416 712.0058 10P(14) 1712.0058 10P(14) 1712.0058 10P(14) 1712.0058 10P(14) 1712.0051 10P(20) 10P(53
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						28
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						64,65
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			aD(25.15) 1	` '		47,48
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			qK(33,13) + 1			41 28,35
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			aP(35.35) 1.1			41
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			qK(35,35) + 1			29
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						54
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			v. (1K K) + [32 12 21(20)]_[31 12 20(19)]		σ	35,36,56,57,61
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			ν ₆ (σ,μ _α ,μ _ε) . [32,12,21(20)]=[31,12,20(1))]		8	39,40
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			$(n + K \cdot I) \cdot (0.1.8 \cdot 15) = (0.1.8 \cdot 14)$			45,46
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			(11,7,11,0): (0,1,0,10) (0,1,0,11)			37
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						45,46
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						47,48
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						53
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						53
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						62,65
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		•	$v_A(J,K_a,K_c):(38,29,9)-(37,29,8)$			61
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	739,1610		$v_6(J,K_a,K_c): [33,9,25(24)]-[32,9,24(23)]$		g	35,36,56,61
435	739.3075	CH ₃ CH ₂ F		9R(30)		61
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	739.3403		$v_5(J,K-JK+):(12,0,12)-(11,0,11)$	9P(16)		71
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	742.4704	¹³ CH ₂ F ₂	•			47,48
439 750.8176 $^{13}\text{CH}_2\text{F}_2$ 9R(34) 440 757.6019 HCOOD 10R(12) 441 758.6825 DCOOD 10R(10) 442 759.5433 $^{13}\text{CH}_2\text{F}_2$ 9P(6) 443 761.6083 $^{12}\text{COOH}$ v_6 (J_*K_a,K_c): [34,9,26(25)]-[33,9,25(24)] 9R(18) d,g 444 761.8888 $^{13}\text{COOH}$ v_6 (J_*K_a,K_c): (34,7,27)-(33,7,26) 9P(32) 445 764.6426 $^{13}\text{CH}_3\text{CH}_3\text{CH}_2\text{F}_2$ 9R(30) 446 765.3846 HCOOD 10R(38) 447 765.8290 $^{13}\text{CH}_2\text{F}_2$ 9R(30) 448 768.8820 DCOOD 10R(12) 449 771.3654 $^{13}\text{CDF}_3$ $qR(38,24)-1$ 10R(42) 450 772.1170 $^{13}\text{CDF}_3$ $qR(38,32)+1$ 10R(32) 451 772.5420 $^{13}\text{C}_4\text{J}_3\text{CH}$	742.5939	CH_2F_2		9P(4)	c	79
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	746.7847	CH_2F_2			c	79
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		¹³ CH ₂ F ₂				47,48
442 759.5433 CH_2F_2 9P.66) 443 761.6083 $H^{12}COOH$ v_6 (J,K_a,K_c) : [34,9,26(25)]-[33,9,25(24)] 9R.(18) d,g 444 761.8888 $H^{13}COOH$ v_6 (J,K_a,K_c) : (34,7,27)-(33,7,26) 9P.(32) 445 764.6426 CH_3OH ($n,\tau,K;J$) : (0,1,8;16)-(0,1,8;15) 9P.(36) 446 765.3846 $HCOOD$ 10R.(38) 447 765.8290 $^{13}CH_2F_2$ 9R.(30) 448 768.8820 $DCOOD$ 10R.(12) 449 771.3654 CDF_3 $qR(38,24)-1$ 10R.(42) 450 772.1170 CDF_3 $qR(38,32)+1$ 10R.(32) 451 772.5420 C_2H_3OH 9P.(32) 452 773.5399 CH_2DOH 9P.(40) 453 774.7261 CF_2HCI 9R.(18) 454 775.9824 CH_3OH 9P.(14) 455 776.5891 CD_3OH 10R.(34) 456 776.8471 CH_2CHCI 10P.(22) 457 777.2948 CF_2HCI 9R.(18)				• •		28,35
443 761.6083 $H^{12}COOH$ $v_6(J,K_a,K_c):[34,9,26(25)]-[33,9,25(24)]$ 9R(18) d,g 444 761.8888 $H^{13}COOH$ $v_6(J,K_a,K_c):(34,7,27)-(33,7,26)$ 9P(32) 445 764.6426 CH_3OH $(n,\tau,K;J):(0,1,8;16)-(0,1,8;15)$ 9P(36) 446 765.3846 $HCOOD$ 10R(38) 447 765.8290 $^{13}CH_2F_2$ 9R(30) 448 768.8820 $DCOOD$ 10R(12) 449 771.3654 CDF_3 $qR(38,24)-1$ 10R(42) 450 772.1170 CDF_3 $qR(38,32)+1$ 10R(32) 451 772.5420 C_2H_3OH 9P(32) 452 773.5399 CH_2DOH 9P(40) 453 774.7261 CF_2HCI 9R(18) 454 775.9824 CH_3OH 9P(14) 455 776.5891 CD_3OH 10R(34) 456 776.8471 CH_2CHCI 10P(22) 457 777.2948 CF_2HCI 9R(18)						28,35
444 761.8888 H ¹³ COOH $v_6(J,K_a,K_c)$: (34,7,27)=(33,7,26) 9P(32) 445 764.6426 CH ₃ OH $(n,\tau,K;J)$: (0,1,8,16)=(0,1,8;15) 9P(36) 446 765.3846 HCOOD 10R(38) 447 765.8290 13 CH ₂ F ₂ 9R(30) 448 768.8820 DCOOD 10R(12) 449 771.3654 CDF ₃ $qR(38,24) = 1$ 10R(42) 450 772.1170 CDF ₃ $qR(38,32) + 1$ 10R(32) 451 772.5420 C ₂ H ₃ OH 9P(32) 452 773.5399 CH ₂ DOH 9P(40) 453 774.7261 CF ₂ HCl 9R(18) 454 775.9824 CH ₃ OH 9P(14) 455 776.5891 CD ₃ OH 10R(34) 456 776.8471 CH ₂ CHCl 10P(22) 457 777.2948 CF ₂ HCl 9R(18)						39,40
445 764.6426 CH_3OH $(n,\tau,K;J):(0,1,8;16)-(0,1,8;15)$ 9P(36) 446 765.3846 $HCOOD$ 10R(38) 447 765.8290 $^{13}CH_2F_2$ 9R(30) 448 768.8820 $DCOOD$ 10R(12) 449 771.3654 CDF_3 $qR(38,24)-1$ 10R(42) 450 772.1170 CDF_3 $qR(38,32)+1$ 10R(32) 451 772.5420 C_2H_5OH 9P(32) 452 773.5399 CH_2DOH 9P(40) 453 774.7261 CF_2HCI 9R(18) 454 775.9824 CH_3OH 9P(14) 455 776.5891 CD_3OH 10R(34) 456 776.8471 CH_2CHCI 10P(22) 457 777.2948 CF_2HCI 9R(18)					d,g	28,35,43,56,57,58,61
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						27,35
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			$(n,\tau,K;J):(0,1,8;16)-(0,1,8;15)$			45,46,61
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						28,35
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						47,48
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						28,35
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						41
452 773.5399 CH_2DOH $9P(40)$ 453 774.7261 CF_2HCl $9R(18)$ 454 775.9824 CH_3OH $9P(14)$ 455 776.5891 CD_3OH $10R(34)$ 456 776.8471 CH_2CHCl $10P(22)$ 457 777.2948 CF_2HCl $9R(18)$			qR(38,32) + 1			41
453 774.7261 CF_2HCI $9R.(18)$ 454 775.9824 CH_3OH $9P.(14)$ 455 776.5891 CD_3OH $10R.(34)$ 456 776.8471 CH_2CHCI $10P.(22)$ 457 777.2948 CF_2HCI $9R.(18)$						72
454 775.9824 CH_3OH $9P(14)$ 455 776.5891 CD_3OH $10R(34)$ 456 776.8471 CH_2CHCl $10P(22)$ 457 777.2948 CF_2HCl $9R(18)$						64,65
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						53
456 776.8471 CH ₂ CHCl 10P(22) 457 777.2948 CF ₂ HCl 9R(18)						45,46
457 777.2948 CF ₂ HCl 9R(18)						54
-		•				61
459 779 0467 (U CO) 02 (20)		_				53
	778. 946 7	$(H_2CO)_3$		9R(30)		29
459 780.0615 CHD ₂ F 10P(28)						49
460 782.1667 $CD_3^{35}Cl$ $v_5(J,K):(36,0)-(35,0)$ 9R(34) 461 783.2267 CF_2HCl 10R(40)			$v_5(J,K):(36,0)-(35,0)$			28,30 53

No.	Frequency (GHz)	Molecule	Transition	CO ₂ pump	Comment	References
462	783.4860	CH ₂ F ₂		9P(10)		39,40
463	784.0631	H ¹³ COOH	$v_8 - (J_1K_a): (35, > 8) - (34,?)$ tentative	9P(26)		27,35
464	784.8060	CH_2F_2	•	9R(36)		39,40
465	785.5872	H ¹³ COOH	$v_8(J,K_a):(35,8)-(34,8)$ (tentative)	9P(24)		27,35
466	787.7555	DCOOD	· ·	10R(12)		28,35
467	791.2604	CD ₂ F ₂		10P(22)		37
468	793.6931	¹³ CH ₂ F ₂		9R(10)		47,48
469	797.3625	CHCl ₂ F		9P(16)		52
470	798.2866	CH_2F_2	$v_4(J,K_a,K_c):(43,31,12)-(42,31,11)$	10P(12)		61
471	798.5795	CHD ₂ F	74 (-11-411-6) ((10,01,11)	9R(6)		49
472	801.3996	CH ₂ DOH		10P(46)		64,65
473	804.0129	CF ₂ HCl		9R(22)		53
474	804.1348	CH ₃ CN	$v_A(J,K):(44,0)-(43,0)$	10P(20)		28,55
475	810.3205	HCOOD	r ₄ (0,0x) : (41,0)=(45,0)	10R(28)		28,35
476	812.1954	CH ₃ OH		9P(16)		45,46
						4
477	812.7500	N ₂ H ₄		9R(18)		37
478	815.9859	CD ₂ F ₂	/ T TC:	10R(14)		
479	817.7083	CD ₃ ⁷⁹ Br	$v_{s}(J,K):(53,5)-(52,5)$	9P(14)		28,51
480	818.4946	CF ₂ HCl		9R(30)		53
481	819.4058	CD ₂ F ₂		9R(34)		37
482	819.7205	CHCl ₂ F		9P(18)		52
483	822.5122	CD_2O		10P(28)		71,73
484	827.1884	CDF_3	v_2 line	9R(24)		41
485	829.9183	CDF ₃	qR(41,11) + 1	10P(24)		41
486	831.3569	CF ₂ HCl		9R(14)		53
487	831.5927	¹³ CH ₂ F ₂		9P(16)		47,48
488	832.6350	CH,F,		9R(8)		79
489	834.2359	¹³ CH ₂ F ₂		9R(22)		47,48
490	837.6408	CH ₂ F ₂		9R(14)		79
491	837.7194	¹³ CH ₂ F ₂		9R(20)		47,48
492	844.1859	CH ₂ F ₂		9P(8)		39,40
493	844.1860	¹³ CH ₂ F ₂		9P(8)		47,48
494	846.4503	CD ₃ OD		10R(16)		62,65
495	849.5064	CD_2F_2		10R(34)		37
496	856.7037	CH ₃ NH ₂		10R(20)		4
497	858.0533	CH ₃ Cl		10R(20)		79
						45,46
498	865.2331	CH₃OH		9P(22)		•
499	869.5227	CD ₃ OD		10R(4)		62,65
500	870.1719	¹³ CH ₂ F ₂		9R(16)		47,48
501	876.2613	CD ₂ F ₂		9P(44)		37
502	880.1204	¹³ CD ₃ OH		10P(16)		69
503	880.8186	CH ₂ DOH		10R(32)		64,65
504	880.9656	CHCl ₂ F		9P(20)		52
505	884,4381	¹³ CH ₃ OH	$(n,\tau,K;J):(0,1,9;19)-(0,1,9;18)$	9P(22)		63,70
506	887.5511	CH_2F_2		9R(10)		66
507	889.3435	CF ₂ HCl		9R(32)		53
508	891.5863	CH ₂ DOH		9P(36)		64
509	893.0136	DCOOD		9R(8)		28,35
510	893.6569	CF ₂ HCl		9R(16)		53
511	897.7581	CH ₃ Cl		9P(42)		79
512	897.7819	¹³ CH ₂ F ₂		9P(36)		47,48
513	899.5717	¹³ CD ₃ OH		10P(16)		69
514	901.3512	¹³ СН ₃ ОН	$(n,\tau,K;J):(0,3,6;24)+(0,1,5;24)$	10R(16)		63,70
515	903.8894	N ₂ H ₄		9P(12)		61
516	905,4770	CHDO	$v_5(J,K-K,K+):(14,4,11)-(13,4,10)$	10P(30)		71
517	905.7426	CD_2F_2	3 (**** - *** 7) (******** (************************	9P(34)		37
518	908.4086	CDF ₃	qR(45-13) + 1	10R(8)		41
519	911.3327	CF ₂ HCl	dering and the	9R(28)		53
520	911.3327	DCOOH		10P(22)		28,35
521	918.4170	CH ₂ F ₂		9R(14)		39,40 28
522	924.0784	CD ₂ O		10P(24)		28
523	924.8858	¹³ CD ₃ OD		10R(14)		74
524	924.6368	CD ₂ F ₂		9P(40)		37
525	929.7268	CH ₂ DOH		9P(12)		64
526	932.7413	¹³ CD ₃ OD		10R(12)		74
527	935.1075	CD_2F_2		10R(44)		37
528	939,0003	CD ₂ O	$v_6(J,K-K+):(16,3,14)-(15,3,13)$	9P(32)		71
529	942.5074	$^{13}CH_2F_2$		9R(12)		47,48
530	945.5625	CD_2F_2		9P(40)		37
531	947.7237	¹³ CH ₂ F ₂		9R(24)		47,48

	Esserianer			CO ₂		
No.	Frequency (GHz)	Molecule	Transition	pump	Comment	References
110.						
532	952.1850	CH ₃ NH ₂		9R(4)		61
533	952.2039	CD ₃ OD		10R(10)		62,65
534	952.7933	CD_2F_2		9R(10)		37
535	955.3681	H ¹³ COOH		9P(6)		27,35
536	955.3703	нізсоон		9 P (6)		27,35
537	960.0245	$^{13}CH_2F_2$		9P(24)		47,48
538	962.2500	нсоон		10R(22)		26
539	963.3022	¹³ CH ₂ F ₂		9R(8)		47,48
540	963.7314	N_2H_4		9P(20)		61
541	969.5968	CH_2F_2		9R(22)	1_	79
542	972.4187	CH ₂ DOH		10R(34)	ь	64
543	973.2243	CH ₂ DOH		9P(14)		47,48
544	976.5437	¹³ CH ₂ F ₂		9R(40)		53
545	979.5445	CF ₂ HCl		9R(24) 9R(8)		20,65
546	980.5916	CH ₃ OD		10R(24)		28,35
547	985.8897	DCOOD	(IV V) (44 (20) (42 (20)	9R(4)	•	35,36,56,57,58,61
548	991.7778	H ¹² COOH	$v_6(J, K_a, K_c): (44,6,39) - (43,6,38)$	9P(14)	g	45,46
549	992.7089	CH ₃ OH		10R(4)		47,48
550	993.8299	¹³ CH ₂ F ₂		10R(12)		61
551	995.0778	N ₂ H ₄		9P(18)	c	79
552	997.7253 998.4879	CH ₂ F ₂ 13CH ₂ F ₂		10R(38)	·	47,48
553		¹³ CH ₂ F ₂		9R(36)		47,48
554 555	998.5321 1003.5366	CD ₃ OD		10R(24)		62,65
556	1003.3300	CH_2F_2		9R(36)		79
557	1005.3033	CH ₂ F ₂		9R(36)		39,40
558	1005.8500	CF,HCl		9R(24)		53
559	1014.0477	CH ₂ DOH		10R(34)		64,65
560	1014.8810	CH,DOH		9P(10)		64
561	1014.8972	CH ₃ OD		9R(8)		20,65
562	1020.0440	CH_2F_2		9P(20)		39,40
563	1020.3211	CH ₃ OH		10R(10)		45,46
564	1020.9247	$CD_3^{37}Cl$		9P(24)		28,30
565	1026.1893	CH ₃ OH	$(n,\tau,K;J):(0,2,5\times;10)-(0,2,5L;10)$	9P(38)		45,46
566	1030.8799	CH ₂ F ₂		9R(24)		79
567	1031.3844	CD ₃ OD		10R(14)		75
568	1035.5527	CH ₂ F ₂	$v_9(J,K_p,K_0):(35,6,30)-(34,5,29)$	9P(4)		39,40
569	1036.8448	CH_2F_2	•	9P(24)	С	79
570	1041.2794	CH_2F_2		9R(26)		79
571	1042.1504	CH_2F_2	$v_9(J,K_p,K_0):(18,14,4)-(18,13,5)$	9R(34)		39,40
572	1043.4545	CD ₃ OH	·	10P(18)		54
573	1045.5780	CD ₃ OH		10P(24)		54
574	1046.7682	CD_2F_2		9P(8)		37
575	1047.5023	CD ₃ OH		9P(40)		54
576	1047.6576	CH₃OH		10R(48)		45
577	1054.2918	CH_2F_2		9R(18)		79 70
578	1056.4147	CH_2F_2		9R(40)		79 70
579	1066.6754	CH_2F_2		9P(14)	c	79
580	1067.1272	СН₃ОН		9R(18)		45,46
581	1068.7337	CD_2F_2		9P(30)		37
582	1069.7714		$(n,\tau,K;J):(0,3,6;23)-(0,3,6;22)$	10R(16)		63,70
583	1069.8534	¹³ CH ₃ OH	$(n,\tau,K;J):(0,2,7;23)-(0,2,7;22)$	10 R (16)		63,70
584	1074.4710	¹³ CH ₂ F ₂	* * * * * * * * * * * * * * * * * * *	9P(22)		47,48 45,46
585	1075.2771	сн,он	$(n,\tau,K;J):(0,2,5\times;10)-(0,2,5u;10)$	9P(38)		28
586	1076.8428			10P(8)		54
587	1083.3951	CD ₃ OH		10P(28)		37
588	1091.0447			10R(26)		45
589	1093.1547			10R(46)		47,48
590	1095.0770			9P(26) 9P(6)		64,65
591	1098.1259		/ T.P. P. / // 18 38 / // 14 34 34 34 34 34 34 34 34 34 34 34 34 34			39,40
592	1100.8067		$v_9(J,K_p,K_0): (40,15,25)-(40,14,26)$	9P(10)		64,65
593	1101.1594			9R(24)		62,65
594	1107.3379			9R(8)		39,40
595	1110.3199		/ F 5 (0.0 5.0) (0.0 5.0)	9R(22)		63,68
596	1116.2455		$(n,\tau,K;J):(0,2,7;24)-(0,2,7;23)$	10R(16)		03,08 79
597	1118.3692			9R(26)		37
598	1119.3680		V D (0.05) (0.05) (0.05)	9P(18)		45 , 46
599	1120.9576		$(n,\tau,K;J):(0,2,5\times;25)-(0,2,5L;25)$	10R(34)		43,46 47,48
600	1123.3820			9R(24)		47,40 64
601	1123.9327	CH₂DOH		9P(32)		UT .

No.	Frequency (GHz)	Molecule	Transition	CO ₂ pump	Comment	References
10.	(0112)	1710100UIG	1 i anginoli	pamp		- Action chocs
02	1132.1406	N_2H_4		10R(20)		61
503	1132.3201	CD ₃ OH		10R(34)		54
04	1133.2770	CH ₃ OH	$(n,\tau,K;J):(0,1,6\times;10)-(0,2,5U;10)$	9P(34)		45,46
505	1136.9420	СН₃ОН	$(n,\tau,K;J):(0,1,6\times;9)-(0,2,5U;9)$	9P(34)		45,46
606	1143.1631	CH ₂ F ₂		9R(38)		79
607	1145.4301	CH ₂ F ₂		9P(38)		39,40
608	1152.8600	¹³ CH ₂ F ₂		10R(20)		47,48
609	1160.0278	CD ₃ OH		10P(22)		54 27.25
610	1160.0718	H ¹³ COOH		9P(16)		27,35
611 612	1170.9410 1176.5700	CH ₂ F ₂ ¹³ CH ₂ F ₃		9P(24) 9P(4)		39,40 47,48
613	1180.0925	CH ₃ OH	$(n,\tau,K;J):(0,1,6\times;9)-(0,2,5L;9)$	9P(34)		45,46
614	1181.5898	CD ₃ OH	(n,r,x,y) : (0,1,0 ×,7)=(0,2,32,7)	10R(36)		54
615	1182.3662	CH ₃ OH	$(n,\tau,K;J):(0,1,6\times;10)-(0,2,5L;10)$	9P(34)		45,46
616	1188.0687	CH ₂ F,	(11,1,11,0) . (0,1,0)(,10)-(0,0,02,10)	9R(42)		79
617	1190.0691	CH ₃ OH		10R(44)		45
618	1192.3383	CH ₃ OH		9R(18)		45,46
619	1193.7273	СН3ОН	$(n,\tau,K;J):(0,3,4+;25)-(0,3,4+;24)$	10R(38)		45,46,61
520	1195.4339	СН,ОН	$(n,\tau,K;J):(0,2,5\times;25)-(0,2,5\times;24)$	10R(34)		45,46
621	1198.5101	CH ₃ NH ₂	· · · · · · · · · · · · · · · · · · ·	9P(24)		4
622	1200.5127	CH ₂ DOH		10P(34)		64,65
623	1202.0932	CD_2F_2		10R(22)		37
624	1205.8960	¹³ CH ₂ F ₂		9R(26)		47,48
525	1208.2460	CH ₂ DOH		10P(34)		64,65
626	1208.3139	$CD_2^TF_2$		10R(16)		37
627	1210.4088	CH ₂ F ₂		9R(34)		79
628	1220.3950	¹³ CH ₂ F ₂		9P(28)		47,48
629	1229.4218	CD ₂ O	$v_6(J,K-K+):[21,6,15(16)]-$			
			[20,6,14(15)]	9R(24)		71
530	1231.9110	CH_2F_2		9R(30)		79
531	1234.4904	СН,ОН		10R(32)		45
632	1236.3969	CH ₃ OH		10R(34)		45,46
33	1256.8720	¹³ CH ₃ OH	$(n,\tau,K;J):(0,3,4-;27)-(0,3,4-;26)$	9P(12)		63,68
534	1260.9142	CH ₂ F ₂		9P(6)	C	79
35	1262.1620	¹³ CH ₃ OH		9P(12)		63
636	1267.0815	CH ₂ F ₂		9R(6)		39,40
637	1267.0913	CH ₂ F ₂		9R(42)		79
638	1267.1310	CH ₂ F ₂		9R(6)		39,40
639	1267.4590	13CH,OH		9P(10)		63
640	1269.7236	CD ₂ F ₂	/IV V \ . /10 17 1\ /10 1/ 1\	9R(34)		37
641 642	1272.1714	CH ₂ F ₂	$v_9(J,K_p,K_0):(18,17,1)-(18,16,2)$	9R(32)		39,40
643	1281.6258 1282.8920	N₂H₄		10R(8)		61 37
		CD ₂ F ₂	$v_6(J,K-K+): (21,3,18)-(20,3,17)$	9P(10)		
644 645	1285.9685	CD ₂ O		9R(14)		71 21.45.46.61
646	1286.9995 1287.8322	CH₃OH CH₃OH	$(n,\tau,K;J):(0,2,10;27)-(0,2,10;26)$	9R(10) 9R(22)	a	21,45,46,61 45,46
547	1302.8458	CH ₃ OH CH ₃ F,		9R(22) 9R(42)		43,40 39,40
648	1302.8438	CD_2F_2		10R(20)		37,40
549	1316.8387	CD ₂ C ₂ CD ₃ OD		10R(20)		62,65
550	1316.8605	CH ₂ F ₂		9P(18)		39,40
651	1324.7719	CH ₂ DOH		9P(46)		64,65
552	1329.3629	CH ₃ OH		9R(8)		45,46
553	1337.0125	CH ₂ DOH		10P(36)		64,65
54	1349.1001	CD ₃ OH		10R(34)		54
555	1368.3154	CH,DOH		9R(24)		64,65
656	1370.4850	CH ₃ NH ₂		9P(24)		4
57	1373.5133	CD ₂ F ₂		10R(38)		37
58	1376.2711	O ₃	$v_3(J,K_a,K_c):(16,8,9)-(16,7,10)$	9P(30)		60
59	1385.6461	13CD3OD	3 1 Francy (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10P(24)		74
60	1391.9721	CH ₃ OD		9R(14)		20,65
561	1393.8569	CD ₃ OH		10P(52)		54
562	1396.2388	CD ₂ F ₂		10R(36)		37
663	1397.0050	¹³ CH ₂ F ₂		9R(34)		47,48
664	1397.1186	CH ₂ F ₂		9R(34)		39,40
665	1404.4269	СН ₃ ОН		9P(22)		45,46
666	1405.1630	¹³ CH ₂ F ₂		9R(44)		47,48
667	1418.7010	СН₃ОН	$(n,\tau,K;J):(0,2,5\times;8)-(0,2,5U;7)$	9P(12)		45,46
668	1419.0493	СН₃ОН		10R(4)		45,46
669	1428.0576	CH ₃ OH	$(n,\tau,K;J):(0,3,9;30)-(0,3,9;29)$	9R(14)		45,46
670	1432.8178	¹³ CD ₃ OD		10R(12)		74

No.	Frequency (GHz)	Molecule	Transition	CO ₂ pump	Comment	References
671	1438.4601	¹³ CH ₃ OH	$(n,\tau,K;J):(1,1,3-;31)-(1,1,3-;30)$	9P(10)		63,70
72	1442.4543	CD_2F_2		10R(38)		37
73	1449.7780	СН₃ОН	$(n,\tau,K;J):(0,2,5\times;8)-(0,2,5L;7)$	9P(12)		45,46
74	1450.4631	CH₂DOH		9P(14)		64
75	1455.0000	¹³ CH ₂ F ₂		10R(18)		47,48
76	1455.4348	CH_2F_2		9R(26)		79
77	1472.1994	¹³ CH ₃ OH	$(n,\tau,K;J):(0,2,7;24)-(0,3,6;24)$	10 R (16)		63,70
78	1480.7129	CH_2F_2		9R(6)		39,40
79	1496.7570	$^{13}CH_2F_2$		9P(16)		47,48
80	1509.0402	CH₃OH	$(n,\tau,K;J):(0,2,5\times;10)-(0,2,5L;9)$	9P(38)		45,46
81	1514.5626	CH_3NH_2		9P(24)		4
82	1518.7950	¹³ CH ₂ F ₂		9P(20)		47,48
83	1521.4309	13CD3OH		10R(26)		69
84	1525.1641	CH_3OH		9P(44)		45
85	1533.4999	CH_2DOH		9P(36)		64
86	1536.1530	¹³ CH ₂ F ₂		9R(20)		47,48
87	1541.7647	CH_2F_2		9R(12)		39,40
88	1542.5246	CHDO		9P(8)		71
89	1544.8187	CH₃OH	$(n,\tau,K;J):(0,3,9;30)-(0,1,8;30)$	9R(14)		45,46
90	1546.0834	CH_2F_2		9R(22)		39,40
91	1549.3400	¹³ CH ₂ F ₂		9P(22)		47,48
92	1551.9387	CH_2F_2		9R(26)		79
93	1552.1901	CH ₃ OH	$(n,\tau,K;J):(0,2,5\times;10)-(0,2,5U;9)$	9P(38)		45,46
94	1554.0760	N_2H_4		10P(24)		4
95	1555.0201	CD_2F_2		9P(8)		37
96	1562.6559	CH,F,		9P(22)		39,40
97	1564.5187	CH₃OH		10R(10)		45,46
98	1566.6728	CD ₃ OH		10R(34)		54
99	1571.8497	CH ₃ OH	$(n,\tau,K;J):(0,1,6\times;9)-(0,2,5U;8)$	9P(34)		45,46
00	1578.3392	CH ₃ OH	$(n,\tau,K;J):(0,1,3+;28)-(0,2,2+;27)$	9R(10)		66
01	1579.2503	CD_2F_2		10R(34)		37
02	1591.0532	CD ₃ OH		10P(42)		54
03	1591.1612	CH₂DOH		10P(26)		64,65
04	1596.1749	CD_2F_2		10R(14)		37
05	1604.6477	CH ₃ F		9R(10)	с	76
06	1609.0267	СНЗОН	$(n,\tau,K;J):(0,1,6\times;9)-(0,2,5L;8)$	9P(34)		45,46
07	1611.4140	¹³ CH ₂ F ₂	(11,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1	9P(38)		47,48
08	1611.4219	CH ₃ OH		9R(18)		45,46
09	1616.1284	СН3ОН	$(n,\tau,K;J):(0,1,6\times;10)-(0,2,5U;9)$	9P(34)		45,46
10	1622.5552	CD ₃ OD	(17, 17-7-7)	10R(24)		62,65
11	1626.6026	CH ₂ F ₂	$v_9(J,K_p,K_0): (18,17,1)-(17,16,2)$	9R(32)		39,40
12	1632.6669	CH, DOH	4 · / p · 0 / · · / / · · / / /	9P(10)		64
13	1635.6280	¹³ CH ₂ F ₂		9P(28)		47,48
14	1642.1019	CD ₃ OH		9R(14)		54
15	1643.7690	¹³ CH ₂ F ₂		10R(20)		47,48
16	1647.8774	N ₂ H ₄		10P(6)		61
17	1658.6899	CD ₃ OH		10R(34)		54
18	1659.2786	CH ₃ OH	$(n,\tau,K;J):(0,1,6\times;10)-(0,2,5L;9)$	9P(34)		45,46
19	1668.0350	CH ₃ OH	(, 12-3-1 - (0)-10-1 (0)-10-1	10R(4)		45,46
20	1726.5485	¹³ CD ₃ OD		10R(20)		74
21	1734.4464	CH₂DOH		9P(12)		64
22	1745.4395	¹³CH₁OH		10R(18)		63
23	1757.5263	CH ₃ OH	$(n,\tau,K;J):(0,1,8;16)-(0,2,7;16)$	9P(36)	e,g	17,21,45,46,61,77
24	1783.601.1	CD ₃ OH	(10R(34)	~,6	54
25	1788.8766	CH ₃ OH		10R(40)		45,46
26	1789.3659	CH ₂ DOH		9P(18)		64
27	1791.3848	CH ₂ DOH		9P(32)		64
28	1796.4617	CD_2F_2		9R(10)		37
29	1798.6470	CH_2F_2	$v_4 + v_9 (J, K_\rho, K_0) : (33,23,10) - (33,22,11)$	9R(10) 9R(22)		39,40
30	1799.1393	CH ₂ F ₂	$v_4 + v_9 (J, K_p, K_0) : (33,23,10) - (33,22,11)$ $v_4 + v_9 (J, K_p, K_0) : (38,23,15) - (38,22,16)$	9R(22) 9R(20)		39,40
30 31	1810.2943	CD ₃ OD	$r_4 + r_9 (v_1 x_p, x_0) \cdot (30, 23, 13) - (30, 22, 10)$	10R(22)		62,65
31 32						
	1818.9640	¹³ CH ₂ F ₂	(= F. D. (0.2.10.27) (0.2.0.27)	9R(4)		47,48 45,46
33	1819.3140	CH ₃ OH	$(n,\tau,K;J):(0,2,10;27)-(0,3,9;27)$	9R(10)		45,46 64.65
34	1819.7203	CH₂DOH		9R(8)		64,65
35	1820.2615	CH ₃ OH		9P(24)		45,46
36	1820.7150	¹³ CH ₂ F ₂		9P(12)		47,48
37	1821.3352	CH ₃ OH		9P(16)	_	45,46
38	1821.7355	CH ₃ OH		9P(14)	ь	48.47
739	1822.3627	CH ₃ OH		9P(14)		45,46

No.	Frequency (GHz)	Molecule	Transition	CO ₂ pump	Comment	References
-0	1832.7686	CH ₃ OH	$(n,\tau,K;J):(0,2,5L;14)-(0,3,4;13)$	9P(12)		45,46
1	1837.8610	CH ₂ F ₂	· 1-2-2- / · (-1-2-2-2-1-1) · (-1-2-1)	9R(22)		79
2	1838.8393	CH ₃ OH	$(n,\tau,K;J):(0,3,4+;25)-(0,1,3+;24)$	10R(38)		45,46,61
43	1848.0838	CH ₃ OH	$(n,\tau,K;J):(0,3,10;18)-(0,1,9;18)$	9P(36)		45
14	1877.5085	CH ₃ OH	(1,7,1,1,0) / (0,0,10,10) (0,1,7,10)	9R(26)		45,46
45	1882.9063	CH₂DOH		10R(34)		64,65
46	1885.9593	CH ₂ F ₂		9P(20)		39,40
47	1891.2742	CH ₂ F ₂	$\nu_9(J,K_p,K_0):(40,15,25)-(39,14,26)$	9P(10)		39,40
48	1898.2799	¹³ CH ₃ OH	$(n,\tau,K;J):(0,3,4-;27)-(0,1,3-;26)$	9P(12)		63,70
1 9	1944.6796	_	(n, 1, K, 3) : (0, 3, 4 - 1, 21) - (0, 1, 3 - 1, 20)		•	79
50	1950.5816	CH ₂ F ₂		9P(24)	c	69
50 51	1956.9358	13CD ₃ OH		9R(28)	•	79
52	1971.3372	CH_2F_2 ¹³ CH_3OH	$(n,\tau,K;J):(0,3,6;23)-(0,1,5;22)$	9P(28)	c	63,70
53		-	$(n,\tau,K,J): (0,3,0,23)-(0,1,3,22)$	10R(16)		45,46
	1982.0506	CH ₃ OH		9R(26)		
54	1987.7989	CH₂DOH		10R(34)		64,65
55	1991.0283	CH₂DOH		10P(26)		64,65
56	1992.7952	CD ₂ F ₂		10R(18)		37
57	2003.7883	CH₂DOH		10R(32)		64,65
58	2006.8052	CH ₂ DOH		10P(36)		64,65
59	2008.3601	¹³ CH ₃ OH	$(n,\tau,K;J):(0,1,9;19)-(0,2,8;19)$	9P(22)		63,70
50	2017.2185	¹³ CD ₃ OD		10R(30)		74
61	2017.5761	¹³ CH₃OH	$(n,\tau,K;J):(0,3,6;24)-(0,1,5;23)$	10 R (16)		63,70
62	2027,7526	CH ₃ NH ₂		9P(24)		61
63	2034.5736	CD ₃ OH		10P(32)		54
64	2048.8036	¹³ CD ₃ OH		10R(26)		69
65	2052.0041	¹³ CH ₃ OH	$(n,\tau,K;J):(1,1,3-;31)-(1,2,2+;31)$	9P(10)		63,70
66	2058.1418	CH ₃ OD		9P(30)		65
67	2059,5316	¹³ CD ₃ OH		10R(24)		69
68	2063.9411	СН,ОН		10R(32)		45
69	2066.3791	CH_2F_2		9P(24)	С	79
70	2080.1893	CD ₃ OH		10P(18)	·	54
71	2093.7288	CH_2F_2		9R(42)		79
72	2135.1930	¹³ CH ₂ F ₂		9R(42) 9R(38)		47,48
						47,48 37
73 74	2152.6624	CD ₂ F ₂		10R(20)		
	2168.0000	¹³ CH ₂ F ₂		9R(22)		47,48
75 ~	2188.9290	CD ₃ OD		10R(46)		75 51
76	2194.2369	CD ₃ OH		10R(14)		54
7 7	2207.0583	CH ₂ DOH		9R(8)		64,65
78	2212.1110	$^{13}\text{CH}_2\text{F}_2$		9R(44)		47,48
79	2216.2635	CH_2F_2		9P(24)		39,40
80	2217.8499	CH₂DOH		10R(32)		64,65
81	2217.8633	CH₂DOH		10R (32)		64,65
82	2237.2964	CH_2F_2		9P(22)		39,40
83	2252.0542	CH ₃ OH		9P(24)		45,46
84	2278.7030	CD ₃ OH		10R(32)		54
85	2314.1113	CH ₃ OH	$(n,\tau,K;J):(0,2,5\times;25)-(0,2,5L;24)$	10R(34)		45,46
86	2340.2918	13CD ₃ OD		10R(16)		74
87	2341.5089	CD ₃ OH		10R(34)		54
88	2348.4384	¹³ CD ₃ OH		10R(22)		69
89	2360.1748	¹³ CD ₃ OH		10P(8)		69
90	2369.0567	CH ₂ F ₂		9P(30)	С	79
91	2402.2240	CD ₃ OD		10R(26)	C	62,65
92 03	2409.2933	CH ₂ DOH	•	10P(34)		64,65
93	2412.7579	¹³ CD ₃ OD		9P(24)		74
4	2447,9685	CH ₂ F ₂	$v_4 + v_9 (J, K_p, K_0) : (33,23,10) - (33,22,11)$	9R(22)		39,40
95	2447.9746	CH ₂ F ₂		9P(8)		39,40
96	2451.2031	CD ₃ OD		10R(28)		62,65
97	2479.6222	CH ₃ OH	·	10R(44)		45
98	2488.5534	CD_2F_2		10 R (36)		37
99	2518.0677	CD ₃ OD		10R(26)		62,65
00	2522.7816	CH ₃ OH	$(n,\tau,K;J):(0,1,8;16)-(0,2,7;15)$	9P(36)	a,g,h	17,21,45,46,61
01	2528.7728	¹³ CD ₃ OD	· ·	10R(14)	. •	74
02	2540.3310	¹³ CH ₃ OH	$(n,\tau,K;J):(1,3,10;21)-(1,1,9;21)$	9P(22)		63,70
03	2541.4856	СН₃ОН		9P(14)		45,46
)4	2546,4950	CH ₂ F ₂	$v_4 + v_9 (J, K_p, K_0) : (38,23,15) - (38,22,16)$	9R(20)		39,40
05	2557.3654	CH ₃ OD	4 1 . A 1- E-b E-0) . (colmoly a) - (colmoly a)	9P(26)		61,65
06	2560.4670	CH ₂ DOH		9P(32)		64
07	2585.8568	CH ₂ DOH CH ₂ F ₂		9P(8)	•	79
07 08			(n = K·I) · (0 2 7·24) · (0 2 6 22)		С	
JO.	2588.3617	¹³CH₃OH	$(n,\tau,K,J):(0,2,7;24)-(0,3,6;23)$	10R(16)		63,70

	Frequency			CO ₂		
No.	(GHz)	Molecule	Transition	pump	Comment	References
809	2635.9580	СН₃ОН		9R(8)		45,46
810	2654.3107	CH ₃ OH		9P(44)		45
811	2664.0583	CH ₂ DOH		9P(12)		64
812	2707.7493	CH ₃ OH	$(n,\tau,K;J):(0,3,10;18)-(0,1,9;17)$	9P(36)		45
813	2714.7147	¹³ CH ₃ OH		10R(18)		63
814	2726.9235	¹³ CD ₃ OD		10R(16)		74
815	2727.2117	¹³ CD ₃ OD		10R(16)		74
816	2742.9460	CH ₂ F ₂		9P(24)		39,40
817	2751.8729	CH ₂ DOH		9P(32)		64
818	2754.9957	CH ₂ DOH		9P(12)		64
819	2758.7817	CD ₃ OH		10P(10)		54
820	2787.7894	CD ₃ OD		10R(12)		62,65
821	2841.1429	CH_2F_2		9P(16)		39,40
822	2851.1692	¹³ CH ₃ OH		10R(18)		63
823	2894.1323	13CH ₃ OH		10R(26)		63
824	2897.0824	¹³ CH ₃ OH	$(n,\tau,K;J):(0,1,9;19)-(0,2,8;18)$	9P(22)		63,70
825	2907.0889	CH ₃ OD		9P(30)		61,65
826	2938.4651	CH ₂ DOH		9P(16)		64
827	2973.9406	СН3ОН	$(n,\tau,K;J):(0,3,9;30)-(0,1,8;29)$	9R(14)		45,46
828	2992.9570	CH₃OH		10R(32)		45
829	3002.0875	CH₃OH		10P(16)		45
830	3074.2100	CH ₃ OH		10R (40)		45,46
831	3105.9368	CH ₃ OH	$(n,\tau,K;J):(0,2,10;27)-(0,3,9;26)$	9R(10)	a,g	21,45,46,61
832	3137.5106	CH_2F_2		9R(12)		39,40
833	3235.2536	CH ₃ OH		10R(34)		45,46
834	3239.4616	CH ₃ OH		9P(22)		45
835	3456.1612	CD ₃ OH		10R(34)		54
836	3476.2825	CH ₃ OH		9R(8)		45,46
837	3481.4330	¹³ CH₃OH	$(n,\tau,K;J):(1,1,3-;31)-(1,2,2-;30)$	9P(10)		63,70
838	3502.2102	CH ₃ OH		9P(40)		45,46
839	3513.8534	¹³ CH ₃ OH	$(n,\tau,K;J):(1,3,10;21)-(1,1,9;20)$	9P(22)		63,70
840	3551.8058	¹³ CD ₃ OH		10R(22)		69
841	3675.8599	CD ₃ OH		10R(16)		54
842	3848.1855	CH ₃ OH		10 R (16)		45,46
843	3868.8189	¹³ CH₃OH		10R(26)		63
844	3873.0051	CH ₃ OH		9R(8)		45,46
845	3982.6311	¹³ CD ₃ OD		9R(24)		74
846	4080.6372	¹³ CD₃OH		10R(20)		69
847	4089.5796	CH ₃ OH		9P(40)		45,46
848	4223.0620	CD₃OH		10R(8)		54
849	4251.6740	СН₃ОН	$(n,\tau,K;J):(1,2,5;9)-(0,1,6;10)$	9P(34)	f,g	21,45,46,61
850	4302.4449	СН3ОН		10R(16)		45,46
851	4441.6752	СН₃ОН		9 R (18)		45,46
852	4442.7248	CD₃OH		10R(30)		54
853	4730.8664	CH ₃ OH	$(n,\tau,K;J):(1,2,5;9)-(0,1,6;9)$	9P(34)		45,46
854	4751.3409	¹³ CH ₃ OH		9P(12)		63
855	4761.1824	CH ₃ OH		10R(16)		45,46
856	4865.7098	CH₃OH		9R(18)		45,46
857	4982.1531	CH ₃ OH		9P(40)		45,46
858	5414.3441	CH₃OH		9P(40)		45,46
859	5566.0527	CH₃OH		10R(36)		45,46
860	6860.6642	CD ₃ OH		10R(18)		54
861	7110.9814	CH ₃ OH		9P(32)		45,46
862	7249.2660	CD ₃ OH		10R(18)		54
863	7509.0362	CH ₃ OH	$(n,\tau,K;J):(1,2,5;9)\sim(1,2,5;8)$	9P(34)		45,46
864	7919.6602	CH ₃ OH		9P(32)		45,46

^a This line has been generated and measured in a Fabry-Perot cavity in Ref. 46. The average difference with previous measurements in waveguide cavities is 0.3 MHz, the maximum discrepancy is 0.7 MHz.

^b We are greatly indebted to Professor M. Yamanaka for pointing out these lines to our attention.

[°] Pumped by 12C18O2.

^d Measured in five different laboratories. The spread is larger than the declared experimental uncertainties. This stresses the importance of a careful design of the apparatus and of extremely careful experimental procedures for obtaining a reproducibility of a few parts in 10⁷, as stated in the text.

The frequency of this line has been carefully remeasured, checking for possible pressure shifts (Ref. 77).

The frequency of Ref. 46 reflects a better determination of the line center.

⁸ Different frequency values are available from different measurements as reported in the following list. The values reported in the table correspond either to the most accurate measurement or to the average, when the accuracies are comparable.

Frequency	Reference	Frequency	Reference
239.1190 (3)	43	604.2971 (5)	41
239.1193 (2)	44	604.2973 (5)	43
	28	604.2971 (5)	61
398.2991 (5)	50	604.2975 (2)	68
398.2996 (5)	30	653.8215 (6)	36
402.9205 (5)	36	The state of the s	56
402.9196 (7)	57	653.8222 (7)	61
402.9210 (3)	58	653.8214 (5)	01
403,7213 (4)	36	661.2118 (6)	28
• • •	56	661.2134 (5)	61
403.7216 (10)		670 4632 (6)	28
403.7221 (2)	58	670.4633 (6)	43
408.6736 (5)	28	670.4630 (3)	
408.6738 (5)	50	670.4624 (5)	61
·	28	692.9510 (5)	36
428.6278 (5)		692.9514 (2)	43
428.6284 (2)	44	692.9495 (10)	56
428.6285 (3)	46	692.9517 (2)	58
447.7649 (4)	36	692.9505 (5)	61
447.7650 (7)	56	• •	
447.7660 (5)	61	693.7884 (5)	28
		693.7885	35
452.3020 (5)	28	716.1574 (7)	36
452.3015 (5)	61	716.1558 (7)	56
472.5075 (5)	28	716.1564 (5)	61
472.5078 (5)	61		
		739.1613 (7)	36
488.0345 (5)	28	739.1610 (5)	61
488.0347 (5)	61	761.6100 (5)	28
497.5916 (5)	25	761.6077 (3)	43
497.5918 (2)	46	761.6076 (5)	56
		761.6098 (2)	58
525.4275 (5)	28	761.6065 (5)	61
525.4274 (5)	41	761.0005 (5)	
525.4283 (3)	43	991.7758 (9)	36
525.4275 (3)	46	991.7769 (10)	56
527.8543 (5)	28	991.7777 (5)	58
527.8539 (5)	61	991.7778 (5)	61
		1757.5260 (60)	17
540.7829 (5)	28		46
540.7851 (5)	61	1757.5263 1757.5263	46 77
561.7475 (5)	28	1757.5263	
561.7485	35	2522.7800 (100)	17
		2522.7816 (3)	46
581.9297 (5)	28	2522.7820 (3)	78
581.9303	35	·	21
584.3880 (4)	36	3105.9368 (5)	
584.3882 (7)	56	3105.9368 (3)	46
584.3869 (5)	61	4251.6687 (50)	21,61
JO-1.JOU7 (J)		4251.6740 (20)	46
590.6265 (5)	28	4251.6740 (7)	78
590.6263 (5)	61	, mo 1, o, (,)	· =

^h A more accurate value for this frequency, 2522.782567(70) GHz, has been recently (December 1985) obtained by tunable FIR spectroscopy by Evenson, Inguscio, Jennings, and Zink. In Pisa the technique of Ref. 66 has been extended to three laser line heterodyning. Line no. 800 has been heterodyned with lines no. 513 and no. 710. Assuming that the frequencies reported in the tables for the two latter lines are correct, 2522.7824 (20) GHz are obtained for line no. 800. This value, although compatible with the preceding measurements, is in much better agreement with the result of tunable FIR spectroscopy.

ⁱ This line was due to the presence of ¹³CH₃F impurities in the ¹³CH₂F₂ sample (see line no. 33).

TABLE II. Frequencies, wave numbers, wave lengths, CO₂ pumps, and lasing molecules of the FIR laser lines.

No.	Frequency (GHz)	Wave number (cm ⁻¹)	Wavelength (μm)	CO ₂ pump	Molecule
ı	144.8141	4.830 478	2070.188	10P(14)	CH ₂ F ₂
2	147.5879	4.923 002	2031.281	10R(30)	$(H_2CO)_3$
3	150.5922	5.023 215	1990.757	9P(14)	CD, ³⁷ Cl
4	152.5155	5.087 369	1965.652	10P(28)	CH, ⁷⁹ Br
5	157.7947	5.263 465	1899.889	10P(20)	C_2H_3Br

No.	Frequency (GHz)	Wave number (cm ⁻¹)	Wavelength (μm)	CO ₂ pump	Molecule
6	158.8981	5.300 271	1886.696	9P(26)	CH ₃ Cl
7	164.0159	5.470 982	1827.826	10P(20)	ClO ₂
8	173.2070	5.777 564	1730.833	10R(24)	HCOOD
9	174.8948	5.833 863	1714.130	9P(30)	CD_2F_2
10	185.6429	6.192 381	1614.888	10P(26)	C_2H_3Br
11	189.5375	6.322 290	1581.705	9P(26)	$(H_2CO)_3$
12	189.7537	6.329 502	1579.903	10R(12)	$(H_2CO)_3$
13	193.4763	6.453 675	1549.505	9R(10)	CD_3I
14	194.4494	6.486 134	1541.750	9P(30)	HCOOD
15	197.0535	6.572 997	1521.376	9P(10)	C ₂ H ₅ F
16	200.9539	6.703 101	1491.847	9P(14)	H13COOH
17	207.0253	6.905 621	1448.096	9R(44)	CH ₂ F ₂
18	215.0495	7.173 279	1394.063	10R(20)	C ₂ H ₃ Br
19	216.6315	7.226 049	1383.882	10P(24)	C_2H_3Br
20	228.7186	7.629 231	1310.748	10P(14)	ClO ₂ CH ₃ ⁷⁹ Br
21	228.7498	7.630 272	1310.569	10R(4)	CH ₃ "Br
22	231.9041	7.735 488	1292.743	10R(10)	(H ₂ CO) ₃
23	233.9116	7.802 451	1281.649	9P(38)	DCOOD
24	237.8247	7.932 978	1260.561	10R(16)	CDF ₃
25	239.0958	7.975 377	1253.859	10P(32)	CH₃I CH₃I
26 27	239.1028	7.975 611	1253.822	10P(32)	
	239.1042 239.1192	7.975 658	1253.815	10P(32)	CH₃I CH₃I
28 29	240.2965	7.976 158 8.015 428	1253.736 1247.594	10P(32) 10R(12)	C ₂ H ₃ Br
30	241.8696	8.067 901	1239.480	9P(12)	$C_2H_3B_1$ $CD_3^{-35}C1$
31	242.1654	8.077 768	1237.966	10R(24)	DCOOH
32	244.9966	8.172 207	1223.660	9P(16)	CH ₃ OH
33	245.3507	8.184 018	1221.894	9P(32)	¹³ CH ₃ F
34	245.3508	8.184 022	1221.893	9P(32)	$^{13}\text{CH}_2\text{F}_2$
35	247.0758	8.241 562	1213.362	9P(28)	H ¹² COOH
36	252.9726	8.438 258	1185.079	10R(22)	$(H_2CO)_3$
37	258.0688	8.608 249	1161.676	10R(20)	HCOOD
38	259.0407	8.640 668	1157.318	10R(38)	HCOOD
39	264.3409	8.817 463	1134.113	10P(16)	ClO ₂
40	265.8319	8.867 198	1127.752	10P(26)	C ₂ H ₃ CN
41	268.5148	8.956 690	1116.484	9R(30)	H ¹³ COOH
42	272.6516	9.094 678	1099.544	10P(22)	CD_3I
43	274.6260	9.160 537	1091.639	9P(16)	CH ₂ F ₂
44	277.4476	9.254 656	1080.537	10R(12)	CDF ₃
45	280.1195	9.343 781	1070.231	9P(12)	DCOOD
46	283.6654	9.462 059	1056.852	10P(18)	CH ₃ Br
47	284.5744	9.492 380	1053.477	10R(22)	$(H_2CO)_3$
48	286.1766	9.545 824	1047.579	10R(12)	DCOOH
49	288.3021	9.616 723	1039.855	9P(24)	C ₂ H ₃ Cl
50	290.9538	9.705 174	1030.378	9R(30)	H ¹³ COOH
51	291.9936	9.739 858	1026.709	10R(28)	C ₂ H ₃ Cl
52	292.0018	9.740 132	1026.680	10R(38)	C ₂ H ₃ Cl
53	294.4169	9.820 691	1018.258	10P(14)	CH ₂ F ₂
54	295.0688	9.842 436	1016.009	10P(32)	C ₂ H ₃ CN
55	296.9979	9.906 784	1009.409	10R(18)	DCOOD
56	297.2486	9.915 146	1008.558	10R(12)	CDF ₃
57	298.1978	9.946 808	1005.348	10P(34)	CD ₃ I
58	300.2386	10.014 882	998.514	9P(12)	DCOOD
59	302.6280	10.094 584	990.630	10R(4)	C_2H_3Br
60	302.6466	10.095 204	990.569	10P(10)	CH ₃ ⁸¹ Br
61	303.0685	10.109 277	989.190	10P(16)	C_2H_3Br
62	303.2203	10.114 341	988.695	10R(28)	C ₂ H ₃ Cl
63	303.3540	10.118 800	988.259	10P(24)	C ₂ H ₃ Cl
64	303.9415	10.138 397	986.349	10P(28)	C ₂ H ₃ CN
65	303.9528	10.138 774	986.313	10R(32)	HCOOD
66	304.0275	10.141 266	986.070	10R(20)	CHD_2F
67	304.0927	10.143 441	985.859	10R(2)	C_2H_3Br
68	304.4211	10.154 395	984.795	10P(46)	CHD_2F
69	305.3780	10.186 314	981.709	10P(22)	CD_3I
70	308.4899	10.290 115	971.806	10R(28)	DCOOH
71	311.1535	10.378 964	963.487	10P(10)	C_2H_3Br
72	314.0943	10.477 058	954.466	10P(30)	CH_2F_2
73	314.2874	10,483 499	953.880	9R(28)	CD_3I
74	315.6757	10.529 808	949.685	10P(16)	C1O ₂

No.	Frequency (GHz)	Wave number (cm ⁻¹)	Wavelength (μm)	CO ₂ pump	Molecule
75	315.9286	10.538 244	948.925	9R(24)	(H ₂ CO) ₃
76	316.1534	10.545 742	948.250	10R(6)	$(H_2CO)_3$
77	317.5675	10.592 910	944.028	9R(12)	CH ₃ Cl
78	317.5703	10.593 005	944.019	9R(12)	CH ₃ Cl
79	318.4246	10.621 501	941.486	10R(18)	CD ₃ Br
80	320.0851	10.676 890	936.602	10P(26)	DCOOD
81	320.2367	10.681 947	936.159	10R(32)	C_2H_3Br
82	320.4268	10.688 288	935.604	9R(10)	¹³ CH ₂ F ₂
83	320.6304	10.695 079	935.009	9R(10) 9P(16)	DCOOD
84	320.9003	10.704 082	934.223	9P(28)	C ₂ H ₃ Br
85	323.0587	10.776 078	927.981	10P(20)	DCOOD
86	323.6770	10.796 703	926.209	10R(14)	HCOOD
87	325.8842	10.870 327	919.936	10R(32)	HCOOD
88	326.3544	10.886 011	918.610	9R(28)	CD ₃ I
89	326.5187	10.891 491	918.148	10P(22)	CH ₂ F ₂
90	326.6138	10.894 664	917.881	10P(22)	CH_2F_2
91	327.7208	10.931 589	914.780	9R(14)	ClO_2
92	327.7297	10.931 886	914.755	9R(14)	ClO ₂
93	327.7368	10.932 123	914.735	9R(14)	ClO ₂
94	331.1058	11.044 501	905.428	9R(4)	CHCl₂F
95	332.0738	11.076 790	902.789	9R(30)	¹³ CH ₂ F ₂
96	332.6626	11.096 430	901.191	10R(12)	C ₂ H ₃ CN
97	333.0532	11.109 459	900.134	10R(18)	C_2H_3Br
98	333.3309	11.118 722	899.384	9R(38)	CF ₂ HCl
99	334.0229	11.141 805	897.521	9P(14)	¹³ CH ₂ F ₂
100	335.3303	11.185 415	894.021	9R(16)	¹³ CH ₂ F ₂
101	336.4344	11.222 244	891.087	10R(32)	H ¹³ COOH
102	336.9529	11.239 539	889.716	9R(26)	$(H_2CO)_3$
103	337.0478	11.242 704	889.466	9R(20)	$(H_2CO)_3$ $(H_2CO)_3$
103	337.1919	11.247 511	889.086	10P(22)	
					CH ₂ F ₂
105	337.2767	11.250 340	888.862	10P(22)	CH ₂ F ₂
106	339.2860	11.317 363	883.598	9P(34)	CD ₃ Cl
107	341.6251	11.395 387	877.548	10P(26)	DCOOD
108	343.9624	11.473 351	871.585	9R(14)	CD ₃ OH
109	347.5680	11.593 621	862.543	10R(20)	CHD₂F
110	349.3051	11.651 564	858.254	10R(18)	CD ₃ OH
111	350.8048	11.701 589	854.585	9P(16)	CH ₃ CN
112	351.2762	11.717 313	853.438	10P(10)	C_2H_3Br
113	352.1484	11.746 406	851.324	10R(18)	CD ₃ Br
114	355.5258	11.859 064	843.237	9P(12)	DCOOD
115	355.7847	11.867 700	842.623	10P(30)	CH ₂ F ₂
116	355.9952	11.874 722	842.125	9R(16)	CF ₂ HCl
117	357.5897	11.927 908	838.370	9P(12)	H ¹³ COOH
118	359.9999	12.008 304	832.757	9R(4)	CHCl ₂ F
119	360.6451	12.029 826	831.267	10P(28)	CH, 81Br
120	362.5304	12.092 712	826.944	10P(22)	C_2H_3Br
121	367.3051	12.251 979	816.195	10P(16)	C ₂ H ₃ CN
121	367.7880	12.268 087	815.123	9P(24)	C ₂ H ₃ Cl
			813.757		HCOOD
123	368.4053 368.4523	12.288 678		9P(12)	
124	368.4522	12.290 242	813.654	9P(32)	(H ₂ CO) ₃
125	379.5612	12.660 799	789.840	9R(36)	H12COOH
126	379.7628	12.667 523	789.420	10R(20)	DCOOD
127	380.0040	12.675 569	788.919	9P(12)	H ₁₃ COOH
128	380.2149	12.682 604	788.482	10P(12)	CD_3I
129	380.9588	12.707 418	786.942	9R(32)	H ¹² COOH
130	381.3369	12.720 030	786.162	9R(40)	H ¹² COOH
131	382.2576	12.750 741	784.268	10P(24)	C ₂ H ₃ Br
132	384.2838	12.818 328	780.133	10P(14)	C_2H_3Br
133	384.4112	12.822 577	779.874	10P(26)	DCOOD
134	388.8169	12.969 536	771.038	10P(20)	$(H_2CO)_3$
135	389.8201	13.002 999	769.053	10R(44)	C ₂ H ₃ CN
136	390.3488	13.020 634	768.012	10R(26)	CHD ₂ F
137	393.5515	13.127 465	761.762	10P(10)	DCOOD
138	398.2638	13.284 650	752.748 752.686	10R(34)	DCOOH
139	398.2966	13.285 744	752.686	9R(32)	CD ₂ O
140	398.7497	13.300 858	751.831	10P(28)	C ₂ H ₃ CN
141	399.4006	13.322 570	750.606	10P(20)	(H ₂ CO) ₃
142	400.0487	13.344 188	749.390	10R(14)	CH ₃ ⁷⁹ Br
143	400.0584	13.344 512	749.372	9P(30)	$(H_2CO)_3$
144	400.0587	13.344 522	749.371	10P(14)	CH ₃ ⁷⁹ Br

No.	Frequency (GHz)	Wave number (cm ⁻¹)	Wavelength (μm)	CO ₂ pump	Molecule
145	400.0603	13.344 575	749.368	10R(14)	CH₃Br
146	401.3017	13.385 984	747.050	9R(10)	CF,HCl
147	402.9196	13.439 951	744.050	9R(24)	H ¹² COOH
148	403.7217	13.466 706	742.572	9R(40)	H12COOH
149	404.5155	13.493 185	741.115	10P(20)	C_2H_3Br
150	405.9951	13.542 539	738.414	9R(12)	$^{13}\text{CH}_2\text{F}_2$
151	406.7117	13.566 442	737.113	10 R (32)	CD ₂ O
152	407.4264	13.590 282	735.820	10R(12)	CH ₃ Br
153	407.8089	13.603 041	735.130	9P(6)	CD ₃ ³⁷ Cl
154	407.9038	13.606 206	734.959	9P(36)	$^{13}\text{CH}_2\text{F}_2$
155	408.2906	13.619 108	734.262	9P(22)	CD_3I
156 157	408.3467 408.6611	13.620 980 13.631 467	734.162	10R(38)	N_2H_4
158	408.6738	13.631 891	733.597 733.574	9P(32)	CD ₂ O
159	410.4927	13.692 563	730.323	9P(32)	CD ₂ O
160	411.8316	13.737 224	730.323 727.949	9R(28) 10R(42)	CD ₃ I
161	412.0463	13.744 385	727.570	10P(16)	HCOOD
62	412.4145	13.756 667	726.920	10P(10)	C ₂ H ₃ CN DCOOD
63	413.5523	13.794 620	724.920	9P(4)	CH ₂ F ₂
64	413.9980	13.809 487	724.140	10P(14)	$C_2H_3B_r$
165	415.0184	13.843 524	722.359	9P(10)	¹⁸ O ₃
166	419.0617	13.978 394	715.390	10R(14)	CH ₃ ⁷⁹ Br
167	420.4040	14.023 168	713.106	10R(34)	DCOOH
168	421.2037	14.049 843	711.752	9R(32)	$(H_2CO)_3$
169	423.9021	14.139 852	707.221	10R(24)	C_2H_3Br
170	425.2827	14.185 904	704.925	9P(18)	C ₂ H ₃ Cl
171	428.6285	14.297 508	699.423	9P(34)	СН,ОН
172	429.1607	14.315 260	698.555	9P(6)	$CD_3^{37}Cl$
.73	429.8376	14.337 839	697.455	10R(36)	DCOOH
.74	430.9394	14.374 591	695.672	10R(36)	HCOOD
.75	431.1390	14.381 249	695.350	10R(16)	СН₃ОН
.76	431.2307	14.384 308	695.202	9P(22)	C_2H_3Cl
177	431.7114	14.400 342	694.428	9R(16)	$(H_2CO)_3$
78	431.8598	14.405 292:	694.189	9P(24)	СН₃ОН
179	432.5138	14.427 107	693.140	10R(16)	C_2H_3Br
180	433.2106	14.450 350	692.025	9P(26)	CD, ⁷⁹ Br
181	433.6958	14.466 535	691.251	10R(26)	CHD₂F
182	433.7782	14.469 283	691.119	9R(20)	CD_3I
183	434.4830	14.492 793	689.998	10R(26)	HCOOD
184 185	435.0000	14.510 038	689.178	9R(22)	$^{13}\text{CH}_2\text{F}_2$
	435.8481	14.538 328	687.837	10 R (10)	CDF ₃
.86 .87	438.4607	14.625 475	683.738	10R(20)	C ₂ H ₃ Cl
188	439.4656 440.5205	14.658 995	682.175 680.541	10P(14)	CF₂HCl
89	441.0232	14.694 182 14.710 950		10R(16)	C ₂ H ₃ Br
.90	442.1967	14.750 094	679.766 677.063	10P(34)	(H ₂ CO) ₃
191	444.7554	14.730 094	677.962 674.061	9P(12)	CH ₂ F ₂
92	447.3751	14.922 827	670.114	9P(4) 10R(8)	¹³ CH ₂ F ₂
193	447.3887	14.923 281	670.094	10R(8)	CD₃I CD₃I
94	447.7650	14.925 281	669.531	9R(30)	H ¹² COOH
95	449.3075	14.987 285	667.232	10P(10)	CD ₃ I
96	449.7310	15.001 411	666.604	10R(20)	CD₃I C₂H₃Cl
97	450.2164	15.017 603	665.885	10P(18)	CF ₂ HCl
98	452.3015	15.087 154	662.816	10P(24)	CH ₂ F ₂
99	453.4389	15.125 094	661.153	9R(30)	CHCl ₂ F
000	453.6246	15.131 288	660.882	10R(20)	¹³ CH ₃ ⁷⁹ Br
01	453.8306	15.138 159	660.582	10P(46)	CD ₃ I
02	455.5062	15.194 051	658.152	10P(6)	CDF ₃
03	455.6191	15.197 817	657.989	10R(10)	CDF,
.04	455.6547	15.199 005	657.938	10P(12)	CDF ₃
:05	456.1391	15.215 163	657.239	9P(10)	CH ₂ F ₂
206	461.5862	15.396 858	649,483	9P(20)	C ₂ H ₃ Cl
207	461.6272	15.398 226	649.425	10P(18)	C_2H_3Br
208	463.1083	15.447 630	647.348	10R(30)	DCOOH
209	463.7324	15.468 448	646.477	10R(8)	CD ₃ OH
210	465.8664	15.539 630	643.516	9P(22)	CD_2F_2
211	466.5305	15.561 782	642.600	10R(44)	CH ₂ F ₂
212	469.0647	15.646 314	639.128	10P(8)	DCOOH
213	469.6041	15.664 307	638.394	9P(26)	¹³ CH ₂ F ₂
214	471.8505	15.739 239	635.355	10R(26)	C_2H_3Br

No.	Frequency (GHz)	Wave number (cm ⁻¹)	Wavelength (μm)	CO ₂ pump	Molecule
215	472.5077	15.761 160	634.471	9P(20)	C ₂ H ₃ Cl
216	474.3180	15.821 545	632.050	10P(22)	CH ₃ ⁷⁹ Br
:17	475.7356	15.868 831	630.166	10R(10)	HCOOD
18	475.9787	15.876 940	629.844	9P(12)	¹³ CH ₃ OH
19	480.1057	16.014 602	624,430	9P(38)	CH₃OH
20	480.3629	16.023 182	624.096	10R(18)	C ₂ H ₃ Br
21 22	484.3987 484.7511	16.157 801 16.169 556	618.896 618.446	9R(8) 10R(30)	¹³ CH ₂ F ₂
23	485.3713	16.190 244	617.656	9P(28)	C₂H₃Br CF₂HCl
24	486.4115	16.224 941	616.335	9P(26)	CH ₂ DOH
25	487.2066	16.251 463	615.329	10R(14)	CF ₂ HCl
26	488.0347	16.279 085	614.285	9P(24)	CH₃OH
27	488.1740	16.283 732	614.110	10R(22)	CD ₃ I
28	493.3118	16.455 110	607.714	10P(36)	$(H_2CO)_3$
29	497.5916	16.597 869	602.487	9P(24)	CH₃OH
30	498.0791	16.614 130	601.897	10P(38)	CH ₂ CHCl
31	500.0292	16.679 179	599.550	10R(22)	CD ₃ I
32	504.0828	16.814 392	594.729	10P(32)	C ₂ H ₃ Br
33 34	505.1214 505.3141	16.849 036 16.855 464	593.506 593.279	9P(36)	CH ₃ CH ₂ F
35 35	505.7584	16.870 284	593.279 592.758	9P(30)	CD ₂ F ₂
36	506.0294	16.879 324	592.441	9R(16) 9R(40)	CH ₂ F ₂ CF ₂ HCl
37	506.7351	16.902 864	591.616	10R(26)	DCOOD
38	506.8851	16,907 867	591.441	10P(26)	CH ₂ F ₂
:39	507.1214	16.915 749	591.165	9P(14)	CH ₂ F ₂
40	507.1511	16.916 740	591.130	10R(24)	CF ₂ HCl
41	507.8048	16.938 545	590.369	9P(18)	C ₂ Ĥ ₃ Cl
42	508.7082	16.968 679	589.321	9P(30)	CH₃CN
43	509.8272	17.006 005	588.028	9R(46)	CH_2F_2
44	509.9513	17.010 144	587.884	9P(16)	CH_2F_2
45	511.2581	17.053 735	586.382	10P(20)	C ₂ H ₃ CN
46 47	511.7858	17.071 337	585.777	9P(40)	CH ₃ ⁸¹ Br
47	513.4555 514.6178	17.127 032 17.165 802	583.872 582.554	10P(12)	C₂H₃CN HCOOD
48 49	515.1211	17.182 590	581.984	9P(18) 10R(28)	CDF ₃
250	516.1102	17.215 583	580.869	9R(12)	CHCl₂F
:51	516.1707	17.217 601	580.801	9P(38)	H ¹² COOH
52	516.5387	17.229 876	580.387	9R(22)	H12COOH
53	517.0965	17.248 483	579.761	10P(16)	C ₂ H ₃ Cl
54	522.2622	17.420 792	574.027	10R(16)	C_2H_3CN
:55	523.4797	17.461 403	572.692	10R(20)	C ₂ H ₃ CN
:56	523.8104	17.472 434	572,330	9R(32)	H ¹³ COOH
:57	525.4275	17.526 375	570.569	9P(16)	CH ₃ OH
58	525.6453	17.533 640	570.332	9R(20)	¹³ CH ₂ F ₂
59 60	526.4344 527.8541	17.559 961 17.607 318	569.477 567.946	10P(36) 10P(16)	CD ₃ I C ₂ H ₃ Cl
61	527.9260	17.609 716	567.868	10R(26)	DCOOD
62	528.2392	17.620 163	567.532	9R(28)	CH ₂ F ₂
63	528.6352	17.633 372	567.106	10P(14)	HCOOD
64	533.0118	17,779 360	562.450	9R(34)	CF ₂ HCl
65	534.1096	17.815 979	561.294	10P(20)	DCOOD
.66	534.3628	17.824 424	561.028	9R(40)	CHCl₂F
67	534.5774	17.831 583	560.803	10R(40)	CDF ₃
68	534.6727	17.834 762	560.703	10R(36)	CDF ₃
69 70	536.7073	17.902 628	558.577	9R(10)	$(H_2CO)_3$
70 71	538.3473	17.957 333	556.876	10P(36)	CD ₃ I
71 72	538.4178 539.1013	17.959 685 17.982 484	556.803 556.097	9R(30) 9R(34)	CD ₃ ⁸¹ Br
73	540.7851	18.038 649	554.365	9R(34) 10P(14)	CF ₂ HCl CH ₂ F ₂
74	541.2562	18.054 363	553.883	9P(32)	CD ₃ ⁷⁹ Br
275	541.4385	18.060 444	553.696	10P(40)	C ₂ H ₃ Br
76	545.3882	18.192 192	549.686	10P(14)	C ₂ H ₃ CN
77	545.8132	18.206 369	549.258	9R(8)	CHCl₂F
.78	546.2253	18.220 115	548.844	9P(20)	H ¹³ COOH
279	547.5376	18.263 888	547.529	9R(10)	CHCl₂F
280	549.6628	18.334 777	545.412	10R(32)	CH ₃ ⁸¹ Br
281	549.7960	18.339 222	545.279	10P(38)	CH ₃ 81Br
282	554.1590	18.484 755	540.986	9R(42)	CH_2F_2
283	554.4156	18.493 314	540.736	10R(36)	CDF_3

No.	Frequency (GHz)	Wave number (cm ⁻¹)	Wavelength (μm)	CO ₂ pump	Molecule
284	559.2141	18.653 375	536.096	9P(24)	H ¹³ COOH
285	560.9570	18.711 511	534,430	9R(34)	CH ₂ HCl
286	561.7240	18.737 096	533.701	9 R (28)	H ¹² COOH
287	561.7475	18.737 880	533.678	9P(16)	H ¹² COOH
288	561.7720	18.738 697	533.655	10 R (8)	N_2H_4
289	561.8586	18.741 586	533.573	9R(6)	CH_2F_2
290	562.3174	18.756 889	533.137	10R(16)	CF ₂ HCl
291	564.1953	18.819 529	531.363	9P(8)	¹³ CH ₂ F ₂
292	564.2953	18.822 865	531.269	9P(8)	¹³ CH ₂ F ₂
293	564.5407	18.831 051	531.038	10R(18)	CH ₃ ⁸¹ Br
294	564.7361	18.837 569	530.854	9R(6)	CHCl ₂ F
295	565.0778	18.848 967	530.533	9P(16)	C ₂ H ₃ Cl
296	565.5051	18.863 220	530.132	10R(10)	CD ₃ ⁷⁹ Br
297	565.7742 566.8436	18.872 196 18.907 867	529.880 528.880	9R(4) 9P(18)	CD ₃ CN
298 2 9 9	567.2553	18.921 600	528.497	10R(40)	CH_2F_2 C_2H_3Br
300	567.9254	18.943 952	527.873	9P(12)	N_2H_4
301	568.6346	18.967 609	527.215	10P(34)	DCOOD
302	569.4219	18.993 870	526.486	10P(34)	DCOOD
302 303	572.7721	19.105 621	523.406	10P(38)	CD ₃ I
303 304	573.1168	19.117 119	523.091	9P(40)	CH₂DOH
305	575.1561	19.185 142	521.237	10R(24)	CDF ₃
306	577.2975	19.256 572	519.303	9P(36)	CD ₃ Cl
307	577.5511	19.265 031	519.075	9R(4)	CH ₃ CH ₂ F
308	580.7082	19.370 341	516.253	9P(30)	CD ₃ CN
309	581.9297	19.411 085	515.170	9P(16)	H ¹² COOH
310	582.1770	19.419 334	514.951	10P(34)	DCOOD
311	584.3729	19.492 582	513.016	9R(28)	H ¹² COOH
312	584.3882	19.493 092	513.002	9R(28)	H12COOH
313	586.1674	19.552 440	511.445	9R(28)	CH ₂ F ₂
314	587.9556	19.612 088	509.890	10P(40)	$(H_2CO)_3$
315	587.9911	19.613 272	509.859	9R(36)	ClO ₂
316	588.5534	19.632 028	509.372	10P(46)	CH ₂ DOH
317	589.2250	19.654 430	508.791	10P(8)	DCOOD
318	590.6184	19.700 909	507.591	10P(22)	C ₂ H ₃ Cl
319	590.6263	19.701 173	507.584	10P(22)	C ₂ H ₃ Cl
320	593. 94 01	19.811 709	504.752	10R(38)	CDF_3
321	595.9417	19.878 475	503.057	9R(6)	CH_2F_2
322	596.8842	19.909 914	502.262	9R(24)	CH₃CH₂F
323	598.1924	19.953 551	501.164	10P(18)	$(H_2CO)_3$
324	598.8937	19.976 944	500.577	10R(24)	CD_2F_2
325	602.3839	20.093 364	497.677	9P(28)	CD_2F_2
326	603.6172	20.134 503	496.660	9P(14)	$^{13}\text{CH}_2\text{F}_2$
327	604.2369	20.155 173	496.151	9P(20)	CH ₃ F
328	604.2973	20.157 188	496.101	9P(20)	CH ₃ F
329	604.3347	20.158 436	496.070	9P(20)	CH ₃ F
330	604.4650	20.162 782	495.963	9P(8)	CHCl₂F
331	606.0747	20.216 476	494.646	9P(6)	CH ₃ CN
332	607.4312	20.261 724	493.541	10R(4)	CH₃OH
333	607.9057	20.277 551	493.156	10R(40)	HCOOD
334	609.2846	20.323 547	492.040	9R(36)	CHCl₂F DCOOD
335	609.4698	20.329 724	491.891	10P(8)	
336	610.1083	20.351 022	491.376	10P(30)	$(H_2CO)_3$
337	611.3336	20.381 884	480.381	8R(22)	CD ₃ I
338	611.7178	20.404 709	490.083	10P(16)	C ₂ H ₃ Br
339 340	612.7748	20.439 967	489.238	10R(26) 9R(32)	$CD_{2}F_{2}$ ¹⁸ O ₃
340 341	613.0250	20.448 313 20.469 671	489.038 488.528	9R(32) 10R(38)	CDF ₃
341 342	613.6653 613.9815	20.480 218	488.276	9P(42)	CDr_3 CD_2F_2
342 343	615.3046	20.524 352	487.226	9P(42) 9P(10)	CD_2P_2 CD_3I
3 4 3 344	615.4085	20.527 818	487.144	9R(32)	CF ₂ HCl
3 44 345	615.8833	20.543 656	486.768	10P(22)	CH ₂ F ₂
343 346	618.4175	20.628 187	484.774	10R(28)	CH_2F_2 CH_2F_2
340 347	620.7378	20.705 584	484.774 482.961	10P(26)	$CH_2\Gamma_2$ C_2H_3Br
347 348	622.6836	20.770 489	482.961 481.452	9R(30)	CF ₂ HCl
3 4 6 349	624.1643	20.819 880	480.310	9P(36)	CD ₃ Cl
3 49 350	624.6926	20.837 502	479.904	10P(14)	DCOOH
351	625.7115	20.871 489	479.122	9R(40)	¹³ CH ₂ F ₂
JJ 1	020.7110	20.0/1 407	717.144	710(40)	C2- 2

No.	Frequency (GHz)	Wave number (cm ⁻¹)	Wavelength (μm)	CO ₂ pump	Molecule
353	637.3326	21.259 127	470.386	9R(34)	CHCl ₂ F
354	639.1846	21.320 903	469.023	10R(38)	CH ₃ OH
355	639.2646	21.323 572	468.965	10R(26)	¹³ CD ₃ OH
356	640.2595	21.356 758	468.236	9P(26)	CH₂DOH
357	641.2469	21.389 694	467.515	9R(6)	CHCl ₂ F
358	642.4451	21.429 662	466.643	10R(26)	CD ₃ Br
359	642.5784	21.434 108	466.546	10P(14)	DCOOH
360	645.0524	21.516 632	464.757	10R(20)	CD ₃ 35Cl
361	645.2318	21.522 616	464.628	9R(26)	H ¹³ COOH
362	645.5309	21.532 593	464.412	9P(6)	CH ₂ F ₂
363	646.6281	21.569 192	463.624	10R(20)	CH ₂ CF ₃
364	649.7667	21.673 884	461.385	9P(12)	¹³ CH ₃ OH
365	649.9410	21.679 698	461.261	10P(16)	HCOOD
	650.2077				
366		21.688 594	461.072	10P(16)	N_2H_4
367	650.9275	21.712 604	460.562	9R(12)	CD ₃ I
368	651.8845	21.744 526	459.886	10R(24)	ClO ₂
369	652.5339	21.766 188	459.428	9R(22)	$(H_2CO)_3$
370	653.6245	21.802 566	458.662	10R(20)	CH ₃ Br
371	653.8214	21.809 134	458.523	9R(38)	НСООН
372	653.8222	21.809 161	458.523	9R(38)	H ¹² COOH
373	655.5119	21.865 523	457.341	10P(30)	DCOOD
374	658.7786	21.974 489	455.073	9P(8)	CD_3CN
375	661.2134	22.055 705	453.397	9R(16)	CH ₃ CN
376	662.6350	22.103 124	452.425	9P(16)	¹³ CH ₂ F ₂
377	664.0284	22.149 603	451.475	9P(32)	CH₂DOH
378	664.7579	22.173 937	450.980	10P(12)	HCOOD
379	666.5020	22.232 114	449.800	10R(20)	CD ₃ 35Cl
380	668.3836	22.294 877	448.534	9R(26)	H ¹³ COOH
381	668.5001	22.298 763	448.455	9P(12)	CH ₃ OH
382	670.4630	22.364 238	447.142	10P(18)	CH ₃ I
383	670.8672	22.377 721	446.873	9R(16)	H ¹² COOH
384	671.4195	22.396 144	446.505	9R(22)	H ¹² COOH
385	672.3318		445.900		H ¹² COOH
		22.426 575		9R(20)	
386	672.6895	22.438 506	445.662	10P(20)	CDF_3
387	674.6213	22.502 944	444.386	9R(32)	CD ₃ I
388	676.3285	22.559 890	443.265	9P(10)	CD ₃ ³⁵ Cl
389	678.0061	22.615 849	442.168	10P(16)	CH ₂ CHCl
390	678.7644	22.641 143	441.674	9R(16)	CD_3Br
391	679.9798	22.681 685	440.884	10P(32)	CD_2F_2
392	682.8004	22.775 770	439.063	9R(18)	CH_2F_2
393	683.6665	22.804 660	438.507	IOP(28)	C_2H_3 Br
394	684.4233	22.829 904	438.022	10R(18)	¹³ CH ₂ F ₂
395	685.3166	22.859 701	437.451	9P(16)	H ¹² COOH
396	687.9574	22.947 789	435.772	10P(24)	N_2H_4
397	688.5030	22.965 988	435.427	10R(38)	CHD_2F
398	689.2551	22.991 075	434.951	9R(6)	CH ₂ F ₂
399	691.6624	23.071 374	433.438	10R(34)	CF ₂ HCl
400	691.9853	23.082 145	433.235	10R(14)	DCOOH
401	692.1955	23.089 157	433.104	9P(28)	CD3I
402	692.3815	23.095 361	432.987	10P(20)	CDF ₃
403	692.8950	23.112 489	432.667	9R(20)	H ¹² COOH
4 03 404	692.9514	23.112 469	432.631		H ¹² COOH
				9R(20)	
405 406	693,5729	23.135 102	432.244	9R(40)	CF ₂ HCl
406 407	693.7884	23.142 290	432.109	9R(22)	H ¹² COOH
407	694.3884	23.162 304	431.736	9P(18)	CD, ⁷⁹ Br
408	695.6915	23.205 771	430.927	10R(34)	CD ₃ OH
409	696.4109	23,229 767	430.482	10P(18)	CH ₃ CN
410	696.4823	23.232 149	430.438	10P(6)	HCOOD
411	697.6951	23.272 603	429.690	10P(24)	HCOOD
412	700.7662	23.375 044	427.807	9R(26)	CF ₂ HCl
413	708.1371	23.620 911	423.354	10R(30)	C_2H_3Cl
414	710.1543	23.688 198	422.151	9R(8)	CH₂DOH
415	710.2123	23.690 132	422.117	10P(24)	CH ₃ CN
416	712.0058	23.749 957	421.053	9P(14)	¹³ CH ₂ F ₂
417	712.1306	23.754 120	420.980	10R(46)	CDF_3
418	713.1276	23.787 376	420.391		H ¹² COOH
				9R(8)	
419	713.2631	23.791 896	420.311	10R(26)	CDF ₃
420	714.0658	23.818 671	419.839	10P(22)	$(H_2CO)_3$
421	715.9876	23.882 776	418.712	10 R (36)	CD ₃ OH

No.	Frequency (GHz)	Wave number (cm ⁻¹)	Wavelength (μm)	CO ₂ pump	Molecule
422	716.1568	23.888 420	418.613	9R(22)	H ¹² COOH
423	716.7433	23.907 983	418.270	9R(12)	CH ₂ F ₂
424	717.0650	23.918 714	418.083	9P(36)	CH ₃ OH
125	718.5056	23.966 767	417.244	9P(20)	CD_2F_2
4 26	719.7512	24.008 316	416.522	9P(14)	CH ₃ OH
127	721.7598	24.075 315	415.363	9P(4)	¹³ CH ₂ F ₂
128	722.2605	24.092 017	415.075	9R(30)	CF ₂ HCl
129	723.5229	24.134 126	414.351	9R(36)	CF ₂ HCl
130	729.9328	24.347 937	410.712	10R(12)	CD ₃ OD
131	736.0596	24.552 305	407.294	10P(14)	CH ₂ F ₂
132	736.8120	24.577 403	406.878	10P(28)	CH ₂ F ₂ CHD ₂ F
133	739.1610	24.655 757	405.585	9R(18)	H ¹² COOH
34	739.3075	24.660 644	405.504	9R(30)	
	739.3403	24.661 738	405.486		CH ₃ CH ₂ F
35				9P(16)	CHDO
136	742.4704	24.766 147	403.777	9P(32)	¹³ CH ₂ F ₂
137	742.5939	24.770 266	403.710	9P(4)	CH_2F_2
138	746.7847	24.910 056	401.444	9P(38)	CH_2F_2
139	750.8176	25.044 579	399.288	9R(34)	$^{13}CH_2F_2$
140	757.6019	25.270 879	395.712	10R(12)	HCOOD
141	758.6825	25.306 924	395.149	10 R (10)	DCOOD
142	759.5433	25.335 637	394.701	9P(6)	CH ₂ F ₂
14 3	761.6083	25.404 518	393.631	9 R (18)	H ¹² COOH
144	761.8888	25.413 875	393.486	9P(32)	H13COOH
145	764.6426	25.505 732	392.069	9P(36)	CH ₃ OH
146	765.3846	25.530 482	391.689	10R(38)	HCOOD
147	765.8290	25.545 306	391.461	9R(30)	¹³ CH ₂ F ₂
148	768.8820	25.647 143	389.907	10R(12)	DCOOD
149	771.3654	25.729 980	388.652	10R(42)	CDF ₃
150	772.1170	25.755 051	388.273	10R(32)	CDF ₃
151	772.5420	25.769 227	388.060	9P(32)	C ₂ H ₅ OH
152	773.5399	25.802 514	387.559	9P(40)	CH ₂ DOH
153	774.7261	25.842 081	386.966		
				9R(18)	CF ₂ HCl
154	775.9824	25.883 987	386.339	9P(14)	CH₃OH
55	776.5891	25.904 224	386.037	10R(34)	CD ₃ OH
56	776.8471	25.912 830	385.909	10P(22)	CH ₂ CHCl
157	777.2948	25.927 764	385.687	9 R (18)	CF ₂ HCl
158	778.9467	25.982 865	384.869	9R(30)	(H₂CO)₃
159	780.0615	26.020 051	384.319	10P(28)	CHD_2F
160	782.1667	26.090 273	383.285	9R(34)	CD ₃ ³⁵ Cl
61	783.2267	26.125 631	382.766	10R (40)	CF ₂ HCl
62	783.4860	26.134 280	382.639	9P(10)	CH_2F_2
163	784.0631	26.153 530	382.358	9P(26)	H13COOH
164	784.8060	26.178 310	381.996	9R(36)	CH_2F_2
65	785.5872	26.204 368	381.616	9P(24)	H ¹³ COOH
l 6 6	787.7555	26.276 695	380.565	10R(12)	DCOOD
167	791.2604	26.393 606	378.880	10P(22)	CD_2F_2
168	793.6931	26.474 752	377.718	9R(10)	¹³ CH ₂ F ₂
69	797.3625	26.597 150	375.980	9P(16)	CHCl ₂ F
70	798.2866	26.627 975	375.545	10P(12)	CH ₂ F ₂
71	798.5795	26.637 745	375.407		
172				9R(6)	CHD ₂ F
	801.3996	26.731 813	374.086	10P(46)	CH₂DOH
73	804.0129	26.818 984	372.870	9R(22)	CF₂HCl
74	804.1348	26.823 050	372.814	10P(20)	CH ₃ CN
75	810.3205	27.029 382	369.968	10R(28)	HCOOD
76	812.1954	27.091 922	369.114	9P(16)	CH₃OH
177	812.7500	27.110 422	368.862	9R(18)	N_2H_4
78	815.9859	27.218 360	367.399	10R(14)	CD_2F_2
79	817.7083	27.275 813	366.625	9P(14)	$CD_3^{-79}Br$
80	818.4946	27.302 041	366.273	9R(30)	CF ₂ HCl
l 8 1	819.4058	27.332 435	365.866	9R(34)	CD_2F_2
82	819.7205	27.342 933	365.725	9P(18)	CHCl ₂ F
183	822.5122	27.436 054	364.484	10P(28)	CD ₂ O
184	827.1884	27.592 035	362.423	9R(24)	CD_2O CDF_3
185	829.9183		361.231		
+63 486		27.683 095		10P(24)	CDF ₃
+80 187	831.3569	27.731 081	360.606	9R(14)	CF ₂ HCl
	831.5927	27.738 947	360.504	9P(16)	¹³ CH ₂ F ₂
188	832.6350	27.773 714	360.053	9R(8)	CH ₂ F ₂
189	834.2359	27.827 114	359.362	9R(22)	$^{13}\text{CH}_{2}\text{F}_{2}$
190	837.6408	27.940 690	357.901	9R(14)	CH_2F_2

No.	Frequency (GHz)	Wave number (cm ⁻¹)	Wavelength $(\mu \mathrm{m})$	CO ₂ pump	Molecule
1 91	837.7194	27.943 311	357.867	9R(20)	¹³ CH ₂ F ₂
1 92	844.1859	28.159 011	355.126	9P(8)	CH_2F_2
193	844.1860	28.159 014	355.126	9P(8)	¹³ CH ₂ F ₂
194	846.4503	28.234 543	354.176	10R(16)	CD ₃ OD
195	849.5064	28.336 483	352.902	10R(34)	CD_2F_2
196	856.7037	28.576 559	349.937	10R(20)	CH ₃ NH ₂
197	858.0533	28.621 576	349.387	10R(18)	CH ₃ Cl
198	865.2331	28.861 070	346.488	9P(22)	СН₃ОН
199	869.5227	29.004 155	344.778	10R(4)	CD ₃ OD
500	870.1719	29.025 810	344.521	9R(16)	$^{13}\text{CH}_2\text{F}_2$
501	876.2613	29.228 931	342.127	9P(44)	CD_2F_2
502	880.1204	29.357 656	340.627	10P(16)	¹³ CD ₃ OH
503	880.8186	29.380 946	340.357	10R(32)	CH ₂ DOH
504	880.9656	29.385 849	340.300	9P(20)	CHCl ₂ F
505	884.4381	29.501 679	338.964	9P(22)	¹³ CH ₃ OH
506	887.5511	29.605 518	337.775	9R(10)	CH_2F_2
507	889.3435	29.665 306	337.094	9R(32)	CF₂HCl
508	891.5863	29.740 118	336.246	9P(36)	CH₂DOH
509	893.0136	29.787 727	335.709	9 R (8)	DCOOD
510	893.6569	29.809 186	335.467	9R(16)	CF ₂ HCl
511	897.7581	29.945 988	333.935	9P(42)	CH ₃ Cl
512	897.7819	29.946 781	333.926	9P(36)	$^{13}CH_2F_2$
513	899.5717	30.006 482	333.261	10P(16)	¹³ CD₃OH
514	901.3512	30.065 840	332.603	10R(16)	¹³CH₃OH
515	903.8894	30.150 505	331.669	9P(12)	N_2H_4
516	905.4770	30.203 462	331.088	10P(30)	CHDO
517	905.7426	30.212 321	330.991	9P(34)	CD_2F_2
518	908.4086	30.301 249	330.019	10 R (8)	CDF_3
519	911.3327	30.398 787	328.960	9R(28)	CF ₂ HCl
520	912.7297	30,445 386	328.457	10P(22)	DCOOH
521	918.4170	30.635 094	326.423	9R(14)	CH_2F_2
522	924.0784	30.823 938	324.423	10P(24)	CD₂O
523	924.8858	30.850 870	324.140	10R(14)	¹³ CD ₃ OD
524	927.6368	30.942 633	323.179	9P(40)	CD_2F_2
525	929.7268	31.012 348	322.452	9P(12)	CH₂DOH
526	932.7413	31.112 901	321.410	10R(12)	¹³ CD ₃ OD
527	935.1075	31.191 829	320.597	10R(44)	CD_2F_2
528	939.0003	31.321 679	319.268	9P(32)	CD₂O
529	942.5074	31.438 663	318.080	9R(12)	¹³ CH ₂ F ₂
530	945.5625	31.540 570	317.052	9P(40)	CD_2F_2
531	947.7237	31.612 660	316.329	9R(24)	$^{13}\text{CH}_2\text{F}_2$
532	952.1850	31.761 473	314.847	9R(4)	CH ₃ NH ₂
533	952.2039	31.762 103	314.841	10R(10)	CD_3OD
534	952.7933	31.781 764	314.646	9R(10)	CD_2F_2
535	955.3681	31.867 650	313.798	9P(6)	H ¹³ COOH
536	955.3703	31.867 723	313.797	9P(6)	H ¹³ COOH
537	960.0245	32.022 970	312.276	9P(24)	¹³ CH ₂ F ₂
538	962.2500	32.097 205	311.554	10R(22)	НСООН
539	963.3022	32.132 303	311.213	9R(8)	¹³ CH ₂ F ₂
540	963.7314	32.146 619	311.075	9P(20)	N_2H_4
541	969.5968	32.342 268	309.193	9R(22)	CH_2F_2
542	972.4187	32.436 396	308.296	10R(34)	CH ₂ DOH
543	973.2243	32.463 268	308.040	9P(14)	CH ₂ DOH
544	976.5437	32.573 992	306.993	9R(40)	¹³ CH ₂ F ₂
545	979.5445	32.674 087	306.053	9R(24)	CF ₂ HCl
546	980.5916	32.709 015	305.726	9R(8)	CH ₃ OD
547	985.8897	32.885 741	304.083	10R(24)	DCOOD
548	991.7778	33.082 146	302.278	9R(4)	H ₁₅ COOH
549	992.7089	33.113 205	301.994	9P(14)	CH ₃ OH
550	993.8299	33.150 597	301.654	10R(4)	¹³ CH ₂ F ₂
551	995.0778	33.192 223	301.275	10R(12)	N ₂ H ₄
552	997.7253	33.280 534	300.476	9P(18)	CH ₂ F ₂
553	998.4879	33.305 971	300.246	10R(38)	¹³ CH ₂ F ₂
554	998.5321	33.307 446	300.233	9R(36)	¹³ CH ₂ F ₂
555	1003.5366	33.474 378	298.736	10R(24)	CD ₃ OD
556	1004.4306	33.504 198	298.470	9R(36)	CH_2F_2
557	1005.3033	33.533 309	298.211	9R(36)	CH_2F_2
558	1005.8500	33.551 545	298.049	9R(24)	CF ₂ HCl
559	1014.0477	33.824 990	295.639	10R(34)	CH ₂ DOH

No.	Frequency (GHz)	Wave number	Wavelength	CO ₂ pump	Molecule
	(Onz)	(cm ⁻¹)	(μm)		
560	1014.8810	33.852 786	295.397	9P(10)	CH₂DOH
561	1016.8972	33.920 039	294.811	9R(8)	CH ₃ OD
562	1020.0440	34.025 005	293.901	9P(20)	CH_2F_2
563	1020.3211	34.034 248	293.822	10R(10)	CH ₃ OH
564	1020.9247	34.054 382	293.648	9P(24)	$CD_3^{37}Cl$
565	1026.1893	34.229.991	292.141	9P(38)	CH_3OH
566	1030.8799	34.386 452	290.812	9R(24)	CH_2F_2
567	1031.3844	34.403 280	290.670	10R(14)	CD ₃ OD
568	1035.5527	34.542 320	289.500	9P(4)	CH ₂ F ₂
569 570	1036.8448 1041.2794	34.585 420	289.139	9P(24)	CH ₂ F ₂
570 571	1041.2794	34.733 342 34.762 396	287.908 287.667	9R(26)	CH_2F_2
572	1042.1304	34.805 896	287.308	9R(34)	CH ₂ F ₂
573	1045.5780	34.876 728	286.724	10P(18) 10P(24)	CD ₃ OH
574	1046.7682	34.916 429	286.398	9P(8)	CD₃OH
575	1047.5023	34.940 916	286.197	9P(40)	CD ₂ F ₂ CD ₃ OH
576	1047.6576	34.946 096	286.155	10R(48)	CH₃OH
577	1054.2918	35.167 389	284.354	9R(18)	CH ₂ F ₂
578	1056.4147	35.238 201	283.783	9R(40)	CH_2F_2 CH_2F_2
579	1066.6754	35.580 461	281.053	9P(14)	CH_2F_2
580	1067.1272	35.595 532	280.934	9R(18)	CH ₃ OH
581	1068.7337	35.649 119	280.512	9P(30)	CD_2F_2
582	1069.7714	35.683 733	280.240	10R(16)	¹³ CH ₃ OH
583	1069.8534	35,686 468	280.218	10R(16)	¹³ CH ₃ OH
584	1074.4710	35.840 495	279.014	9P(22)	¹³ CH ₂ F ₂
585	1075.2771	35.867 383	278.805	9P(38)	CH ₃ OH
586	1076.8428	35.919 609	278.399	10P(8)	CD_2O
587	1083.3951	36.138 171	276.716	10P(28)	CD ₃ OH
588	1091.0447	36,393 334	274.776	10R(26)	CD_2F_2
589	1093.1547	36.463 716	274.245	10R(46)	CH ₃ OH
590	1095.0770	36.527 837	273.764	9P(26)	¹³ CH ₂ F ₂
591	1098.1259	36.629 537	273.004	9P(6)	CH₂DOH
592	1100.8067	36.718 959	272.339	9 P (10)	CH_2F_2
593	1101.1594	36.730 724	272.252	9R(24)	CH₂DOH
594	1107.3379	36.936 816	270.733	9R(8)	CD_3OD
595	1110.3199	37.036 285	270.005	9R(22)	CH_2F_2
596	1116.2455	37.233 942	268.572	10 R (16)	¹³CH₃OH
597	1118.3692	37.304 781	268.062	9R(26)	CH_2F_2
598	1119.3680	37.338 097	267.823	9 P (18)	CD_2F_2
599	1120.9576	37.391 121	267.443	10R(34)	CH ₃ OH
600	1123.3820	37.471 990	266.866	9R(24)	¹³ CH ₂ F ₂
601	1123.9327	37.490 359	266.735	9P(32)	CH₂DOH
602	1132.1406	37.764 145	264.801	10R(20)	N_2H_4
503	1132.3201	37.770 133	264.759	10R(34)	CD ₃ OH
504 505	1133.2770	37.802 052	264.536	9P(34)	CH ₃ OH
505 506	1136.9420	37.924 303	263.683	9P(34)	CH₃OH
506 507	1143.1631	38.131 817	262.248	9R(38)	CH ₂ F ₂
507 508	1145.4301	38,207 435 38,455 270	261.729	9P(38)	CH ₂ F ₂
509	1152.8600 1160.0278	38.455 270	260.042	10R(20)	¹³ CH ₂ F ₂
510	1160.0278	38.694 362	258.436	10P(22)	CD ₃ OH
511	1170.9410	38.695 830	258.426	9P(16)	H ₁₃ COOH
512	1176.5700	39.058 388 39.246 151	256.027 254.802	9P(24)	CH ₂ F ₂
512	1180.0925	39.246 151 39.363 649	254.802 254.041	9P(4)	¹³ CH ₂ F ₂
514	1181.5898	39.413 593	254.041 253.720	9P(34)	CH ₃ OH
515	1182.3662	39.413 393 39.439 491		10R(36)	CD ₃ OH
516	1188.0687	39.629 706	253.553 252.336	9P(34)	CH₃OH
517	1190.0691	39.696 432	252.336 251.912	9R(42)	CH ₂ F ₂
518	1192.3383	39.772 125	251.912 251.432	10R(44) 9R(18)	CH₃OH CH₃OH
519	1192.5383	39.818 457	251.432 251.140	10R(38)	СН ₃ ОН СН ₃ ОН
520	1195.4339	39.875 383	250.781	10R(34)	CH ₃ OH
621	1193.4339	39.873 383 39.997 994	250.781	9P(24)	CH ₃ NH ₂
622	1200.5127	40.044 793			
623	1200.5127	40.097 513	249.720 249.392	10P(34) 10R(22)	CH₂DOH CD₂F₂
624	1205.8960	40.097 313	249.392 248.606	9R(26)	¹³ CH ₂ F ₂
625	1208.2460	40.302 748	248.122	10P(34)	CH ₂ P ₂ CH ₂ DOH
626	1208.3139	40.305 013	248.122	10R(16)	CD ₂ F ₂
627	1210.4088	40.374 892	247.679	9R(34)	CH_2F_2
	1220.3950	10.577 072	471.012	745(37)	¹³ CH ₂ F ₂

No.	Frequency (GHz)	Wave number (cm ⁻¹)	Wavelength (µm)	CO ₂ pump	Molecule
629	1229.4218	41.009 097	243.848	9R(24)	CD ₂ O
630	1231.9110	41.092 128	243.356	9R(30)	CH ₂ F ₂
631	1234.4904	41.178 167	242.847	10R(32)	CH ₃ OH
632	1236.3969	41.241 761	242.473	10R(34)	CH ₃ OH
633	1256.8720	41.924 737	238.523	9P(12)	¹³ CH ₃ OH
634	1260.9142	42.059 570	237.758	9P(6)	CH_2F_2
535	1262.1620	42.101 193	237.523	9P(12)	¹³CH₃OH
536	1267.0815	42.265 289	236.601	9R(6)	CH_2F_2
637	1267.0913	42.265 616	236.599	9R(42)	CH_2F_2
638	1267.1310	42.266 941	236.592	9R(6)	CH_2F_2
639	1267.4590	42.277 881	236.530	9P(10)	¹³CH₃OH
540	1269.7236	42.353 420	236.108	9R(34)	CD_2F_2
541	1272.1714	42.435 070	235.654	9R(32)	CH ₂ F ₂
542	1281.6258	42.750 435	233.916	10R(8)	N_2H_4
543	1282.8920	42.792 671	233.685	9P(10)	CD_2F_2
544	1285.9685	42.895 292	233.126	9R(14)	CD_2O
545	1286.9995	42.929 682	232.939	9R(10)	CH ₃ OH
546	1287.8322	42.957 458	232.788	9R(22)	CH₃OH
547	1302.8458	43.458 258	230.106	9R(42)	CH ₂ F ₂
648	1308.7555	43.655 384	229.067	10R(20)	CD_2F_2
649	1316.8387	43.925 011	227.661	10R(10)	CD ₃ OD
650	1316.8605	43.925 738	227.657	9P(18)	CH ₂ F ₂
551	1324.7719	44.189 634	226.297	9P(46)	CH ₂ DOH
552	1329.3629	44.342 773	225.516	9R(8)	CH ₃ OH
553 554	1337.0125	44.597 936	224.226	10P(36)	CH ₂ DOH
654 655	1349.1001	45.001 135	222.217	10R(34)	CD ₃ OH
656	1368.3154	45.642 089	219.096	9R(24)	CH₂DOH
657	1370.4850 1373.5133	45.714 459	218.749	9P(24)	CH ₃ NH ₂
658	1376.2711	45.815 472 45.907 462	218.267	10R(38)	CD_2F_2
659	1385.6461	46.220 179	217.830 216.356	9P(30) 10P(24)	O ₃ ¹³CD ₃ OD
660	1391.9721	46.431 191	215.372	9R(14)	
561	1393.8569	46.494 062	215.081	10P(52)	CH₃OD
562	1396.2388	46.573 513	214.714	10F(32) 10R(36)	CD_3OH CD_2F_2
663	1397.0050	46.599 071	214.714	9R(34)	¹³ CH ₂ F ₂
664	1397.1186	46.602 860	214.579	9R(34)	CH_2F_2 CH_2F_2
665	1404.4269	46.846 639	213.462	9P(22)	CH ₃ OH
666	1405.1630	46.871 192	213.351	9R(44)	¹³ CH ₂ F ₂
667	1418.7010	47.322 772	211.315	9P(12)	CH ₃ OH
668	1419.0493	47.334 390	211.263	10R(4)	CH ₃ OH
669	1428.0576	47.634 874	209.930	9R(14)	CH₃OH
670	1432.8178	47.793 657	209.233	10R(12)	¹³ CD ₃ OD
671	1438.4601	47.981 864	208.412	9P(10)	¹³ CH ₃ OH
672	1442.4543	48.115 096	207.835	10R(38)	CD_2F_2
673	1449.7780	48.359 389	206.785	9P(12)	CH ₃ OH
674	1450.4631	48.382 241	206.687	9P(14)	CH ₂ DOH
675	1455.0000	48.533 576	206.043	10R(18)	¹³ CH ₂ F ₂
676	1455.4348	48.548 079	205.981	9R(26)	CH_2F_2
677	1472.1994	49.107 286	203.636	10R(16)	¹³ CH ₃ OH
578	1480.7129	49.391 266	202.465	9R(6)	CH_2F_2
679	1496.7570	49.926 439	200.295	9P(16)	¹³ CH ₂ F ₂
680	1509.0402	50.336 163	198.664	9P(38)	CH ₃ OH
581	1514.5626	50.520 370	197.940	9P(24)	CH ₃ NH ₂
682	1518.7950	50.661 548	197.388	9P(20)	¹³ CH ₂ F ₂
683	1521.4309	50.749 472	197.046	10R(26)	¹³ CD ₃ OH
584	1525.1641	50.873 998	196.564	9P(44)	CH ₃ OH
585	1533.4999	51.152 051	195.496	9P(36)	CH₂DOH
586	1536.1530	51.240 549	195.158	9R(20)	$^{13}\text{CH}_2\text{F}_2$
587	1541.7647	51.427 735	194.448	9R(12)	CH_2F_2
688	1542.5246	51.453 082	194.352	9P(8)	CHDO
689	1544.8187	51.529 605	194.063	9R(14)	CH ₃ OH
690	1546.0834	51.571 791	193.904	9R(22)	CH ₂ F ₂
691	1549.3400	51.680 420	193.497	9P(22)	¹³ CH ₂ F ₂
692	1551.9387	51.767 103	193.173	9R(26)	CH ₂ F ₂
693	1552.1901	51.775 489	193.142	9P(38)	CH₃OH
694	1554.0760	51.838 395	192.907	10P(24)	N_2H_4
695	1555.0201	51.869 887	192.790	9P(8)	CD_2F_2
696	1562.6559	52.124 590	191.848	9P(22)	CH ₂ F ₂
697	1564.5187	52.186 726	191.620	10R(10)	CH ₃ OH

No.	Frequency (GHz)	Wave number (cm ⁻¹)	Wavelength (µm)	CO ₂ pump	Molecule
698	1566.6728	52.258 580	191.356	10R(34)	CD₃OH
699	1571.8497	52.431 262	190.726	9P(34)	CH ₃ OH
700	1578.3392	52.647 729	189.942	9R(10)	CH₃OH
701	1579.2503	52.678 120	189.832	10R(34)	CD_2F_2
702	1591.0532	53.071 822	188.424	10P(42)	CD ₃ OH
703	1591.1612	53.075 425	188.411	10P(26)	CH ₂ DOH
704	1596.1749	53.242 664	187.819	10R(14)	CD_2F_2
705	1604.6477	53.525 286	186.828	9R(10)	CH ₃ F
706	1609.0267	53.671 354	186.319	9P(34)	СН,ОН
707	1611.4140	53.750 985	186.043	9P(38)	¹³ CH ₂ F ₂
708	1611.4219	53.751 249	186.042	9 R (18)	CH₃OH
709	1616.1284	53.908 241	185.500	9P(34)	СН3ОН
710	1622.5552	54.122 616	184.766	10R(24)	CD_3OD
711	1626.6026	54.257 622	184.306	9R(32)	CH ₂ F ₂
712	1632.6669	54.459 906	183.621	9P(10)	CH,DOH
713	1635.6280	54.558 677	183.289	9P(28)	¹³ CH ₂ F ₂
714	1642.1019	54.774 623	182.566	9 R (14)	CD ₃ OH
715	1643.7690	54.830 232	182.381	10R(20)	$^{13}\text{CH}_2\text{F}_2$
716	1647.8774	54.967 273	181.926	10P(6)	N_2H_4
717	1658.6899	55.327 940	180.741	10R(34)	CD₃OH
718	1659.2786	55.347 576	180.676	9P(34)	СН₃ОН
719	1668.0350	55.639 659	179.728	10R(4)	CH ₃ OH
720	1726.5485	57.591 459	173.637	10R(20)	¹³ CD ₃ OD
721	1734.4464	57.854 904	172.846	9P(12)	CH₂DOH
722	1745.4395	58.221 595	171.758	10 R (18)	¹³CH₃OH
723	1757.5263	58.624 767	170.576	9P(36)	СН₃ОН
724	1783.6011	59.494 529	168.083	10R(34)	CD ₃ OH
25	1788.8766	59.670 500	167.587	10R(40)	СН₃ОН
726	1789.3659	59.686 822	167.541	9P(18)	CH ₂ DOH
727	1791.3848	59.754 165	167.352	9P(32)	CH₂DOH
28	1796.4617	59.923 512	166.879	9R(10)	CD_2F_2
729	1798.6470	59.996 406	166.677	9R(22)	CH_2F_2
730	1799.1393	60.012 827	166.631	9R(20)	CH_2F_2
731	1810.2943	60.384 918	165.604	10R(22)	CD_3OD
732	1818.9640	60.674 108	164.815	9R(4)	¹³ CH ₂ F ₂
733	1819.3140	60.685 783	164.783	9R(10)	CH₃OH
734	1819.7203	60.699 336	164.746	9R(8)	CH ₂ DOH
735	1820.2615	60.717 388	164.697	9P(24)	CH₃OH
736	1820.7150	60.732 515	164.656	9P(12)	¹³ CH ₂ F ₂
137	1821.3352	60.753 203	164.600	9P(16)	СН₃ОН
738	1821.7355	60.766 555	164.564	9P(14)	СН₃ОН
739	1822.3627	60.787 477	164.508	9P(14)	CH ₃ OH
740	1832.7686	61.134 580	163.574	9P(12)	CH₃OH
741	1837.8610	61.304 444	163.120	9R(22)	CH ₂ F ₂
142	1838.8393	61.337 077	163.034	10R(38)	CH ₃ OH
743	1848.0838	61.645 440	162.218	9P(36)	CH ₃ OH
144	1877.5085	62.626 942	159.676	9 R (26)	CH ₃ OH
45	1882.9063	62.806 994	159.218	10R(34)	CH ₂ DOH
46	1885,9593	62.908 831	158.960	9P(20)	CH_2F_2
47	1891,2742	63.086 117	158.513	9P(10)	CH ₂ F ₂
48	1898.2799	63.319 802	157.928	9P(12)	¹³ CH ₃ OH
49	1944.6796	64.867 529	154.160	9P(24)	CH ₂ F ₂
50	1950,5816	65.064 399	153.694	9R(28)	¹³CD₃OH
51	1956,9358	65.276 352	153.195	9P(28)	CH_2F_2
52	1971,3372	65.756 731	152.076	10 R (16)	¹³ CH ₃ OH
53	1982.0506	66.114 092	151.254	9R(26)	CH ₃ OH
54	1987.7989	66.305 834	150.816	10R(34)	CH ₂ DOH
55	1991.0283	66.413 555	150.572	10P(26)	CH ₂ DOH
56 57	1992.7952	66.472 493	150.438	10R(18)	CD_2F_2
57	2003.7883	66.839 183	149.613	10R(32)	CH ₂ DOH
58	2006.8052	66.939 816	149.388	10P(36)	CH ₂ DOH
759	2008.3601	66.991 682	149.272	9P(22)	¹³ CH ₃ OH
760	2017.2185	67.287 166	148.617	10R(30)	13CD3OD
761 762	2017.5761	67.299 095	148.590	10 R (16)	¹³ CH ₃ OH
762	2027.7526	67.638 546	147.845	9P(24)	CH ₃ NH ₂
63	2034.5736	67.866 070	147.349	10P(32)	CD ₃ OH
764	2048.8036	68.340 732	146.326	10R(26)	¹³ CD ₃ OH
765	2052.0041	68.447 489	146.097	9 P (10)	¹³ CH ₃ OH
'66	2058.1418	68.652 221	145.662	9P(30)	CH ₃ OD

No.	Frequency (GHz)	Wave number (cm ⁻¹)	Wavelength (μm)	CO ₂ pump	Molecule
767	2059.5316	68.698 579	145.563	10R(24)	13CD ₃ OH
768	2063.9411	68.845 665	145.252	10R(32)	CH ₃ OH
769	2066.3791	68.926 987	145.081	9P(24)	CH ₂ F ₂
70	2080.1893	69.387 646	144.118	10P(18)	CD ₃ OH
71	2093.7288	69.839 275	143.186	9R(42)	CH_2F_2
772	2135.1930	71.222 372	140.405	9R(38)	¹³ CH ₂ F ₂
773	2152.6624	71.805 089	139.266	10R(20)	CD_2F_2
774	2168.0000	72.316 696	138.281	9R(22)	¹³ CH ₂ F ₂
775	2188.9290	73.014 812	136.959	10R(46)	CD_3OD
776	2194.2369	73.191 865	136.627	10R(14)	CD ₃ OH
777	2207.0583	73.619 540	135.834	9 R (8)	CH ₂ DOH
778	2212.1110	73.788 080	135.523	9R(44)	¹³ CH ₂ F ₂
779	2216.2635	73.926 593	135.269	9P(24)	CH_2F_2
780	2217.8499	73.979 510	135.173	10R(32)	CH ₂ DOH
781	2217.8633	73.979 956	135.172	10R(32)	CH₂DOH
782	2237.2964	74.628 175	133.998	9P(22)	CH ₂ F ₂
783	2252.0542	75.120 442	133.120	9P(24)	CH₃OH
784	2278.7030	76.009 350	131.563	10R(32)	CD ₃ OH
785	2314.1113	77.190 444	129.550	10R(34)	CH ₃ OH
786	2340.2918	78.063 732	128.100	10R(16)	¹³ CD ₃ OD
787	2341.5089	78.104 330	128.034	10R(34)	CD ₃ OH
788 780	2348.4384	78.335 473	127.656	10R(22)	¹³ CD ₃ OH
789 700	2360.1748	78.726 957 79.023 225	127.021 126.545	10P(8) 9P(30)	¹³ CD ₃ OH
790 791	2369.0567 2402.2240	80.129 568	124.798	10R(26)	CH_2F_2 CD_3OD
791 792	2402.2240	80.365 374	124.432	10P(34)	CH ₂ DOH
793	2412.7579	80.480 941	124.253	9P(24)	¹³ CD ₃ OD
794	2447.9685	81.655 440	122.466	9R(22)	CH ₂ F ₂
795	2447.9746	81.655 643	122.466	9P(8)	CH ₂ F ₂
796	2451.2031	81.763 334	122.304	10R(28)	CD ₃ OD
797	2479.6222	82.711 294	120.902	10R(24)	CH ₃ OH
798	2488.5534	83.009 206	120.469	10R(36)	CD_2F_2
799	2518.0677	83.993 697	119.057	10R(26)	CD ₃ OD
800	2522.7816	84.150 936	118.834	9P(36)	CH ₃ OH
801	2528.7728	84.350 781	118.553	10R(14)	¹³ CD ₃ OD
802	2540.3310	84.736 321	118.013	9P(22)	¹³ CH ₃ OH
803	2541.4856	84.774 834	117.960	9P(14)	СН ₃ о́Н
804	2546.4950	84.941 930	117.727	9R(20)	CH ₂ F,
805	2557.3654	85.304 528	117.227	9P(26)	CH ₃ OD
806	2560.4670	85.407 986	117.085	9P(32)	CH ₂ DOH
807	2585.8568	86.254 898	115.935	9P(8)	CH ₂ F ₂
808	2588.3617	86.338 453	115.823	10R(16)	¹³CH₃OH
809	2635.9580	87.926 095	113.732	9R(8)	СН,ОН
810	2654.3107	88.538 275	112.946	9P(44)	СН₃ОН
811	2664.0583	88.863 420	112.532	9P(12)	CH₂DOH
812	2707.7493	90.320 795	110.716	9P(36)	СН,ОН
813	2714.7147	90.553 135	110.432	10 R (18)	¹³ CH ₃ OH
814	2726.9235	90.960 377	109.938	10R(16)	¹³ CD ₃ OD
815	2727.2117	90.969 990	109.926	10R(16)	¹³ CD ₃ OD
816	2742.9460	91,494 830	109.296	9P(24)	CH_2F_2
817	2751.8729	91.792 599	108.941	9P(32)	CH ₂ DOH
818	2754.9957	91.896 765	108.818	9P(12)	CH ₂ DOH
819	2758.7817	92.023 052	108.668	10P(10)	CD ₃ OH
820	2787.7894	92.990 645	107.538	10R(12)	CD ₃ OD
821	2841.1429	94.770 326	105.518	9P(16)	CH ₂ F ₂
822	2851.1692	95.104 767	105.147	10R(18)	¹³ CH ₃ OH
823	2894.1323	96.537 862	103.586	10R(26)	¹³ CH ₃ OH
824 935	2897.0824	96.636 267	103.481	9P(22)	¹³ CH ₃ OH
825 826	2907.0889	96.970 048	103.125	9P(30)	CH DOH
826 827	2938.4651	98.016 645	102.023 100.806	9P(16)	CH₂DOH
827	2973.9406	99.199 981		9R(14)	CH₃OH
828 820	2992.9570 3002.0875	99.834 299	100.166 99.861	10R(32)	CH₃OH
829 830	3002.0875 3074.2100	100.138 860 102.544 608	97.519	10P(16) 10R(40)	CH₃OH CH₃OH
831	3105.9368	102.544 608	96.522	9R(10)	CH₃OH CH₃OH
832	3137.5106	104.656 088	95.551	9R(10)	CH ₂ F ₂
833	3235.2536	107.916 444	92.664	10R(34)	CH ₂ F ₂ CH ₃ OH
834	3239.4616	108.056 808	92.544	9P(22)	CH ₃ OH
835	3456.1612	115.285 128	86.741	10R(34)	CD ₃ OH

No.	Frequency (GHz)	Wave number (cm ⁻¹)	Wavelength (μm)	CO ₂ pump	Molecule
836	3476.2825	115.956 303	86.239	9R(8)	СН,ОН
837	3481.4330	116.128 105	86.112	9P(10)	¹³ CH ₃ OH
838	3502.2102	116.821 158	85.601	9P(40)	СН
839	3513.8534	117.209 533	85.317	9P(22)	¹³ CH ₃ OH
840	3551.8058	118,475 489	84.406	10R(22)	¹³ CD ₃ OH
841	3675.8599	122.613 488	81.557	10R(16)	CD ₃ OH
842	3848.1855	128.361 651	77.905	10R(16)	CH ₃ OH
843	3868.8189	129.049 908	77,489	10R(26)	¹³ CH ₃ OH
844	3873.0051	129.189 544	77,406	9R(8)	СНОН
845	3982.6311	132.846 274	75,275	9R(24)	¹³ CD ₃ OD
846	4080.6372	136.115 406	73.467	10R(20)	¹³ CD ₃ OH
847	4089.5796	136.413 692	73,306	9P(40)	CH₃OH
848	4223.0620	140.866 185	70.989	10R(8)	CD ₃ OH
849	4251.6740	141.820 579	70,512	9P(34)	CH ₃ OH
850	4302.4449	143.514 114	69.680	10R(16)	СН₃ОН
851	4441,6752	148.158 337	67.495	9R(18)	СН₃ОН
852	4442.7248	148.193 348	67.479	10R(30)	CD ₃ OH
853	4730.8664	157.804 717	63.369	9P(34)	CH₁OH
854	4751.3409	158.487 673	63.096	9P(12)	¹³ CH ₃ OH
855	4761.1824	158.815 950	62.966	10R(16)	СН₃ОН
856	4865.7098	162.302 609	61.613	9R(18)	CH₃OH
857	4982,1531	166.186 739	60.173	9P(40)	СН₃ОН
858	5414.3441	180.603 079	55.370	9P(40)	СН₃ОН
859	5566.0527	185.663 533	53.861	10R(36)	СН₃ОН
860	6860.6642	228.847 125	43.697	10R(18)	CD ₃ OH
861	7110.9814	237.196 808	42.159	9P(32)	СН₃ОН
862	7249.2660	241.809 485	41.355	10R(18)	CD ₃ OH
863	7509.0362	250.474 487	39.924	9P(34)	СН₃ОН
864	7919.6602	264.171 429	37.854	9P(32)	CH ₃ OH

ACKNOWLEDGMENTS.

Several researchers have read the manuscripts and given comments. We feel that their contribution has been very important to make this work more complete and reliable. In particular we wish to thank A. Scalabrin, D. Dangoisse, S. F. Dyubko, P. Favero, A. Godone, J. O. Henningsen, D. J. E. Knight, F. Strumia, and M. Yamanaka for pointing out omissions and possible improvements. We are especially indebted to D. J. E. Knight for the tables of FIR lines (Ref. 7) which have been so useful in the past. This work was partially supported by a joint research program (USA-NBS, Italy-CNR) under contract number CU 84.00021.02.

Note added in proof: While the present work was already in press we received from D. J. E. Knight the preprint of a work containing the frequency measurements of 42 new FIR laser lines, 5 from CH₃Cl and 37 from CH₂F₂. The title is "Frequency measurements on far-infrared emissions from ¹²C¹⁶O₂-pumped methyl chloride and from ¹²C¹⁸O₂-pumped difluoromethane," by J. A. Golby, N. R. Cross, and D. J. E. Knight. This work will be published in the September 1986 issue of the International Journal of Infrared and Millimeter Waves.

ceedings of the Summer School Fisica Atomica e Molecolare (CNR, 1975).

³M. Rosenbluth, R. J. Temkin, and K. J. Button, Appl. Opt. 15, 2635 (1976).

⁴S. F. Dyubko and L. D. Fesenko, *Tables of Generation Lines of Far Infrared Band Lasers with Optical Pumping*, Academy of Sciences, Ukrainian SSR, Preprint no. 137 (Institute of Radiophysics and Electronics, Kharkov, 1979).

⁵S. F. Dyubko and L. D. Fesenko, *Tables of Generation Lines of Submillimeter Lasers with Optical Pumping*, Academy of Sciences, Ukrainian SSR, Preprint no. 138 (Institute of Radiophysics and Electronics, Kharkov, 1979).

⁶M. Yamanaka, Rev. Laser Eng. 3, 253 (1976).

⁷D. J. E. Knight, Natl. Phys. Lab. (U.K.) Rep. QU-45 (1976–1982) (six issues).

⁸K. M. Evenson, Faraday Disc. Chem. Soc. 71 (1981).

⁹D. M. Watson, in *Galactic and Extragalactic Infrared Spectroscopy*, edited by M. F. Kessler and J. P. Phillips (Reidel, Dordrecht, 1984), pp. 195–219.

¹⁰F. R. Peterson, K. M. Evenson, and D. A. Jennings, in *Laser Spectroscopy IV*, edited by H. Walther and K. W. Roth (Springer, Berlin, 1979), pp. 39–48.

¹¹D. J. E. Knight, G. J. Edwards, P. R. Pearce, N. R. Cross, T. G. Blaney, and B. W. Jolliffe, in *Proceedings of the 6th Vavilov Conference on Nonlinear Optics, Novosibirsk*, edited by V. P. Chebotaev (Inst. of Theoretical Physics, Novosibirsk, 1979), Part I, pp. 112-119.

¹²K. M. Evenson, J. S. Wells, F. R. Petersen, B. L. Danielson, and G.W. Day, Appl. Phys. Lett. 22, 192 (1973).

¹³D. J. E. Knight, G. J. Edwards, P. R. Pearce, and N. R. Cross, IEEE Trans. Instrum. Meas. IM-29, 257 (1980).

¹⁴M. Inguscio, in Advances in Laser Spectroscopy, edited by F. T. Arecchi, F. Strumia, and H. Walther (Plenum, New York, 1983), Vol. 95, Part B, pp. 297-307 and references therein.

¹⁵P. M. Plainchamp, IEEE J. Quantum Electron. QE-15, 860 (1979).

¹T. Y. Chang and T. J. Bridges, Opt. Commun. 1, 423 (1970).

²F. Strumia and M. Tonelli, "Sorgenti laser nel lontano infrarosso," Pro-

- ¹⁶F. L. Walls and A. De Marchi, IEEE Trans. Instrum. Meas. IM-24, 210 (1975).
- ¹⁷H. R. Fetterman, B. J. Clifton, P. E. Tannenwald, and C. D. Parker, Appl. Phys. Lett. 24, 70 (1974) (CH₃OH; +6 MHz).
- ¹⁸C. O. Weiss and A. Godone, IEEE J. Quantum Electron. QE-20, 97 (1984).
- ¹⁹K. M. Evenson, D. A. Jennings, and D. J. E. Knight, IEEE J. Quantum Electron. (in press).
- $^{20}T.$ G. Blaney, D. J. E. Knight, and E. K. M. Lloyd, Opt. Commun. 25, 176 (1978) (CH₃OD; \pm 0.1–0.3 MHz).
- ²¹F. R. Peterson, K. M. Evenson, D. A. Jennings, J. S. Wells, K. Goto, and J. J. Jiménez, IEEE J. Quantum Electron. QE-11, 838 (1975) (CH₃OH; ± 0.5 MHz).
- ²²F. R. Peterson, K. M. Evenson, D. A. Jennings, J. S. Wells, K. Goto, and J. J. Jiménez, IEEE J. Quantum Electron. QE-12, 86 (1976) (CH₃OH; ± 0.5 MHz).
- ²³C. Freed, L. C. Bradley, and R. G. O'Donnell, IEEE J. Quantum Electron. **QE-16**, 1195 (1980) (CO_2 ; $\pm 1-2 \times 10^{-9}$).
- ²⁴F. R. Petersen, E. C. Beaty, and C. R. Pollock, J. Mol. Spectrosc. **102**, 112 (1983) (CO_2 ; ± 1 –2×10⁻¹⁰).
- ²⁵K. M. Evenson, D. A. Jennings, and F. R. Petersen, Appl. Phys. Lett. 44, 576 (1984).
- ²⁶P. S. Epton, W. L. Wilson, F. K. Tittel, and T. A. Rabson, Appl. Opt. 18, 1704 (1979) (HCOOH; ± 5 MHz).
- 27 D. Dangoisse and P. Glorieux, J. Mol. Spectrosc. 92, 283 (1982) (H 13 COOH; \pm 1 MHz).
- ²⁸S. F. Dyubko and L. D. Fesenko, Conference Digest of the 3rd International Conference on IR mm Waves, Guilford (1978), pp. 70–73 (HCOOH, HCOOD, DCOOH, DCOOD, C₂H₃Br, C₂H₃Cl, C₂H₃CN, CH₃I, CH₃Br, CD₃Br, CH₃CN, CH₃OH, CH₂F₂, CD₃I, CD₃Cl, CD₃CN, CH₂F₂, CD₂O, ClO₂: ± 10⁻⁶).
- ²⁹D. Dangoisse, J. Wascat, and J. M. Colmont, Int. J. IR Millimeter Waves 2, 1177 (1981) $[(H_2CO_3)_2, \pm 1 \text{ MHz})]$.
- ³⁰G. Graner and J. C. Deroche, in *Optically Pumped Far-Infrared Lasers*, edited by K. J. Button, M. Inguscio, and F. Strumia [Rev. IR Millimeter Waves 2, 35 (1984) (CD₃Cl review)].
- 31 S. F. Dyubko, L. D. Fesenko, O. I. Baskakov, and V. A. Svich, Zh. Prikl. Spektrosk. 23, 317 (1975) (CD₃I; \pm 10⁻⁶).
- 32 M. V. Moskienko and S. F. Dyubko, Radiofizika 21, 951 (1978) (CH $_3$ Br, CH $_3$ CN; $\pm~10^{-6}$).
- 33J. C. Deroche and C. Bertrencourt-Stirnemann, Mol. Phys. 32, 921
- ³⁴S. F. Dyubko, M. N. Efimenko, V. A. Svich, and L. D. Fesenko: Sov. J. Quantum Electron. 6, 600 (1976) $(C_2H_3Br; < \pm 1 \times 10^{-6})$.
- 35D. Dangoisse and P. Glorieux, in Optically Pumped Far-Infrared Lasers, edited by K. J. Button, M. Inguscio, and F. Strumia [Rev. IR Millimeter Waves 2, 429 (1984) (HCOOH isotopes, review)].
- ³⁶S. F. Dyubko, V. A. Svich, and L. D. Fesenko, Sov. Phys. Tech. Phys. 20, 1536 (1976) (HCOOH, HCOOD, DCOOH, DCOOD; $< \pm 1 \times 10^{-6}$).
- ³⁷E. C. Vasconcellos, F. R. Petersen, and K. M. Evenson, Int. J. IR Millimeter Waves 2, 705 (1981) (CD₂F₂; ± 5×10⁻⁷).
- ³⁸E. Arimondo, in *Optically Pumped Far-Infrared Lasers*, edited by K. J. Button, M. Inguscio, and F. Strumia [Rev. IR Millimeter Waves 2, 81 (1984) (CH₃I, CD₃I review)].
- ³⁹E. J. Danielewicz, in *Optically Pumped Far-Infrared Lasers*, edited K. J. Button, M. Inguscio, and F. Strumia [Rev. IR Millimeter Waves 2, 223 (1984) (CH₂F₂, review)].
- ⁴⁰F. R. Petersen, A. Scalabrin, and K. M. Evenson, Int. J. IR Millimeter Waves 1, 111 (1980) (CH₂F₂; $\pm 5 \times 10^{-7}$).
- $^{41}M.$ S. Tobin, R. P. Leevitt, and T. W. Daley, J. Mol. Spectros. 101, 212 (1984) (CDF₃, CH₃F, 13 CH₃F, CH₃OH; \pm 0.5–0.7 MHz).
- ⁴²S. F. Dyubko, O. I. Baskakov, M. V. Moskienko, and L. D. Fesenko: Conference Digest of the 3rd International Conference on IR Millimeter Waves, Guilford (1978), pp. 68 and 69 (C₂H₂F₂, HCOOH, HCOOD, CH₃F, C₂H₃CN; ± 10⁻⁶).
- ⁴³G. Kramer and C. O. Weiss, Appl. Phys. **10**, 187 (1976) (HCOOH, CH₃OH, CH₃I, CH₃F; ± 0.2-0.5 MHz).
- ⁴⁴E. Bava, A. De Marchi, and A. Godone (unpublished) (CH₃OH, CH₃I; + 0.2 MHz).
- ⁴⁵M. Inguscio, F. Strumia, and J. O. Henningsen, in *Optically Pumped Far-Infrared lasers*, edited by K. J. Button, M. Inguscio, and F. Strumia [Rev. IR Millimeter Waves 2, 105 (1984) (CH₃OH review)].
- ⁴⁶F. R. Petersen, K. M. Evenson, D. A. Jennings, and A. Scalabrin, IEEE J. Quantum Electron QE-16, 319 (1980) (CH₃OH; \pm 5×10⁻⁷).
- ⁴⁷E. C. C. Vasconcellos, J. Tomaselli, D. Pereira, A. Scalabrin, K. M. Even-

- son, F. R. Petersen, and D. A. Jennings, Conference Digest of the 9th International Conference on IR and Millimeter Waves, October 22–26, 1984, Takarazuka, Japan, Vol. F-7-5, p. 509 (¹³CH₂F₂).
- ⁴⁸A. Scalabrin, J. Tomaselli, D. Pereira, E. C. C. Vasconcellos, K. M. Evenson, F. R. Petersen, L. Zink, and D. A. Jennings, Int. J. IR Millimeter Waves 6, 973 (1985) (13CH₂F₂; ±2×10⁻⁷).
- ⁴⁹M. S. Tobin, IEEE J. Quantum. Electron QE-20, 5 (1984) (CHD₂F; + 0.7 MHz).
- ⁵⁰D. Dangoisse, A. Deldalle, J. P. Splingard, and J. Bellet, IEEE J Quantum Electron. QE-13, 730 (1977) [(D₂CO, HDCO, (H₂CO)₃; ± 0.5-1 MHz)].
- ⁵¹G. Graner, J. C. Deroche, and C. Betrencourt-Stirnemann, in *Optically Pumped Far-Infrared Lasers*, edited by K. J. Button, M. Inguscio, and F. Strumia [Rev. IR Millimeter Waves 2, 73 (1984) (CD₃Br review)].
- ⁵²E. C. C. Vasconcellos, J. C. Wyss, F. R. Petersen, and K. M. Evenson, Int. J. IR Millimeter Waves 4, 401 (1983) (CHCl₂F; $\pm 1.5 \times 10^{-7}$).
- ⁵³S. F. Dyubko, L. D. Fesenko, and B. I. Polevoy, Proceedings of the Poznan Conference, Poznan University, April 1978, pp. 19 and 20 (CF₂HCl).
- ⁵⁴R. J. Saykally, K. M. Evenson, D. A. Jennings, and F. R. Petersen (unpublished) ($CD_3OH; \pm 2 \times 10^{-7}$).
- 55M. Inguscio, in Optically Pumped Far-Infrared Lasers, edited by K. J. Button, M. Inguscio, and F. Strumia [Rev. IR Millimeter Waves 2, 193 (1984) (CH₃CN, CD₃CN review)].
- 56A. Deldalle, D. Dangoisse, J. P. Splingard, and J. Bellet, Opt. Commun.
 22, 333 (1977) (HCOOH, H¹³COOH; ± 0.5-1 MHz).
- ⁵⁷D. Dangoisse, A. Deldalle, J. P. Splingard, and J. Bellet, C. R. Acad. Sci. Ser. B 283, 115 (1976) (HCOOH; ± 0.5–1 MHz).
- ⁵⁸E. Bava, A. De Marchi, and A. Godone, 10e Congrés Intern. de Chronometrie, Geneva, Sept. 11-14, 1979, Vol. 2, pp. 49-55 (HCOOH; ± 0.2-0.5 MHz).
- ⁵⁹D. Dangoisse, B. Dutérage, and P. Glorieux, IEEE J. Qauntum Electron. QE-16, 296 (1980).
- ⁶⁰D. Dangoisse, J. C. Depannemaecker, and N. Monnanteuil, Int. J. IR Millimeter Waves 4, 913 (1983) (¹6O₃, ¹6O₃; ≈ a few MHz).
- ⁶¹H. E. Radford, F. R. Petersen, D. A. Jennings, and J. A. Mucha, IEEE J. Quantum Electron. QE-13, 92, 881 (1977) (CH₃OH, CH₃OD, CH₃NH₂, N₂H₄, HCOOH, CH₃F, CH₃I, CH₃CN, CH₃CH₂F, CH₂CHCl, C₂H₂F₂; ± 0.5 MHz).
- ⁶²E. C. C. Vasconcellos, A. Scalabrin, F. R. Petersen, and K. M. Evenson, Int. J. IR Millimeter Waves 2, 533 (1981) (CD₃OD; ± 5×10⁻⁷).
- ⁶³J. C. Petersen and J. O. Henningsen, in *Optically Pumped Far-Infrared Lasers*, edited by K. J. Button, M. Inguscio, and F. Strumia [Rev. IR Millimeter Waves 2, (1984) (¹³CH₃OH review)].
- ⁶⁴A. Scalabrin, F. R. Petersen, K. M. Evenson, and D. A. Jennings, Int. J. IR Millimeter Waves 1, 117 (1980) (CH₂DOH; ± 5×10⁻⁷).
- ⁶⁵S. Kon, T. Kachi, Y. Tsunawaki, and M. Yamanaka, in *Optically Pumped Far-Infrared Lasers*, edited by K. J. Button, M. Inguscio, and F. Strumia [Rev. IR Millimeter Waves 2, 159 (1984) (CH₃OH, review of deuterated species)].
- ⁶⁶M. Inguscio, N. Ioli, A. Moretti, and F. Strumia, 9th International Conference on IR and Millimeter Waves, Takarazuka, Japan, October 22–26, 1984, pp. 47 and 48 (unpublished) (CH₃F, CH₃OH, CH₃F₂; ± 1.5 MHz).
- ⁶⁷T. Y. Chang, in *Optically Pumped Far-Infrared Lasers*, edited by K. J. Button, M. Inguscio, and F. Strumia [Rev. IR Millimeter Waves 2, 1 (1984) (CH₃F, ¹³CH₃F review)].
- ⁶⁸E. Bava, A. De Marchi, A. Godone, R. Benedetti, M. Inguscio, P. Minguzzi, F. Strumia, and M. Tonelli, Opt. Commun. 21, 46 (1977) (CH₃F; + 0.2 MHz).
- ⁶⁹M. Inguscio, K. M. Evenson, F. R. Petersen, F. Strumia, and E. C. C. Vasconcellos, Int. J. IR Millimeter Waves 5, 1289 (1984) (¹³CD₃OH; + 5×10⁻⁷).
- ⁷⁰J. O. Henningsen, J. C. Petersen, F. R. Petersen, D. A. Jennings, and K. M. Evenson, J. Mol. Spectrosc. 77, 298 (1979) (13CH₃OH; ± 3×10⁻⁷).
- ⁷¹D. Dangoisse and P. Glorieux, "The Optically Pumped Formaldehyde Laser," Internal report of the Laboratoire de Spéctroscopie Hertzienne, Université de Lille (D₂CO; ≈1 MHz).
- ⁷²E. C. C. Vasconcellos, D. A. Jennings, and K. M. Evenson, Int. J. IR Millimeter Waves 7, 291 (1986) $(C_2H_5OH; \pm 2\times 10^{-7})$.
- ⁷³D. Dangoisse, Thèse, Université de Lille, Lille, France (1980) (D₂CO; ≈1 MHz).
- ⁷⁴E. C. C. Vasconcellos, K. M. Evenson, and F. R. Petersen, Int. J. IR Millimeter Waves 6, 1157 (1985) (¹³CD₃OD; 2×10⁻⁷).
- ⁷⁵D. Pereira, E. C. C. Vasconcellos, A. Scalabrin, K. M. Evenson, F. R.