Caustic Leaching of Hanford Tank S-110 Sludge

G. J. Lumetta K. J. Carson L. P. Darnell L. R. Greenwood F. V. Hoopes R. L. Sell S. I. Sinkov C. Z. Soderquist M. W. Urie J. J. Wagner

October 2001

Prepared for the U.S. Department of Energy under Contract DE-AC06-76RL01830

This work is funded by the Office of Science and Technology, within the Department of Energy's Office of Environmental Management, under the Efficient Separations and Processing Crosscutting Program.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes **any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights**. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

PACIFIC NORTHWEST NATIONAL LABORATORY operated by BATTELLE for the UNITED STATES DEPARTMENT OF ENERGY under Contract DE-ACO6-76RL01830

Printed in the United States of America

Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831-0062; ph: (865) 576-8401 fax: (865) 576-5728 email: reports@adonis.osti.gov

Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161 ph: (800) 553-6847 fax: (703) 605-6900 email: orders@ntis.fedworld.gov online ordering: http://www.ntis.gov/ordering.htm

Caustic Leaching of Hanford Tank S-110 Sludge

G. J. Lumetta K. J. Carson L. P. Darnell L. R. Greenwood F. V. Hoopes R. L. Sell S. I. Sinkov C. Z. Soderquist M.W. Urie J. J. Wagner

October 2001

Prepared for the U.S. Department of Energy under Contract DE-AC06-76RL01830

This work is funded by the Office of Science and Technology, within the Department of Energy's Office of Environmental Management, under the Efficient Separations and Processing Crosscutting Program.

Pacific Northwest National Laboratory Richland, Washington 99352

Summary

This report describes the Hanford Tank S-110 sludge caustic leaching test conducted in FY 2001 at the Pacific Northwest National Laboratory. The data presented here can be used to develop the baseline and alternative flowsheets for pretreating Hanford tank sludge. The U.S. Department of Energy funded the work through the Efficient Separations and Processing Crosscutting Program (ESP; EM-50).

The S-110 sludge sample was first subjected to washing with dilute sodium hydroxide solution at ambient temperature. Following the dilute hydroxide washing, several aliquots of the washed solids were taken for leaching tests. The washed solids were subjected to leaching with 1, 3, or 5 \underline{M} NaOH at 60, 80, or 100°C for up to 168 h. The leachates were sampled at 4, 8, 24, 72, and 168 h. The leached solids were dried to constant mass at 105°C and then analyzed.

The work presented here indicates caustic leaching to be a very effective method of pretreating Hanford Tank S-110 sludge. Because of the predominance of boehmite in the water-insoluble S-110 solids, high caustic and temperature are required to sufficiently remove Al. It would also be necessary to leach for several days to realize the full benefits of caustic leaching. As expected, Al removal improves with increasing temperature, NaOH concentration, and leaching time. The Cr behavior parallels that of Al.

At a maximum of $0.5 \text{ wt}\% \text{ Cr}_2\text{O}_3$ in the high-level waste form, the mass of immobilized high-level waste (IHLW) would be constrained by the Cr content of the leached S-110 solids. Nevertheless, an 80 to 90% reduction in IHLW mass from the S-110 solids should be readily achievable.

The results of this work underscore the need to continue process optimization studies. If subjected to the baseline leaching approach (3 M NaOH, 80 to 90°C, for 8 h), only about 25% of the Al would be leached from the dilute hydroxide-washed S-110 solids. Clearly, this would not be sufficient to adequately reduce the IHLW mass.

Glossary

DOE	U.S. Department of Energy
ESP ESW	Efficient Separations and Processing Crosscutting Program enhanced sludge washing
GEA	gamma energy analysis
HDPE HLW	high density polyethylene high-level waste
ICP/AES IHLW ILAW	inductively coupled plasma/atomic emission spectroscopy immobilized high level waste immobilized low-activity waste
LAW LLW	low-activity waste low-level waste
NRC	U.S. Nuclear Regulatory Commission
PMP PNNL PP	polymethylpentene Pacific Northwest National Laboratory polypropylene
REDOX	REDOX process for Pu recovery
TRU	transuranic elements
UV/vis	ultraviolet/visible
WOL	Waste Oxide Loading

Acknowledgments

This work was funded by the U.S. Department of Energy Office of Science and Technology through the Efficient Separations and Processing Crosscutting Program (ESP). The authors thank Jerry Harness and Jack Watson of the ESP and Phil McGinnis of the Tanks Focus Area. The authors also acknowledge Ted Pietrok and Marcus Glasper in the DOE Richland Operations Office.

The authors gratefully acknowledge W. C. Cosby and B. M. Rapko for reviewing this document. The authors also thank C. L. Blair, W. F. Bonner, P. A. Meyer, and M. Larson for their project-management support.

Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy under Contract DE-AC06-76RL01830.

Summary	iii
Glossary	V
Acknowledgments	vii
1.0 Introduction	1.1
2.0 Experimental	2.1
2.1 Description of the S-110 Sludge Sample	2.1
2.2 Initial Washing of the S-110 Solids	2.1
2.3 Division of the Washed S-110 Solids	2.2
2.4 Caustic Leaching of the Washed S-110 Solids	2.3
2.5 Determination of Hydroxide Concentration	2.4
2.6 Determination of Chromium(VI) Concentration	2.5
3.0 Results and Discussion	3.1
3.1 Aluminum Dissolution	3.3
3.2 Chromium Dissolution	3.4
3.3 Radionuclide Behavior	3.13
3.4 Impact of Leaching on Immobilized High-Level Waste Glass Mass	3.14
3.5 Conclusions and Recommendations	3.15
4.0 References	4.1
Appendix A: Solution Concentrations as a Function of Time	A.1
Appendix B: Leaching Results in Terms of Percent Component Removed	B.1
Appendix C: Radionuclide Behavior	C.1

Contents

Figures

3.1.	Aluminum Concentration as a Function of Time During Leaching of S-110 Solids at 60°C	3.4
3.2.	Aluminum Concentration as a Function of Time During Leaching of S-110 Solids at 80°C	3.5
3.3.	Aluminum Concentration as a Function of Time During Leaching of S-110 Solids at 100°C	3.5
3.4.	Aluminum Concentration and Removal as a Function of Time During Leaching of S-110 Solids at 1 M NaOH	3.6
3.5.	Aluminum Concentration and Removal as a Function of Time During Leaching of S-110 Solids at 3 M NaOH	3.7
3.6.	Aluminum Concentration and Removal as a Function of Time During Leaching of S-110 Solids at 5 M NaOH	3.8
3.7.	Chromium Concentration as a Function of Time During Leaching of S-110 Solids at 60°C	3.9
3.8.	Chromium Concentration as a Function of Time During Leaching of S-110 Solids at 80°C	3.9
3.9.	Chromium Concentration as a Function of Time During Leaching of S-110 Solids at 100°C	3.10
3.10.	Chromium Concentration and Removal as a Function of Time During Leaching of S-110 Solids at 1 M NaOH	3.11
3.11.	Chromium Concentration and Removal as a Function of Time During Leaching of S-110 Solids at 3 M NaOH	3.12
3.12.	Chromium Concentration and Removal as a Function of Time During Leaching of S-110 Solids at 5 M NaOH	3.13

Tables

2.1.	Description of S-110 Sludge Composite	2.1
2.2.	Composition of the Dilute Hydroxide-Washed S-110 Solids	2.2
2.3.	Mass of Washed S-110 Solids in Each Leaching Aliquot	2.3
2.4.	Caustic Leaching Conditions	2.4
2.5.	Mass of the Leached S-110 Solids and the Mass Loss Achieved During Leaching	2.4
2.6.	Comparison of Measured Cr(VI) and Total Cr Concentrations	2.5
3.1.	Results of Dilute-Hydroxide Washing of the As-Received S-110 Sludge	3.1
3.2.	Aluminum, Chromium, and Phosphorus Removal Achieved After One Week of Leaching	3.3
3.3.	Estimated Concentrations of Waste-Derived Components in the IHLW Glass from S-110 Waste	3.16

1.0 Introduction

Since 1990, the primary mission at the U.S. Department of Energy's Hanford Site has changed from producing plutonium to restoring the environment. Large volumes of high-level radioactive wastes (HLW), generated during past Pu production and other operations, are stored in underground tanks onsite. The current plan for remediating the Hanford tank farms consists of waste retrieval, pretreatment, treatment (immobilization), and disposal. The tank wastes will be partitioned into high-level and low-activity fractions. The low-activity waste (LAW) will be processed to remove ¹³⁷Cs and ⁹⁹Tc (and ⁹⁰Sr and transuranic elements in selected cases), and then it will be immobilized in a glass matrix and disposed of by shallow burial onsite. The HLW will be immobilized in a borosilicate glass matrix; the resulting glass canisters will then be disposed of in a geologic repository (DOE/ORP 2001). Because of the expected high cost of HLW vitrification and geologic disposal, pretreatment processes will be immobilized in reduce the volume of immobilized high-level waste (IHLW).

Dilute hydroxide washing is the minimum pretreatment that would be performed on Hanford tank sludges. This method simply involves mixing the sludge with dilute (0.1 \underline{M} or less) NaOH, then performing some sort of solid/liquid separation. This is meant to remove water-soluble sludge components (mainly sodium salts) from the HLW stream. Dilute hydroxide is used rather than water to maintain the ionic strength high enough that colloidal suspensions are avoided.

Caustic leaching (sometimes referred to as enhanced sludge washing or ESW) represents the baseline method for pretreating Hanford tank sludges. Caustic leaching is expected to remove a large fraction of the Al, which is present in large quantities in Hanford tank sludges. The Al will be removed by converting aluminum oxides/hydroxides to sodium aluminate. For example, boehmite and gibbsite are dissolved according to the following equations (Weber 1982).

$$AlOOH(s) + NaOH(aq) \rightarrow NaAlO_2(aq) + H_2O$$
(1.1)

$$Al(OH)_{3}(s) + NaOH(aq) \rightarrow NaAlO_{2}(aq) + 2H_{2}O$$
(1.2)

A significant portion of the P is also expected to be removed from the sludge by the metathesis of water-insoluble metal phosphates to insoluble hydroxides and soluble Na₃PO₄. An example of this is shown for iron(III) phosphate in the following equation.

$$FePO_4(s) + 3NaOH(aq) \rightarrow Fe(OH)_3(s) + Na_3PO_4(aq)$$
(1.3)

Similar metathesis reactions can also occur for insoluble sulfate salts, allowing the removal of sulfate from the HLW stream.

Based on its known amphoteric behavior (Rai et al. 1987), Cr(III) was expected to be removed by caustic leaching according to the following equation:

$$Cr(OH)_3(s) + NaOH(aq) \rightarrow Na[Cr(OH)_4](aq)$$
 (1.4)

However, studies conducted at the Pacific Northwest National Laboratory (PNNL) have suggested that the behavior of Cr in the caustic leaching process is more complex (Lumetta et al. 1997).

Results of previous studies of the baseline Hanford sludge-washing and caustic-leaching process have been reported (Lumetta and Rapko 1994; Rapko et al. 1995, Lumetta et al. 1996a and 1996b, 1997, and 1998; Temer and Villarreal 1995, 1996, and 1997). In the initial work, a standard set of test conditions was examined for each sludge. In FY 1998, the focus of the testing effort shifted to performing parametric tests on selected sludge samples (Lumetta et al. 1998). The purpose of the parametric tests is to provide data that process engineers can use to optimize process flowsheets for specific waste types. The parameters being considered are time, temperature, and caustic (NaOH) concentration. This report describes the results of a parametric caustic-leaching tests performed on sludge from Hanford Tank S-110. This tank contains primarily waste from the Reduction Oxidation (REDOX) process for Pu recovery, but also contains evaporator bottoms and a mixture of other miscellaneous wastes (Hill et al. 1995).

2.0 Experimental

2.1 Description of the S-110 Sludge Sample

The S-110 sludge sample used was a composite of segments from two different core samples (Table 2.1). The composite sample was prepared at the Hanford 222-S Laboratory and shipped to PNNL in March 2001.

Sample	Core	Core	Tank Segment		Amount
ID ^(a)	No.	Date	Riser	No.	Added, g
S98T001898	240	May 1998	14	9	30.0
S98T001904	240	May 1998	14	10	30.7
S98T001978	241	June 1998	6	2	30.2
S98T001984	241	June 1998	6	3	30.0
S98T001994	241	June 1998	6	4	30.1
S98T002014	241	June 1998	6	7	30.0
S98T002026	241	June 1998	6	8	30.1
			N	let Mass, g:	211.1
(a) Unique ident	tifier used	l at the Hanford	222-S L	aboratory.	

Table 2.1. Description of S-110 Sludge Composite

2.2 Initial Washing of the S-110 Solids

The 211-g S-110 composite sample was transferred to a 500-mL high-density polyethylene (HDPE) bottle by a combination of scooping with a spatula and sluicing with 0.01 M NaOH. The S-110 sludge was very sticky with a consistency like peanut butter. Dilute (0.01 M) NaOH solution was added to yield a total volume of 400 mL, and then the mixture was shaken overnight. The mixture was allowed to stand for 2 h, after which time there was no indication of solids settling. The wash slurry was split between two centrifuge bottles and was centrifuged for 20 min (at ~1200 G). The wash liquor was decanted from each centrifuge bottle and saved. The centrifuged solids were transferred back into the 500-mL bottle, and the process was repeated. The third and final wash was conducted in the centrifuge bottles. Dilute (0.01 M) NaOH solution was added to each centrifuge bottle containing the centrifuged solids to yield a total volume of ~175 mL in each bottle. The bottles were shaken overnight and then centrifuged. The wash liquor was decanted and combined with the previous wash liquors. The total mass of the combined wash solution was 764.7 g.

The washed solids were transferred to a 1-L HDPE bottle by slurrying with deionized water. The slurry was made to ~1 L with deionized water. The mass of this slurry was 976.6 g. The slurry was mixed with a magnetic stirrer, and two 2-g aliquots were taken for analysis. Two additional 0.5-mL aliquots of the washed solids slurry were taken for potential solids characterization. The two 2-g aliquots were dried to constant weight at 105°C to determine the solids composition of the slurry. The slurry contained 7.72 wt% solids, which translated to a total of 74.96 g of washed solids. The two dried aliquots of washed solids were analyzed by inductively coupled plasma-atomic emission spectroscopy (ICP-AES), gamma energy analysis (GEA), and for total alpha and total beta activity (Table 2.2).

Component	Concentration, μg/g		
Al	325000		
В	[135]		
Ba	[110]		
Bi	1365		
Са	[1200]		
Cd	[60]		
Cr	23050		
Cu	[82]		
Fe	14150		
La	[160]		
Mg	[380]		
Mn	5305		
Na	30000		
Nd	[345]		
Р	1415		
Pb	[595]		
Si	[5500]		
Sr	1240		
Ti	[58]		
U	[23500]		
Zn	[225]		
Zr	[135]		
Component	Concentration, µCi/g		
Total Alpha ^(b)	1.8E+00		
Total Beta	1.4E+03		
$^{137}Cs^{(b)}$	3.1E+01		
(a) Experimental unce	ertainties are 15%, except for		
values given in bra	ackets. Values given in brackets		
are within 10 times the detection limit, and the			
uncertainties for th	nese values are greater than		
15%.			
(b) The process blank	indicated relatively high total		
alpha (0.35 uCi/g)	and 137 Cs (7.61 µCi/g)		
concentrations. So	the reported values should be		
used with some ca	ution.		

Table 2.2. Composition of the Dilute Hydroxide-Washed S-110 Solids

2.3 Division of the Washed S-110 Solids

After having stood for 2 to 3 weeks, it was impossible to adequately stir the slurry of washed solids with the magnetic stirrer. A mechanical stirrer was used instead to homogenize the slurry. Nine aliquots,

nominally 15 g each, were transferred to 125-mL polypropylene (PP) bottles using a large (23-mL capacity) disposable polyethylene pipette. Table 2.3 lists the bottle labels, the mass of each aliquot, and the amount of solids in each aliquot, based on 7.72 wt% solids in the slurry.

Bottle ID	Mass Slurry, g	Mass Solids, g
S110-60-1	15.4	1.189
S110-60-3	15.2	1.173
S110-60-5	15.0	1.158
S110-80-1	15.1	1.166
S110-80-3	15.0	1.158
S110-80-5	15.1	1.166
S110-100-1	15.0	1.158
S110-100-3	15.2	1.173
S110-100-5	15.1	1.166

Table 2.3. Mass of Washed S-110 Solids in Each Leaching Aliquot

2.4 Caustic Leaching of the Washed S-110 Solids

Table 2.4 summarizes the leaching conditions for each aliquot of washed S-110 solids. A slight excess (0.1 M) of NaOH was added to each reaction vessel to compensate for hydroxide ion consumed in chemical reactions. The aluminum heating block was preheated to the desired temperature. Sodium hydroxide solution (10 M) was added to each aliquot of washed S-110 solids in the following amounts: 11.0 mL to yield 1 M NaOH, 31.0 mL to yield 3 M NaOH, and 51 mL to yield 5 M NaOH. The leaching mixtures were then diluted to 100 mL with deionized water. The ratio of ~80 mL solution per gram of washed S-110 solids was chosen so as to avoid Al solubility limits in any of the test samples.

It was discovered that the 125-mL HDPE bottles containing the nine aliquots would not fit in the aluminum heating block when at temperature. For this reason, it was necessary to transfer the leaching slurries to 125-mL polymethylpentene (PMP) bottles. In all cases, the transfer of the slurry was essentially quantitative, with \geq 99.8% of the slurry transferred.

The liquid level was marked on each reaction vessel, and each vessel was closed with a cap equipped with a tube-condenser. The leaching mixtures were mixed at temperature with a magnetic stirrer. Evaporation was minimal during the course of the experiment; occasionally, deionized water was added to bring the liquid level up to its original position. The leachates were sampled at intervals of 4, 8, 24, 72, and 168 h. For each sampling, the stirrer was stopped, and the solids were settled at temperature. The transfer pipette and the syringe filter assembly (0.45-µm nylon membrane) were preheated by inserting in a boiling water bath. These were then used to filter ~1 mL of the leachate solution. A 0.5-mL aliquot of the filtered solution was immediately acidified with 15 mL of 0.3 M HNO₃. The remaining filtered solution was added back to the reaction vessel, and the leaching was continued. After 168 h, additional samples were taken for titrimetric (diluted into deionized water) analysis and Cr(VI) analysis by UV spectrophotometry (diluted into 0.1 M NaOH).

At the conclusion of the test, the reaction vessels were centrifuged for 5 min (~1200 G) immediately after removing from the heating block. The leachate was decanted and saved. The leached solids were washed thrice with 30-mL portions of 0.01 M NaOH and then were dried at 105°C. Table 2.5 gives the weights of the leached solids and the weight reductions achieved after leaching for168 h.

	[Na	OH], M	
Bottle ID	Target	Measured	Temperature, °C
S110-60-1	1	1.0	60
S110-60-3	3	2.8	60
S110-60-5	5	4.8	60
S110-80-1	1	0.9	80
S110-80-3	3	2.7	80
S110-80-5	5	4.6	80
S110-100-1	1	0.8	100
S110-100-3	3	2.7	100
S110-100-5	5	4.6	100

Table 2.4. Caustic Leaching Conditions

Table 2.5. Mass of the Leached S-110 Solids and the Mass Loss Achieved During Leaching

Bottle ID	Mass of Leached Solids, g	Mass Loss, %
S110-60-1	0.799	33
S110-60-3	0.671	43
S110-60-5	0.598	48
S110-80-1	0.428	63
S110-80-3	0.207	82
S110-80-5	0.143	88
S110-100-1	0.210	82
S110-100-3	0.107	91
S110-100-5	0.099	92

2.5 Determination of Hydroxide Concentration

The free hydroxide concentration in the S-110 caustic leaching solutions was determined by titration with standard HCl. Initially, aliquots of the leaching solutions were diluted with deionized water and titrated directly with HCl. This gave very erratic results, which was believed to be caused by varying amounts of carbonate in the samples. Accordingly, Ca(NO₃)₂ was added to precipitate CaCO₃ before performing the titration. Aliquots of the leaching solution (0.5 mL for 1 M NaOH, 0.15 mL for 3 M NaOH, or 0.1 mL for 5 M NaOH) were diluted into 10 mL of deionized water. To these analyte solutions was added 0.1 mL of 2 M Ca(NO₃)₂. The resulting solutions were then titrated with 0.1 M HCl. The titration was conducted using a Mettler DL-21 automatic titrator equipped with a combination Ross® Electrode (ATI Orion, Boston, Massachusetts). Table 2.4 presents the measured free hydroxide concentrations.

2.6 Determination of Chromium(VI) Concentration

The CrO_4^{2-} concentration in the leaching solutions (after 1 week of leaching) was determined by ultraviolet/visible (UV/vis) spectrophotometry. A calibration curve was generated by measuring the spectra of standard CrO_4^{2-} solutions (in 0.1 M NaOH). The absorption at 372 nm was used. The leaching solutions were diluted with 0.1 M NaOH as needed, and the absorption was measured at 372 nm. The CrO_4^{2-} concentrations were calculated from the measured absorbance and the calibration curve. Table 2.6 compares the measured CrO_4^{2-} values to the total Cr concentrations determined by ICP-AES. In all cases, the Cr(VI) and total Cr concentrations were the same within experimental uncertainty, although the total Cr concentrations were consistently greater than the Cr(VI) concentrations, which might suggest that some Cr(III) was present.

	Concentra	ation, µg/g
Solution	Cr(VI)	Total Cr
1 M NaOH at 60°C	144	154
3 M NaOH at 60°C	190	199
5 M NaOH at 60°C	207	217
1 M NaOH at 80°C	226	237
3 M NaOH at 80°C	236	251
5 M NaOH at 80°C	241	234
1 M NaOH at 100°C	258	265
3 M NaOH at 100°C	256	265
5 M NaOH at 100°C	245	255

Table 2.6. Comparison of Measured Cr(VI) and Total Cr Concentrations

3.0 Results and Discussion

Table 3.1 presents the behavior of the various S-110 sludge components during washing of the asreceived S-110 sludge sample with 0.01 M NaOH. Besides Na, Al is the dominant element present in the S-110 sludge. Dilute hydroxide washing is ineffectual at removing Al with only 4% reporting to the washing solution. Likewise, Cr removal is poor with only 17% of the total Cr removed by dilute hydroxide washing. In contrast, ~70% of the P is removed by dilute hydroxide washing, suggesting that most of the P is present in the S-110 sludge as water-soluble phosphate salts. As expected, Na is largely removed by dilute hydroxide washing.

Appendix A presents the concentrations of the various S-110 sludge components in the leaching solutions as a function of time, as well as the concentrations in the final washing solutions. Appendix B presents detailed results of the S-110 leaching test in terms of the concentration and mass of each component in the 1) leaching solution (after one week), 2) post-leach washing solution, and 3) the leached solids. Also presented in Appendix B is the concentration of each component in the water-washed solids calculated by summing the mass of each component in the leaching and washing solutions and the residual solids then dividing by the amount of washed solids used in the test. The concentrations determined in this manner are compared to those obtained by direct analysis of the washed solids. Mass recoveries obtained were generally within 15% for the major sludge components (i.e., Al, Cr, Fe, Mn, P, and Sr). Uranium was also a significant component of the sludge. The mass balance for U was generally low (but within 20%), probably because of the relative insensitivity of ICP-AES to U analysis.

Table 3.2 summarizes the removal achieved for the important sludge components Al, Cr, and P by leaching the washed S-110 solids with NaOH for one week. The removal of these elements parallels the mass losses listed in Table 2.4. That is, the removals of Al, Cr, and P increase with increasing temperature or increasing NaOH concentration. A more detailed discussion of Al and Cr dissolution is given in the following sections.^(a)

	Initial Washing Solution		Washed Solids			
	Solution		Solids	74.00		
Component	Mass, g	/04./ Mass.ug	Mass, g	/4.96 Mass. ug	Total Mass. ug	Domovod 9/
Component	Conc. µg/g	Mass, µg	Conc. µg/g	Iviass, µg	i otai wiass, μg	Kemoveu, 70
Ag						
Al	1410	1077863	325000	24362000	25439863	4%
As						
В			[135]	[10120]	10120	(b)
Ba			[110]	8246	8246	(b)
Be						
Bi			1365	102320	102320	(b)
Ca			[1200]	[89952]	89952	(b)

Table 3.1. Results of Dilute-Hydroxide Washing of the As-Received S-110 Sludge

⁽a) A detailed discussion of phosphorus removal is not presented because the removal of this element is relatively independent of hydroxide concentration and temperature under the conditions examined, and its concentration in the S-110 solids is not great enough to cause concern.

	Initial Washi	ng Solution	Washed Solids				
	Solution		Solids				
	Mass, g	764.7	Mass, g	74.96			
Component	Conc. µg/g	Mass, µg	Conc. µg/g	Mass, µg	Total Mass, µg	Removed, %	
Cd			[60]	[4498]	4498	(b)	
Ce							
Со							
Cr	448	342294	23050	1727828	2070122	17%	
Cu			[82]	[6147]	6147	(b)	
Dy							
Eu							
Fe	[0.6]	452	14150	1060684	1061136	0.04%	
K	[124]	94677	N/A	N/A	N/A	N/A	
La			[160]	[11994]	11994	(b)	
Li							
Mg			[380]	[28485]	28485	(b)	
Mn			5305	397663	397663	(b)	
Мо	5	3671			3761	100%	
Na	27381	20938214	30000	2248800	23187014	91% ^(c)	
Nd			[345]	[25861]	25861	(b)	
Ni			N/A	N/A	N/A	N/A	
Р	356	272379	1415	[106068]	378447	72%	
Pb			[595]	[44601]	44601	(b)	
Pd							
Rh							
Ru							
Sb							
Se							
Si	28	21594	[5500]	[412280]	433874	5%	
Sn							
Sr			1240	92950	92950	(b)	
Те							
Th							
Ti			[58]	[4348]	4348	(b)	
Tl							
U			[23500]	1761560	1761560	(b)	
W							
Y							
Zn			[225]	[16866]	16866	(b)	
Zr			[135]	10120	10120	(b)	
(a) Analyte w	vas below detecti	on limit if left	blank. Experi	mental uncert	ainties are 15%, ex	cept for values	
given in brackets. Values given in brackets are within 10 times the detection limit and the							

Table 3.1	(Contd)
-----------	---------

uncertainties for these values are greater than 15%.

(b) No detectable removal.

(c) Not corrected for Na added as NaOH in washing solution.

		Removed, %		
Т, ° С	[NaOH], M	Al	Cr	Р
60	1.0	39	49	90
60	2.8	47	70	92
60	4.8	50	81	94
	1	1	1	1
80	0.9	69	78	92
80	2.7	91	89	97
80	4.6	96	90	99
	1		1	
100	0.8	91	87	83
100	2.7	100	91	95
100	4.5	100	93	99

Table 3.2. Aluminum, Chromium, and Phosphorus Removal Achieved After One Week of Leaching

3.1 Aluminum Dissolution

Figures 3.1, 3.2, and 3.3 illustrate the Al dissolution at 60, 80, and 100°C, respectively. At 60°C, the dissolution of Al was similar at the three hydroxide concentrations examined. There was a fairly rapid (within 8 h) rise in Al concentration to about 700 μ g/g, followed by a gradual increase to about 1,800 μ g/g after 168 h of leaching. The Al concentration did not appear to reach a steady value after 168 h of leaching at 60°C. The initial rapid rise in Al concentration was probably due to dissolution of gibbsite. The more gradual increase in Al concentration beyond 8 h can be attributed to dissolution of boehmite, which is known to dissolve more slowly than gibbsite. X-ray diffraction analysis of the waterwashed S-110 solids indicated that the crystalline forms of Al in the solids consisted of 10 to 20% gibbsite and 80 to 90% boehmite.

At 80°C, Al dissolution was similar in 3 and 5 M NaOH, but Al dissolved to a lesser extent in 1 M NaOH. It is not clear whether the Al concentration reached a constant value after 168 h of leaching at 80°C. On the other hand, a constant Al concentration was reached after leaching for 72 h at 100°C in 3 and 5 M NaOH. Aluminum dissolution was somewhat slower for 1 M NaOH at 100°C, but reached the same end state (approximately 4000 μ g/g) as the 3 and 5 M cases after leaching for 168 h.

Figures 3.4, 3.5, and 3.6 illustrate the Al dissolution at 1, 3, and 5 M NaOH, respectively. The data are presented in terms of both the Al concentration and the percentage of Al removed as a function of time. These figures clearly illustrate increased Al dissolution with increasing temperature. They also indicate that various conditions can be chosen to reach the same level of Al removal. For example, leaching the S-110 sludge with 1 M NaOH at 100°C for 1 week removes approximately the same amount of Al as leaching with 3 M NaOH at 100°C for 3 days. One striking feature of these data is that, in terms of Al dissolution, there is no significant advantage in using 5 M NaOH instead of 3 M NaOH. However, there may be an advantage in using 5 M NaOH in terms of solution stability.

The Al solubilities with respect to Gibbsite in 1, 3, and 5 M NaOH at 25°C are approximately 1818, 5885, and 11445 μ g/g solution, respectively.^(a) Based on this, only the leachates obtained by leaching with 1 M NaOH at 80 and 100°C would be supersaturated when allowed to cool to 25°C. However, the Al solubility in 1 M NaOH at 60°C is approximately 4675 μ g/g solution. As the Al solubility increases with increasing temperature and NaOH concentration, this can be viewed as the minimum solubility for the leaching solutions at temperature. Comparison of this value to the measured Al concentrations confirms that in no case was Al removal limited by the Al concentration.

3.2 Chromium Dissolution

Figures 3.7, 3.8, and 3.9 illustrate the Cr dissolution at 60, 80, and 100 °C, respectively. Unlike the Al behavior, increased hydroxide concentration led to higher Cr concentrations at 60°C. But similar to the Al behavior, the Cr concentration did not appear to reach a steady value after 168 h of leaching at 60 °C. At 80°C, Cr dissolution was similar in 3 and 5 M NaOH; Cr dissolution in 1 M NaOH was slower but reached essentially the same final concentration (approximately 225 μ g/g) after leaching for 168 h. The Cr behavior at 100°C was similar to that at 80°C except that dissolution was somewhat more rapid.

Figures 3.10, 3.11, and 3.12 illustrate the Cr dissolution at 1, 3, and 5 M NaOH, respectively. The data are presented in terms of both the Cr concentration and the percentage of Cr removed as a function of time. These figures clearly illustrate more rapid Cr dissolution with increasing temperature, but the data also suggest that the same level of Cr removal would probably be reached for all hydroxide concentrations and temperature if sufficient time were allowed.

Figure 3.1. Aluminum Concentration as a Function of Time During Leaching of S-110 Solids at 60°C

⁽a) AR Felmy, Pacific Northwest National Laboratory, personal communication, 2001.

Figure 3.2. Aluminum Concentration as a Function of Time During Leaching of S-110 Solids at 80°C

Figure 3.3. Aluminum Concentration as a Function of Time During Leaching of S-110 Solids at 100°C

Figure 3.4. Aluminum Concentration and Removal as a Function of Time During Leaching of S-110 Solids at 1 M NaOH

Figure 3.5. Aluminum Concentration and Removal as a Function of Time During Leaching of S-110 Solids at 3 M NaOH

Figure 3.6. Aluminum Concentration and Removal as a Function of Time During Leaching of S-110 Solids at 5 M NaOH

Figure 3.7. Chromium Concentration as a Function of Time During Leaching of S-110 Solids at 60°C

Figure 3.8. Chromium Concentration as a Function of Time During Leaching of S-110 Solids at 80°C

Figure 3.9. Chromium Concentration as a Function of Time During Leaching of S-110 Solids at 100°C

Figure 3.10. Chromium Concentration and Removal as a Function of Time During Leaching of S-110 Solids at 1 M NaOH

Figure 3.11. Chromium Concentration and Removal as a Function of Time During Leaching of S-110 Solids at 3 M NaOH

Figure 3.12. Chromium Concentration and Removal as a Function of Time During Leaching of S-110 Solids at 5 M NaOH

3.3 Radionuclide Behavior

Appendix C summarizes the behavior of the radionuclides in the S-110 caustic leaching tests. Under all conditions examined, greater than 90% of the ¹³⁷Cs reported to the leaching solution. There was no significant effect of temperature upon the ¹³⁷Cs behavior, but increasing NaOH concentration led to increased ¹³⁷Cs removal from the S-110 solids. As expected, the lanthanide and actinide isotopes were largely insoluble in the highly alkaline leaching solutions.

The highest transuranic (TRU) concentration in the leachate was $\sim 3.5 \times 10^{-4} \mu \text{Ci/g}$ (e.g., for leaching with 5 M NaOH at 60 or 100°C). To assess whether this would lead to an immobilized low-activity waste (ILAW) form exceeding the 10 nCi TRU/g limit for Class A LLW (10 CFR 61. 1988. U.S. Nuclear Regulatory Commission, "Licensing Requirements for Land Disposal of Radioactive Waste." *U.S. Code of Federal Regulations*), we considered a 1 M NaOH leaching solution with a TRU concentration of 3.5 x $10^{-4} \mu \text{Ci/g}$ as a limiting case. Assuming that the ILAW form contains 20 wt% Na₂O, the resulting TRU concentration would be 2.4 nCi/g. Thus, it appears the leaching solutions would not exceed the TRU criteria for LAW.

A similar analysis can be done for ¹³⁷Cs. In this case, the highest concentration was approximately 0.43 μ Ci/g. Assuming that the ILAW form contains 20 wt% Na₂O and has a density of 2.7 MT/m³, immobilization of a 1 M NaOH leachate containing 0.43 μ Ci/g¹³⁷Cs would lead to a waste form with 8 Ci/m³. This exceeds the U.S. Nuclear Regulatory Commission (NRC) Class A limit of 1 Ci ¹³⁷Cs/m³ (but is well within the Class B limit of 44 Ci ¹³⁷Cs/m³). Thus, if the ILAW waste form is to meet Class A criteria, the ¹³⁷Cs must be removed from the leaching solutions.

3.4 Impact of Leaching on Immobilized High-Level Waste Glass Mass

To illustrate the effects of caustic leaching on the production of IHLW glass, Table 3.3 shows the concentration of waste oxides in the dilute hydroxide-washed S-110 solids and in the leached S-110 solids. For the sake of discussion, the table also shows the concentrations of waste-derived components that would result from vitrifying these solids at 25 wt% waste oxide loading (WOL), excluding oxides of Na and Si. Two cases are presented—leaching with 3 M NaOH at 80°C and at 100°C for 1 week. The oxide concentrations in the washed and leached solids were determined by converting the elemental concentrations listed in Tables 2.2 (washed solids), B.5, and B.8 (leached solids) to the corresponding oxide concentrations. The oxide concentrations in the IHLW were determined according to the following formula:

$$[C_x]_{IHLW} = WOL \bullet \left(\frac{C_x}{\sum_i C_i}\right)$$
(3.1)

where $[C_x]_{IHLW}$ is the concentration of component x oxide (wt%) in the IHLW, C_x is the concentration of component x oxide in the washed or leached solids, and $\sum C_i$ is the sum of the concentration of all the component oxides in the washed or leached solids (excluding Na₂O and SiO₂).

Assuming upper limits of 15, 0.5, and 3.0 wt% for Al, Cr, and P oxides, respectively, in the IHLW, a 25 wt% WOL could not be achieved for the dilute-hydroxide washed S-110 solids. Both Al and Cr exceed the assumed upper limits. Leaching with 3 M NaOH for 1 week at 80 or 100°C would remove enough Al so that Al is not a limiting component. However, even after leaching for 1 week at 100°C, Cr_2O_3 would still exceed the assumed 0.5 wt% limit.

The mass (W_{IHLW}) of IHLW glass produced from 1 g of the washed solids can be calculated as follows:

$$W_{\rm IHLW} = 100 \bullet \frac{\sum_{i} C_{i}}{\rm WOL}$$
(3.2)

Likewise, the mass of IHLW glass produced from the leached solids derived from 1 g of washed solids can be determined as follows:
$$W_{\rm IHLW} = 100 \bullet \frac{W_{\rm L}}{W_{\rm W}} \bullet \frac{\sum_{i} C_{i}}{WOL}$$
(3.3)

where W_L is the weight of the leached solids obtained by leaching W_W grams of washed solids. In the case considered here, $W_L = 0.207$ g and $W_W = 1.158$ g for the 3 M/80°C test and $W_L = 0.107$ g and $W_W = 1.173$ g for the 3 M/100°C test. Setting the upper limit for Cr_2O_3 in the IHLW as 0.5 wt%, it can be derived from Equation 3.1 that the maximum WOL achievable for the washed S-110 solids would be 10.6 wt%. At this WOL, application of Equation 3.2 indicates that 6.74 g IHLW would be produced per gram of washed S-110 solids. Likewise, setting the upper limit for Cr_2O_3 in the IHLW as 0.5 wt%, the maximum WOL that could be achieved for the leached (3 M NaOH at 80°C) S-110 solids would be 15.1 wt%. At this WOL, application of Equation 3.3 indicates that 0.84 g IHLW would be produced per gram of washed S-101 solids. Thus, a reduction in IHLW of 88% could be achieved by leaching the S-101 solids with 3 M NaOH for 1 week at 80°C. Interestingly, applying an upper limit of 0.5 wt% Cr_2O_3 in the IHLW would result in a maximum WOL of only 9.2% for the residue remaining after leaching the S-110 solids with 3 M NaOH at 100°C for 1 week. Because of this, only a marginal improvement (90% reduction in IHLW) would be achieved by leaching the S-110 solids with 3 M NaOH at 100°C for 1 week. Because of this, only a marginal improvement (90% reduction in IHLW) would be achieved by leaching at 100°C versus 80°C.

3.5 Conclusions and Recommendations

The work presented here indicates caustic leaching to be a very effective method of pretreating Hanford Tank S-110 sludge. Because of the predominance of boehmite in the water-insoluble S-110 solids, high caustic and temperature are required to sufficiently remove Al. It would also be necessary to leach for several days to realize the full benefits of caustic leaching. Leaching at 60°C only removed ~50% of the Al even after leaching with 5 M NaOH for 1 week. Increasing the temperature led to significant improvements in Al removal. The best Al removal was obtained by leaching with 5 M NaOH at 100°C for 1 week; this led to nearly quantitative removal of Al from the S-110 solids. However, the benefit in using 5 M NaOH instead of 3 M NaOH is marginal. The Cr behavior parallels that of Al, with increasing removal obtained with increasing [NaOH], temperature, or leaching time.

At a maximum of 0.5 wt% Cr₂O₃ in the HLW form, the mass of IHLW would be constrained by the Cr content of the leached S-110 solids. Nevertheless, an 80 to 90% reduction in IHLW mass from the S-110 solids should be readily achievable.

The results of this work underscore the need to continue process optimization studies. If subjected to the baseline leaching approach (3 M NaOH, 80 to 90°C, for 8 h), only about 25% of the Al would be leached from the dilute hydroxide-washed S-110 solids. Clearly, this would not be sufficient to adequately reduce the IHLW mass.

	Was	hed Solids
Component	g oxide/g solids	Conc. in IHLW, wt% ^(a)
Al ₂ O ₃	0.6143	21.5
BaO	0.0001	0.00
Bi ₂ O ₃	0.0015	0.05
CaO	0.0017	0.1
Cr ₂ O ₃	0.0337	1.2
Fe ₂ O ₃	0.0202	0.7
MgO	0.0006	0.0
MnO ₂	0.0084	0.3
P_2O_5	0.0032	0.1
SrO	0.0015	0.05
UO_3	0.0282	1.0
ZnO	0.0003	0.01
ZrO ₂	0.0002	0.01
	Leached Solids (3	3 M NaOH/80°C/168 h)
Component	g oxide/g solids	Conc. in IHLW, wt% ^(a)
Al ₂ O ₃	0.3644	12.8
BaO	0.0009	0.03
Bi ₂ O ₃	0.0051	0.18
CaO	0.0085	0.3
Cr ₂ O ₃	0.0236	0.8
Fe ₂ O ₃	0.1089	3.8
MgO	0.0032	0.1
MnO ₂	0.0476	1.7
P_2O_5	0.0007	0.0
SrO	0.0088	0.31
UO_3	0.1380	4.8
ZnO	0.0007	0.02
ZrO ₂	0.0013	0.04
	Leached Solids (3	5M NaOH/100°C/168 h)
Component	g oxide/g solids	Conc. in IHLW, wt% ^(a)
Al_2O_3	0.0248	0.9
BaO	0.0018	0.07
Bi ₂ O ₃	0.0092	0.34
CaO	0.0167	0.6
Cr_2O_3	0.0363	1.4
Fe ₂ O ₃	0.2000	7.5
MgO	0.0062	0.2
MnO ₂	0.0909	3.4
P_2O_5	0.0018	0.1
SrO	0.0172	0.64
UO ₃	0.2618	9.8
ZnO	0.0009	0.03
ZrO ₂	0.0023	0.09
(a) Based on 25 wt%	waste oxide loading (exclu	iding $\overline{NaO_2}$ and SiO_2).

Table 3.3. Estimated Concentrations of Waste-Derived Components in the IHLW Glass from S-110 Waste

4.0 References

10 CFR 61. 1988. U.S. Nuclear Regulatory Commission, "Licensing Requirements for Land Disposal of Radioactive Waste." U.S. Code of Federal Regulations.

Hill, J. G., G. S. Anderson, and B. C. Simpson. 1995. *The Sort on Radioactive Waste Type Model: A Method to Sort Single-Shell Tanks into Characteristic Groups*, PNL-9814 Rev. 2, Pacific Northwest National Laboratory, Richland, Washington.

Lumetta, G. J. and B. M. Rapko. 1994. *Washing and Alkaline Leaching of Hanford Tank Sludges: A Status Report*, PNL-10078, Pacific Northwest National Laboratory, Richland, Washington.

Lumetta, G. J., B. M. Rapko, M. J. Wagner, J. Liu, and Y. L. Chen. 1996a. *Washing and Caustic Leaching of Hanford Tank Sludges: Results of FY 1996 Studies*, PNNL-11278, Rev. 1, Pacific Northwest National Laboratory, Richland, Washington.

Lumetta, G. J., M. J. Wagner, F. V. Hoopes, R. T. Steele. 1996b. *Washing and Caustic Leaching of Hanford Tank C-106 Sludge*, PNNL-11381, Pacific Northwest National Laboratory, Richland, Washington.

Lumetta, G. J., I. E. Burgeson, M. J. Wagner, J. Liu, and Y. L. Chen. 1997. *Washing and Caustic Leaching of Hanford Tank Sludges: Results of FY 1997 Studies*, PNNL-11636, Pacific Northwest National Laboratory, Richland, Washington.

Lumetta, G. J., B. M. Rapko, J. Liu, D. J. Temer, and R. D. Hunt. 1998. *Washing and Caustic Leaching of Hanford Tank Sludges: Results of FY 1998 Studies*, PNNL-12026, Pacific Northwest National Laboratory, Richland, Washington.

Rai, D., M. Sass, and D. A. Moore. 1987. "Chromium(III) Hydrolysis Constants and Solubility of Chromium(III) Hydroxide." *Inorg. Chem.*, 26: 345-349.

Rapko, B. M, G. J. Lumetta, and M. J. Wagner. 1995. *Washing and Caustic Leaching of Hanford Tank Sludges: Results of FY 1995 Studies*, PNL-10712, Pacific Northwest Laboratory, Richland, Washington.

Temer, D. J. and R. Villarreal. 1995. *Sludge Washing and Alkaline Leaching Tests on Actual Hanford Tank Sludge: A Status Report,* LAUR-95-2070, Los Alamos National Laboratory, Los Alamos, New Mexico.

Temer, D. J. and R. Villarreal. 1996. *Sludge Washing and Alkaline Leaching Tests on Actual Hanford Tank Sludge: FY 1996 Results*, LAUR-96-2839, Los Alamos National Laboratory, Los Alamos, New Mexico.

Temer, D. J., and R. Villerreal. 1997. *Sludge Washing and Alkaline Leaching Tests on Actual Hanford Tank Sludge: FY 1997 Results*, LAUR-97-2889, Los Alamos National Laboratory, Los Alamos, New Mexico.

U.S. Department of Energy/Office or River Protection (DOE/ORP). 2001. River Protection Project -

Project Management Plan, DOE/ORP-2000-06, Richland, Washington. http://www.hanford.gov/orp/documents/orp-2000-06/index.html#P572_20332

Weber, E. J. 1982. *Aluminum Hydroxide Dissolution in Synthetic Sludges*, DP-1617, Savannah River Laboratory, Aiken, South Carolina.

Appendix A

Solution Concentrations as a Function of Time

Appendix A: Solution Concentrations as a Function of Time

		Concentration, $\mu g/g^{(a)}$										
Time, h:	4	8	24	72	168	168	Final Wash					
Ag												
Al	542	715	919	1262	1811	1739	178					
As												
В												
Ba												
Be												
Bi	[10]	51.13	503	51.13	5101	51.03	5.63					
Ca	[12]	[11]	[9]	[11]	[10]	[10]	[6]					
Ca												
Ce												
C0 Cr	25	35	57	08	157	151	16					
Cu	25	35	57	98	137	151	10					
Dv												
Eu												
Fe	[1]	[1]	[1]	[1]	[1]	[2]	[0]					
K	[*]	[+]	[+]	[*]	[*]	[-]	[•]					
La												
Li												
Mg												
Mn												
Mo												
Na	24855	25056	24870	25040	25942	24872	2950					
Nd												
Ni	[1]	[1]	[1]	[1]	[1]	[1]	[1]					
Р	[13]	[14]	[15]	[15]	[16]	[16]	[3]					
Pb												
Pd												
Rh												
Ru												
SD S-												
Se c:	[47]	F401	[46]	[44]	[42]	[41]	[20]					
SI Sn	[4/]	[48]	[40]	[44]	[42]	[41]	[20]					
Sr												
Те												
Th												
Ti												
Tl												
U												
V												
W												
Y												
Zn												
Zr												

Table A.1. Component Concentrations As a Function of Time For Leaching ofS-110 Solids With 1 M NaOH at 60°C

		Concentration, $\mu g/g^{(a)}$									
Time, h:	4	8	24	72	168	168	Final Wash				
Ag											
Al	673	778	932	1267	1892	1870	139				
As											
В											
Ba											
Be											
Bi											
Ca	[9]	[9]	[11]	[11]	[10]	[9]	[6]				
Cd											
Ce											
Co	26	10	0.2	120	200	100	1.5				
Cr	36	49	83	139	200	198	15				
Cu											
Dy											
Eu	[2]	[2]	F 43	F 43	573	573	[0]				
Fe	[3]	[3]	[4]	[4]	[6]	[6]	[0]				
K											
La											
Ll											
Mg											
Mn											
No	60254	64166	66551	65172	65967	65144	5040				
INA NA	00334	04100	00551	03173	03807	03144	5040				
Ni	[1]	[1]	[1]	[1]	[1]	[1]	[1]				
D	[1]	[1]	[1]	[1]	[1]	[1]	[1]				
Ph	[10]	[13]	[13]	[13]	[15]	[10]	[2]				
Pd	[+]	[3]	[5]	[+]	[7]	[7]					
Rh											
Ru											
Sh											
Se											
Si	[58]	[61]	[66]	[64]	[65]	[64]	[22]				
Sn	[00]	[01]	[00]	[0.]	[00]	[0.]	[]				
Sr											
Te											
Th											
Ti											
T1											
U											
V											
W											
Y											
Zn	[1]	[2]	[2]	[2]	[2]	[2]					
Zr	L J	L J		с Ј	L J	L J					

Table A.2. Component Concentrations As a Function of Time For Leaching ofS-110 Solids With 3 M NaOH at 60°C

		Concentration, $\mu g/g^{(a)}$									
Time, h:	4	8	24	72	168	168	Final Wash				
Ag	<i></i>					1001	• • •				
Al	626	701	830	1201	1926	1896	203				
As											
B											
Ba											
Be											
	[8]	[11]	[10]	[10]	[12]	[11]	[5]				
Cd	[0]	[11]	[10]	[10]	[12]	[11]	[5]				
Ce											
Co											
Cr	36	53	94	162	220	215	23				
Cu	50	55	21	102	220	210	25				
Dv											
Eu											
Fe	[4]	[6]	[7]	[14]	[19]	[16]					
Κ	[54]	[124]	[79]	[68]		[64]					
La	L J										
Li											
Mg											
Mn											
Mo											
Na	88464	95649	94341	97723	97460	98280	10609				
Nd											
Ni	[1]	[2]	[2]	[3]	[1]	[1]	[1]				
Р	[15]	[19]	[17]	[17]	[16]	[17]	[2]				
Pb	[4]	[6]	[6]	[6]	[4]	[5]					
Pd											
Rh											
Ru											
Sb											
Se	[61]	[(2]	[(1]	[(2]	[(()]	F <i>C 4</i> 1	[2.4]				
SI Sm	[31]	[62]	[01]	[03]	[00]	[04]	[24]				
Sn											
Те											
Th											
Ti											
T1											
U		[75]	[57]								
V		r 1	F 1								
W											
Y											
Zn	[1]	[2]	[3]	[2]	[3]	[2]					
Zr											

Table A.3. Component Concentrations As a Function of Time For Leaching ofS-110 Solids With 5 M NaOH at 60°C

	Concentration, $\mu g/g^{(a)}$										
Time, h:	4	8	24	72	168	168	Final Wash				
Ag											
Al	758	1042	1699	2502	3003	3056	137				
As											
B											
Be											
Bi			[4]			[3]					
Ca	[10]	[11]	[12]	[10]	[9]	[10]	[0]				
Cd	L . J	ĽJ	L J	L 'J	L. 1	L . J	L - J				
Ce											
Co											
Cr	[41]	64	117	191	234	241	11				
Cu											
Dy											
Eu											
Fe	[1]	[1]	[4]	[2]	[2]	[2]	[1]				
K											
La											
LI Ma											
Mn											
Mo											
Na	20253	22867	23620	23158	22657	23084	1538				
Nd											
Ni	[1]	[1]	[2]	[1]	[1]	[1]					
Р	[12]	[15]	[19]	[16]	[16]	[17]	[2]				
Pb						[3]					
Pd											
Rh											
Ru											
SD So											
Se Si	[20]	[47]	[45]	[41]	[25]	[26]	[12]				
Sn	[39]	[47]	[43]	[41]	[55]	[30]	[13]				
Sr											
Te											
Th											
Ti											
T1											
U											
V											
W											
Y Zn			[2]	F17	F17	[1]					
Zii Zr			[2]	[1]	[1]	[1]					

Table A.4. Component Concentrations As a Function of Time For Leaching ofS-110 Solids With 1 M NaOH at 80°C

		Concentration, $\mu g/g^{(a)}$										
Time, h:	4	8	24	72	168	168	Final Wash					
Ag												
Al	870	1029	1794	2907	3757	3786	186					
As												
В												
Ba												
Be												
Bi	[6]	[7]	[7]	[7]	[7]	[15]						
Ca	[11]	[12]	[10]	[12]	[11]	[14]						
Cd												
Ce												
Со												
Cr	61	86	163	228	252	250	12					
Cu												
Dy												
Eu												
Fe	[4]	[4]	7	11	9	16	[0.5]					
К	[94]	[122]	[68]	[87]	[74]	[53]	L J					
La	Ľ. J		[]	[- ·]	L. J	[]						
Li	[1]	[1]										
Mg	[-]	[-]										
Mn												
Mo												
Na	58860	57233	62592	60966	62258	62423	3681					
Nd	20000	[3]	02372	00700	02230	02125	5001					
Ni	[1]	[5]	[1]	[1]	[1]	[4]						
P	[16]	[16]	[16]	[18]	[18]	[25]						
Ph	[10]	[10]	[10]	[5]	[10]	[23]						
Pd	[4]	[5]	[+]	[5]	[5]	[+]						
Rh												
Ru												
Sh												
Se												
Si	[65]	[65]	[65]	[65]	[66]	[65]	[1/]					
Sn	[05]	[05]	[05]	[05]	[00]	[05]	[14]					
SII Sr						[0,5]						
Те						[0.5]						
Th												
TII Ti												
11 T1												
11		[65]										
U		[03]										
V W												
W V												
1	[2]	[2]	[2]	[2]	[2]	[2]						
۲.11 7 -	[2]	[2]	[2]	[2]	[2]	[2]						
/ 1												

Table A.5. Component Concentrations As a Function of Time For Leaching ofS-110 Solids With 3 M NaOH at 80°C

		Concentration, $\mu g/g^{(a)}$										
Time, h:	4	8	24	72	168	168	Final Wash					
Ag	955	1022	1000	2011	2700	2670	170					
AI	833	1032	1880	2911	3788	3070	1/8					
В							[1]					
Ва												
Be												
Bi	[12]	[14]	[11]	[10]	[11]	[10]						
Ca	[13]	[20]	[14]	[11]	[11]	[10]	[5]					
Ca			[0.5]		[0.5]	[0.5]						
Co												
Cr	58	87	178	214	239	230	11					
Cu												
Dy												
Eu												
Fe	7	15	17	21	16	15						
K	[89]		[92]		[76]	[71]						
La												
Mσ												
Mn												
Мо												
Na	93933	88678	95900	93104	95229	89978	4953					
Nd			[3]									
Ni	[3]	[4]	[2]	[2]	[1]	[1]	[1]					
P Dh	[17]	[22]	[18]	[16]	[17]	[[7]						
PD Pd	[5]	[3]	[5]	[4]	[5]	[5]						
Rh												
Ru												
Sb												
Se												
Si	[62]	[60]	[65]	[60]	[62]	[59]	[20]					
Sn				[1]	[1]	[1]						
Sf Te						[1]						
Th												
Ti												
Tl												
U			[54]									
V												
W												
Y Zn	[2]	[2]	[2]	[2]	[2]	[1]						
Zil Zr	[4]	[2]	[4]	[2]	[2]	[2]						

Table A.6. Component Concentrations As a Function of Time For Leaching ofS-110 Solids With 5 M NaOH at 80°C

		Concentration, $\mu g/g^{(a)}$										
Time, h:	4	8	24	72	168	168	Final Wash					
Ag												
Al	1253	1823	2781	3550	4087	4031	139					
As												
В												
Ba												
Be		507	503	503		503	503					
Bi		[3]	[3]	[3]	[3]	[3]	[0]					
Ca			[13]	[9]		[9]	[5]					
Ca												
Ce												
Co Cr	71	109	197	242	269	262	0					
Cu	/1	108	187	242	208	203	9					
Dv												
Eu												
Fe	[1]	[2]	[3]	[3]	[2]	[2]						
K	[*]	[-]	[9]	[9]	[~]	[-]						
La												
Li												
Mg												
Mn												
Мо												
Na	22078	22217	22577	22443	23002	22626	1544					
Nd												
Ni	[1]	[1]	[1]	[1]	[1]	[1]	[1]					
Р	[14]	[15]	[16]	[15]	[15]	[15]						
Pb			[3]			[3]						
Pd												
Rh												
Ru												
Sb												
Se	F 4 4 1	F401	[20]	[26]	[22]	[21]	F101					
SI Sn	[44]	[40]	[38]	[33]	[33]	[31]	[18]					
SII Sr												
Te												
Th												
Ti												
TI												
U												
V												
W												
Y												
Zn	[0]	[1]	[2]	[1]	[2]	[2]	[0]					
Zr	-					_						

Table A.7. Component Concentrations As a Function of Time For Leaching ofS-110 Solids With 1 M NaOH at 100°C

		Concentration, $\mu g/g^{(a)}$									
Time, h:	4	8	24	72	168	168	Final Wash				
Ag				40.00			100				
Al	1428	2059	3186	4038	4167	4150	138				
As							[0.2]				
B Ba							[0.2]				
Be											
Bi	[7]	[7]	[8]	[8]	[8]	[7]					
Ca	[10]	[11]	[12]	[1]	[10]	[9]	[6]				
Cd	[-•]	[]	[]	[]	[-•]	L^]	[*]				
Ce											
Co											
Cr	95	151	224	257	266	263	9				
Cu											
Dy											
Eu											
Fe	[6]	9	13	10	8	8					
K	[60]	[67]	[73]	[65]	[73]	[57]					
La	[1]										
L1 Ma	[1]										
Mp											
Mo											
Na	57912	57804	58413	59718	60536	59519	2458				
Nd	57712	57001	50115	57710	[3]	57517	2100				
Ni	[2]	[1]	[2]	[2]	[1]	[1]	[1]				
Р	[16]	[16]	[18]	[18]	[19]	[17]					
Pb	[5]	[5]	[6]	[6]	[6]	[5]					
Pd											
Rh											
Ru											
Sb											
Se	5(2)	5643	5643	5453	54.53	F (0]	[20]				
S1	[63]	[64]	[64]	[65]	[65]	[62]	[20]				
Sn Sr				[1]	[1]	[0,5]					
						[0.3]					
Th											
Ti											
TI											
U											
V											
W											
Y											
Zn	[2]	[2]	[2]	[2]	[3]	[2]					
Zr											

Table A.8. Component Concentrations As a Function of Time For Leaching ofS-110 Solids With 3 M NaOH at 100°C

		Concentration, $\mu g/g^{(a)}$										
Time, h:	4	8	24	72	168	168	Final Wash					
Ag												
Al	1462	2239	3499	3951	3891	4043	134					
As												
В	[5]						[2]					
Ba	[0.3]	[0.3]	[0.2]	[0.3]	[0.3]	[0.2]						
Be												
Bi	[8]	[9]	[11]	[11]	[10]	[11]						
Ca	[12]	[12]	[12]	[12]	[10]	[10]	[6]					
Cd						[0.5]						
Ce												
Co												
Cr	82	142	237	254	252	259	9					
Cu												
Dy												
Eu												
Fe	[11]	[19]	[28]	[20]	[16]	[17]						
K	[60]	[61]	[54]			[86]						
La												
Li			[1]			[1]						
Mg												
Mn	[3]											
Mo	000.00				0.000							
Na	88862	91087	95312	96808	95866	100544	3757					
Nd	[0]	523	[0]	503	[0]	[3]	513					
N1	[2]	[3]	[2]	[2]	[2]	[2]	[1]					
P	[15]	[16]	[1/]	[18]	[[/]	[19]						
Pb	[5]	[5]	[6]	[6]	[6]	[/]						
Pd												
Kn D												
KU												
SD So												
5e c:	[62]	[61]	[62]	[62]	[64]	[65]	[22]					
SI Sm	[03]	[01]	[03]	[03]	[04]	[03]	[22]					
SII Sr			[1]	[1]	[1]	[1]						
			[1]	[1]	[1]							
Th												
TII Ti												
T1												
II II						[55]						
V						[55]						
W												
v												
Zn	[2]	[2]	[2]	[3]	[3]	[3]						
Zr	[~]	[~]	[~]	[2]	[2]	[3]						

Table A.9. Component Concentrations As a Function of Time For Leaching ofS-110 Solids With 5 M NaOH at 100°C

Appendix B

Leaching Results in Terms of Percent Component Removed

Appendix B: Leaching Results in Terms of Percent Component Removed

Table B.1. Results of Leaching S-110 Sludge With 1 M NaOH At 60°C

	Leaching Sol	ution	Washing Soli	ution	Leached S	Solids					
	Solution Mass, g:	87.77	Solution Mass, g:	90.98	Solids Mass, g:	0.799					
	_						Total		Calc. Conc. In	Measured Conc. In	
Component	Conc., µg/g	Mass, µg	Conc., µg/g	Mass, µg	Conc., µg/g	Mass, µg	Mass, µg	Removed, %	Washed Solids, µg/g	Washed Solids, µg/g	Recovery %
Ag	1775	155910	179	16167	221800	265109	427004	200/	267615	225000	1120/
A	1775	155619	178	10107	[270]	[216]	43/094	39/0	50/015	323000	113/0
R					[270]	[210]	[210]	(a)	[101]	[135]	380/
Ba					233	186	186	(a)	[51]	[155]	142%
Be					255	180	180	(a)	150	[II0]	142/0
Bi					1865	1490	1490	(a)	1253	1365	92%
Ca	[10]	[887]	[6]	[549]	[1420]	[1135]	[2571]	56%	[2162]	[1200]	180%
Cd	[10]	[007]	[0]	[547]	[1420]	[1155]	[2571]	(2)	[2102]	[1200]	107%
Ce					[215]	[172]	[172]	(a)	[144]	[00]	10770
Co					[215]	[1/2]	[1/2]	(u)	נדדון		
Cr	154	13520	16	1418	19458	15547	30486	49%	25640	23050	111%
Cu	154	15520	10	1410	17450	15547	50400	4970	25040	[82]	0%
Dv										[02]	070
Eu											
Ee	[2]	[137]			21780	17402	17539	1%	14751	14150	104%
K	[2]	[157]			21700 N/A	N/A	N/A	N/A	N/A	N/A	N/A
L a					[240]	[102]	[102]	(2)	[161]	[160]	101%
La					[240]	[192]	[192]	(a)	[101]	[100]	10170
Ma					[43]	[34]	[34]	(a)	[29]	[290]	Q 50/
$\mathbf{\overline{m}}_{\mathbf{Mn}}^{\mathbf{Mg}}$					[480] 8305	6636	6636	(a)	[525]	[380]	105%
					8303	0050	0030	(a)	5561	5505	10370
Na	25407	2229993	2950	268428	14250	11386	2509806	N/A	N/A	N/A	N/A
Nd	23407	2227775	2750	200420	[260]	[208]	[208]	(a)	[175]	[345]	51%
Ni	[1]	[100]	[1]	[61]	[200] N/Δ	N/A	N/A	N/A	N/4	[515] N/A	N/A
P	[16]	[1423]	[1]	[305]	[250]	[200]	[1928]	90%	[1621]	1415	115%
Ph	[10]	[1425]	[5]	[505]	[250]	[200]	[1720]	(2)	[312]	[595]	53%
Pd					[105]	[572]	[572]	(u)	[512]	[575]	5570
Rh											
Ru											
Sh											
Se											
Si	[41]	[3620]	[20]	[1830]	[5120]	[4091]	[9541]	57%	[8025]	[5500]	146%
Sn	[]	[5020]	[=0]	[1050]	[0120]	[1071]	[2011]	5770	[0020]	[5500]	1.070
Sr					2090	1670	1670	(a)	1404	1240	113%
Te								(1)			
Th											
Ti					[68]	[54]	[54]	(a)	[46]	[58]	79%
TI					r	L. 1	[·]	(-)	L - J	r	
U					30700	24529	24529	(a)	20630	[23500]	88%
v								(1)		[]	
W											
Y					[56]	[45]	[45]	(a)	[38]		
Zn					[270]	[216]	[216]	(a)	[181]	[225]	81%
Zr					[245]	[196]	[196]	(a)	[165]	[135]	122%
					[2:0]	[-, v]	[-/0]	(u)	[100]	[150]	

	Leaching Sol	ution	Washing Soli	ution	Leached S	Solids					
	Solution Mass, g:	98.066	Solution Mass, g:	90.345	Solids Mass, g:	0.671					
							Total		Calc Cone In	Measured Conc. In	
Component	Conc 119/9	Mass ug	Conc 119/9	Mass up	Conc 119/9	Mass ug	Mass up	Removed %	Washed Solids ug/g	Washed Solids ug/g	Recovery %
Ag		<u></u>	<u> </u>	<u></u>	<u> </u>	<u></u>					
Al	1881	184459	139	12549	334800	224651	421659	47%	359470	325000	111%
As					[290]	[195]	[195]	(a)	[166]		
В					[66]	[44]	[44]	(a)	[38]	[135]	28%
Ba					263	176	176	(a)	150	[110]	137%
Be					200	170	170	(u)	100	[110]	15770
Bi					1590	1067	1067	(a)	910	1365	67%
Ca			[6]	[520]	[1670]	[1121]	[1641]	32%	[1399]	[1200]	117%
Cd			[0]	[520]	[98]	[1121]	[1011]	(2)	[1599]	[1200]	93%
Ce					[240]	[161]	[161]	(a)	[30]	[00]	2570
Co					[240]	[101]	[101]	(a)	[137]		
Cr Cr	100	10547	15	1340	13158	8870	20725	70%	25341	23050	110%
Cu	199	19547	15	1549	042	622	622	(0)	520	25050	6590/
Du					943	033	033	(a)	559	[02]	03870
Dy											
Eu E-	[7]	[(20]			25020	1(705	17405	407	14955	14150	1050/
re	[0]	[629]			25030	10/95	1/425	4%0 N//A	14855	14150	105%
K					N/A	N/A	N/A	N/A	N/A	N/A	N/A
La					[260]	[1/4]	[1/4]	(a)	[149]	[160]	93%
Li					[40]	[27]	[27]	(a)	[23]	50.003	0.604
					[570]	[382]	[382]	(a)	[326]	[380]	86%
N ^{Mn}					9420	6321	6321	(a)	5389	5305	102%
Mo					[47]	[32]	[32]	(a)	[27]		
Na	65506	6423897	5040	455309	4000	2684	6881890	N/A	N/A	N/A	N/A
Nd					[280]	[188]	[188]	(a)	[160]	[345]	46%
Ni	[1]	[105]	[1]	[56]	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Р	[15]	[1506]	[2]	[183]	[210]	[141]	[1830]	92%	[1560]	1415	110%
Pb	[4]	[367]			[380]	[255]	[622]	59%	[530]	[595]	89%
Pd											
Rh											
Ru											
Sb											
Se											
Si	[64]	[6294]	[22]	[1967]	[2300]	[1543]	[9805]	84%	[8358]	[5500]	152%
Sn											
Sr					2360	1584	1584	(a)	1350	1240	109%
Te											
Th											
Ti					[85]	[57]	[57]	(a)	[49]	[58]	84%
Tl											
U					34600	23217	23217	(a)	19792	[23500]	84%
V											
W											
Y					[61]	[41]	[41]	(a)	[35]		
Zn	[2]	[184]			1010	678	862	21%	735	[225]	326%
Zr	r_1	r1			[230]	[154]	[154]	(a)	[132]	[135]	97%
(a) No dataat	1.1				[250]	[101]	[101]	(u)	[152]	[155]	2170

Table B.2. Results of Leaching S-110 Sludge With 3 M NaOH At 60°C

	Leaching Sol	lution	Washing Sol	ution	Leached Solids						
	Solution Mass, g:	98.896	Solution Mass, g:	93.136	Solids Mass, g:	0.598					
							Total		Calc. Conc. In	Measured Conc. In	
Component	Conc., µg/g	Mass, µg	Conc., µg/g	Mass, µg	Conc., µg/g	Mass, µg	Mass, µg	Removed, %	Washed Solids, µg/g	Washed Solids, µg/g	Recovery %
Ag								<u>_</u>			
Al	1911	188989	203	18882	343800	205592	413463	50%	357049	325000	110%
As					[300]	[179]	[179]	(a)	[155]		
В					[82]	[49]	[49]	(a)	[42]	[135]	31%
Ва					300	179	179	(a)	155	[110]	141%
Be											
Bi					1290	771	771	(a)	666	1365	49%
Ca	[11]	[1114]	[5]	[497]	[1570]	[939]	[2550]	63%	[2202]	[1200]	183%
Cd					[84]	[50]	[50]	(a)	[43]	[60]	72%
Ce					[250]	[150]	[150]	(a)	[129]		
Со											
Cr	218	21525	23	2158	9168	5482	29165	81%	25186	23050	109%
Cu										[82]	0%
Dy											
Eu											
Fe	[17]	[1715]			25630	15327	17042	10%	14716	14150	104%
K	L . J	[]			N/A	N/A	N/A	N/A	N/A	N/A	N/A
La					[290]	[173]	[173]	(a)	[150]	[160]	94%
Li					[40]	[24]	[24]	(a)	[21]	[]	
Mg					[650]	[389]	[389]	(a)	[336]	[380]	88%
$\mathcal{D} \stackrel{m}{\mathcal{M}} \mathcal{M}_{n}$					10400	6219	6219	(a)	5371	5305	101%
ω_{Mo}								()			
Na	97870	9678935	10609	988098	9500	5681	10672715	N/A	N/A	N/A	N/A
Nd					[330]	[197]	[197]	(a)	[170]	[345]	49%
Ni	[1]	[111]	[1]	[57]	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Р	[16]	[1631]	[2]	[170]	[200]	[120]	[1921]	94%	[1659]	1415	117%
Pb	[4]	[430]		[]	[300]	[179]	[609]	71%	[526]	[595]	88%
Pd		r 1			[]	[···]	[]		[· ·]	[]	
Rh											
Ru											
Sb											
Se											
Si	[65]	[6432]	[24]	[2271]	[2000]	[1196]	[9900]	88%	[8549]	[5500]	155%
Sn	[···]	[]		L · J	[]	r	[····]		[]	[]	
Sr					2620	1567	1567	(a)	1353	1240	109%
Te								()			
Th											
Ti					[92]	[55]	[55]	(a)	[48]	[58]	82%
Tl					r. 1	[]	[]	(-)	[]	[···]	
U					38400	22963	22963	(a)	19830	[23500]	84%
V								()		[]	
W											
Y					[66]	[39]	[39]	(a)	[34]		
Zn	[3]	[249]			[220]	[132]	[381]	65%	[329]	[225]	146%
Zr	[2]	[= ·>]			[260]	[155]	[155]	(a)	[134]	[135]	99%
(a) No dataata	abla romoval				[200]	[155]	[155]	(a)	[154]	[155]	7970

Table B.3. Results of Leaching S-110 Sludge With 5 M NaOH At 60°C

	Leaching Sol	ution	Washing Soli	ution	Leached Solids						
	Solution Mass, g:	90.105	Solution Mass, g:	86.262	Solids Mass, g:	0.423					
							Total		Cale Cone In	Measured Conc. In	
Component	Conc 119/9	Mass 110	Conc 119/9	Mass 110	Conc 119/9	Mass 110	Mass up	Removed %	Washed Solids ug/g	Washed Solids ug/g	Recovery %
Ag	Conc., µ8/5	πα55, μβ	Cone., µ5/5	πα55, μ5	[25]	[11]	[11]	(a)	[9]	Wushed Bonds, µg/g	Iteeovery //
Al	3029	272961	137	11833	299800	126815	411609	69%	353010	325000	109%
As	502)	272901	157	11055	[320]	[135]	[135]	(a)	[116]	525000	10970
B					[520]	[28]	[28]	(u) (a)	[24]	[135]	18%
Ba					417	176	176	(a)	[24]	[135]	138%
Be					417	170	170	(u)	151	[110]	15070
Bi					3140	1328	1328	(a)	1130	1365	830/
Ca	[10]	[996]			2120	1320	2210	(a)	[1905]	[1200]	1590/
Cd	[10]	[880]			3130	1324	2210	40/8	[1093]	[1200]	13870
Ca					[420]	[170]	09 [170]	(a)	[39]	[00]	99%
Ce					[420]	[1/8]	[1/6]	(a)	[132]		
Co	220	21 409	11	0.40	[30]	[21]	[21]	(a)	18	22050	10/0/
Cr	238	21408	11	940	14558	0158	28506	/8%0	24448	23050	106%
Cu										[82]	0%
Dy											
Eu	1 43	540.83						10/	1000		
Fe	[2]	[197]			37730	15960	16157	1%	13856	14150	98%
K						N/A	N/A	N/A	N/A	N/A	N/A
La					[460]	[195]	[195]	(a)	[167]	[160]	104%
Li					[66]	[28]	[28]	(a)	[24]		
I Mg					[940]	[398]	[398]	(a)	[341]	[380]	90%
Mn Mn					14800	6260	6260	(a)	5369	5305	101%
Mo											
Na	22871	2060757	1538	132704	22600	9560	2203021	N/A	N/A	N/A	N/A
Nd					580	245	245	(a)	[210]	[345]	61%
Ni	[1]	[111]	[0]	[0]	0	N/A	N/A	N/A	N/A	N/A	N/A
Р	[16]	[1476]	[2]	[180]	330	140	1795	92%	[1540]	1415	109%
Pb					710	300	300	(a)	[258]	[595]	43%
Pd											
Rh											
Ru											
Sb											
Se											
Si	[35]	[3197]	[13]	[1092]	9600	4061	8350	51%	[7161]	[5500]	130%
Sn											
Sr					3800	1607	1607	(a)	1379	1240	111%
Te											
Th											
Ti					[120]	[51]	[51]	(a)	[44]	[58]	75%
TI					L . J	L- 1	[·]	()	ĽJ	[· ·]	
U					55500	23477	23477	(a)	20134	[23500]	86%
v					00000	23	23.117	(u)	20101	[20000]	0070
W											
v					[100]	[42]	[42]	(a)	[36]		
7n					[///0]	[186]	[186]	(a)	[160]	[225]	710/
Zn					[440]	[207]	[207]	(a)	[100]	[223]	1320/
(a) No dataata	hla romarial				[490]	[207]	[207]	(a)	[1/8]	[155]	13270

Table B.4. Results of Leaching S-110 Sludge With 1 M NaOH At 80°C

	Leaching So	lution	Washing Soli	ution	Leached Solids						
	Solution Mass, g:	99.177	Solution Mass, g:	87.325	Solids Mass, g:	0.207					
							Total		Cale Cone In	Measured Conc. In	
Component	Conc. ug/g	Mass. ug	Conc. ug/g	Mass. ug	Conc. ug/g	Mass ug	Mass ug	Removed. %	Washed Solids ug/g	Washed Solids ug/g	Recovery %
Ag				<u>, p.8</u>	[41]	[8]	[8]	(a)	[7]		
Al	3771	374041	186	16285	192800	39910	430235	91%	371533	325000	114%
As	5771	571011	100	10200	[260]	[54]	[54]	(a)	[46]	520000	111/0
B					[91]	[19]	[19]	(a)	[16]	[135]	12%
Ba					844	175	175	(a)	151	[110]	137%
Be					011	170	170	(u)	101	[110]	10770
Bi					4580	948	948	(a)	819	1365	60%
Ca					6050	1252	1252	(a)	1081	[1200]	90%
Cd					286	59	59	(a)	51	[60]	85%
Ce					[800]	[166]	[166]	(a)	[143]	[00]	0570
Co					[500]	[16]	[16]	(a)	[145]		
Cr	251	24893	12	1090	16158	3345	29328	89%	25326	23050	110%
Cu	201	24075	12	1090	10150	5545	27520	0770	25520	[82]	0%
Du										[02]	070
Dy En											
Eu	[12]	[1257]			76120	15750	17016	70/	14604	14150	10.40/
re V	[13]	[1237]			/0150	13739 N/A	1/010	/ 70 N/A	14094 N/A	14150 N/A	10470 N/A
K					N/A	IN/A	N/A	N/A	N/A	N/A	IN/A
La					890 [100]	184	184	(a)	139	[100]	99%
					[100]	[21]	[21]	(a)	[18]	[200]	010/
E Mg					1940	402	402	(a)	347	[380]	91%
່∽ ^{Mn}					30100	6231	6231	(a)	5381	5305	101%
Mo	(22.10)	(102727	2(01	221440	24000	5124	(500200	27/4	21/4	27/4	27/4
Na	62340	6182/2/	3681	321448	24800	5134	6509308	N/A	N/A	N/A	N/A
Na	[2]	[254]			1260	261	261	(a)	225	[345]	65%
N1	[3]	[254]			N/A	N/A	N/A	N/A	N/A	N/A	N/A
P	[21]	[2116]			[300]	[62]	[2178]	9/%	[1881]	1415	133%
Pb	[4]	[430]			880	182	612	70%	[529]	[595]	89%
Pd					[770]	[159]	[159]	(a)	[138]		
Rh											
Ru											
Sb											
Se											
Si	[66]	[6496]	[14]	[1204]	5520	1143	8843	87%	[7636]	[5500]	139%
Sn											
Sr					7480	1548	1548	(a)	1337	1240	108%
Те											
Th											
Ti					[220]	[46]	[46]	(a)	[39]	[58]	68%
Tl											
U					114800	23764	23764	(a)	20521	[23500]	87%
V											
W											
Y					[200]	[41]	[41]	(a)	[36]		
Zn	[2]				562	116	116	(a)	[100]	[225]	45%
Zr					938	194	194	(a)	[168]	[135]	124%

Table B.5. Results of Leaching S-110 Sludge With 3 M NaOH At 80°C

	Leaching Sol	ution	Washing Soli	ution	Leached Solids						
	Solution Mass, g:	105.547	Solution Mass, g:	86.46	Solids Mass, g:	0.143					
							Total		Cale Cone In	Measured Conc. In	
Component	Conc. ug/g	Mass. ug	Conc. ug/g	Mass ug	Conc. ug/g	Mass ug	Mass. ug	Removed. %	Washed Solids ug/g	Washed Solids ug/g	Recovery %
Ag			<u> </u>	<u></u>	[48]	[7]	[7]	(a)	[6]		
Al	3729	393569	178	15379	122800	17560	426508	96%	365788	325000	113%
As	• • = >							,			
В					[200]	[29]	[29]	(a)	[25]	[135]	18%
Ba					1300	186	186	(a)	159	[110]	145%
Be								(4)		[*]	
Bi					4650	665	665	(a)	570	1365	42%
Ca	[11]	[1110]	[5]	[398]	9570	1369	2876	52%	2467	[1200]	206%
Cd	[]	[1110]	[0]	[370]	318	45	45	(2)	39	[60]	65%
Ce					[1200]	[172]	[172]	(a)	[147]	[00]	0070
Co					[1200]	[17]	[17]	(a)	[147]		
Cr	235	24781	11	981	20558	2940	28702	90%	24616	23050	107%
Cu	255	24701	11	901	20550	2740	20702	2070	24010	[82]	10//%
Dv										[02]	070
Dy Fu											
Eu	[15]	[1629]			105820	15124	16762	1094	14275	14150	10294
V	[15]	[1028]			103830 N/A	13134 N/A	10702 N/A	1070 N/A	14375	14130 N/A	10276 N/A
K L					IN/A	IN/A	IN/A	IN/A	IN/A	IN/A	IN/A
La					[1340	192	192	(a)	104	[100]	103%
Li					[120]	[1/]	[1/]	(a)	[15]	[200]	000/
$\mathbf{D}_{\mathbf{w}}^{\mathrm{Mg}}$					2/40	392	392	(a)	336	[380]	88%
ο Mn					46800	6692	6692	(a)	5740	5305	108%
Mo	00/04	0774040	10.52	120225	10000	50.40	10000101	27/4	27/4	27/1	27/4
Na	92604	9774048	4953	428235	40900	5849	10208131	N/A	N/A	N/A	N/A
Nd		54 0 - 3			1950	279	279	(a)	239	[345]	69%
N1	[1]	[107]	[1]	[53]	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Р	[17]	[1774]	[0]	[0]	[180]	[26]	[1800]	99%	[1544]	1415	109%
Pb	[5]	[532]			700	100	632	84%	542	[595]	91%
Pd											
Rh											
Ru											
Sb											
Se											
Si	[61]	[6408]	[20]	[1724]	6520	932	9064	90%	7773	[5500]	141%
Sn											
Sr					11200	1602	1602	(a)	1374	1240	111%
Te											
Th											
Ti					322	46	46	(a)	39	[58]	68%
Tl											
U					168800	24138	24138	(a)	20702	[23500]	88%
V											
W											
Y					[290]	[41]	[41]	(a)	[36]		
Zn	[2]	[253]			555	79	333	76%	285	[225]	127%
7-					1270	100	100	$\langle \rangle$	1.57	[127]	1150/

Table B.6. Results of Leaching S-110 Sludge With 5 M NaOH At 80°C

	Leaching Sol	ution	Washing Soli	ution	Leached Solids						
	Solution Mass, g:	94.577	Solution Mass, g:	87.026	Solids Mass, g:	0.210					
							Total		Calc Conc In	Measured Conc. In	
Component	Conc., ug/g	Mass. ug	Conc., ug/g	Mass. ug	Conc., ug/g	Mass. ug	Mass. ug	Removed. %	Washed Solids, ug/g	Washed Solids, ug/g	Recoverv %
Ag					[39]	[8]	[8]	(a)	[7]		
Al	4059	383902	139	12130	176800	37128	433159	91%	374058	325000	115%
As											
В					[140]	[29]	[29]	(a)	[25]	[135]	19%
Ba					899	189	189	(a)	163	[110]	148%
Be								()		L .]	
Bi					6660	1399	1399	(a)	1208	1365	88%
Ca	[10]	[951]	[5]	[395]	7040	1478	2824	48%	2439	[1200]	203%
Cd	L . J	[···]	[.]	[]	341	72	72	(a)	62	[60]	103%
Ce					[820]	[172]	[172]	(a)	[149]	[]	
Co					[86]	[18]	[18]	(a)	[16]		
Cr	265	25104	9	803	17858	3750	29658	87%	25611	23050	111%
Cu					[67]	[14]	[14]	(a)	[12]	[82]	15%
Dv					[*,]	[]	[]	(1)	[]	[]	
Eu											
Fe	[2]	[224]			77930	16365	16589	1%	14325	14150	101%
ĸ	[-]	[22.]			N/A	N/A	N/A	N/A	N/A	N/A	N/A
La					916	192	192	(a)	166	[160]	104%
Li					[120]	[25]	[25]	(a)	[22]	[100]	101/0
Μα					2030	426	426	(a)	368	[380]	97%
$\overline{\mathbf{D}}_{Mn}^{Mn}$					32300	6783	6783	(a)	5858	5305	110%
					[66]	[14]	[14]	(a)	[12]	5505	110/0
Na	22814	2157670	1544	134336	37900	7959	2299964	N/A	N/A	N/A	N/A
Nd	22011	2157070	1511	15 1550	1320	277	22,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(a)	239	[345]	69%
Ni	[1]	[106]	[1]	[53]	N/A	N/A	N/A	N/A	N/A	[545] N/A	N/A
P	[15]	[1405]	[0]	[0]	1360	286	1690	83%	1460	1415	103%
Ph	[15]	[1105]	[0]	[0]	1380	200	290	(2)	250	[595]	42%
Pd					[750]	[158]	[158]	(a)	[136]	[575]	4270
Rh					[750]	[150]	[150]	(u)	[150]		
Ru											
Sh											
Se											
Si	[32]	[3028]	[18]	[1580]	20000	4200	8808	52%	7606	[5500]	138%
Sn	[52]	[5028]	[10]	[1560]	20000	4200	8808	5270	7000	[5500]	15870
Sr					8300	1743	1743	(a)	1505	1240	121%
Te					0500	1745	1745	(u)	1505	1240	12170
Th											
Ti					[220]	[46]	[46]	(a)	[40]	[58]	60%
TI					[220]	[40]	[40]	(a)	[40]	[30]	0970
II					110800	25158	25158	(a)	21725	[23500]	02%
V					119800	25156	25156	(a)	21723	[25500]	9270
v W/											
v					[210]	[44]	[44]	(a)	[20]		
ı 7n					[210]	[44] 100	[44] 199	(a)	[36]	[225]	700/
Zn					002	200	200	(a)	102	[223]	1270
$\frac{\Sigma I}{\langle \cdot \rangle N}$	11 1				993	209	209	(a)	180	[155]	13370

Table B.7. Results of Leaching S-110 Sludge With 1 M NaOH At 100°C

	Leaching Sol	lution	Washing Soli	ution	Leached Solids						
	Solution Mass, g:	99.957	Solution Mass, g:	84.813	Solids Mass, g:	0.107					
							Total		Calc Conc In	Measured Conc. In	
Componen	t Conc. ug/g	Mass. ug	Conc. ug/g	Mass. ug	Conc. ug/g	Mass. ug	Mass. ug	Removed. %	Washed Solids ug/g	Washed Solids ug/g	Recoverv %
Ag		<u></u>		<u></u>	[66]	[7]	[7]	(a)	[6]	<u></u>	
Al	4158	415665	9	762	13100	1402	417829	100%	356205	325000	110%
As											
В					546	58	58	(a)	50	[135]	37%
Ba					1620	173	173	(a)	148	[110]	134%
Be							- / -	(1)		[•]	
Bi					8240	882	882	(a)	752	1365	55%
Ca					11970	1281	1281	(a)	1092	[1200]	91%
Cd					498	53	53	(a)	45	[60]	76%
Ce					[1400]	[150]	[150]	(a)	[128]	[00]	/0/0
Co					[140]	[15]	[150]	(a)	[120]		
Cr	264	26425	1	49	24858	2660	29134	91%	24837	23050	108%
Cu	201	20125	1	12	[37]	[4]	[4]	(a)	[3]	[82]	4%
Dv					[57]	[']	[']	(u)	[3]	[02]	170
Eu											
Ea	[8]	[750]			130830	14062	15721	50/	13402	14150	05%
V	[0]	[/59]			159850 N/A	N/A	N/A	570 N/A	15402 N/A	14150 N/A	9570 N/A
к Lo					1680	180	180	IN/A	IN/A 152	IN/A [160]	1N/A
La					[1000	[10]	[10]	(a)	[15]		9070
LI					[160]	[19]	[19]	(a)	[10]	[200]	000/
					5730	6142	6142	(a)	540	[380]	90%
∞ M					5/400	0142	0142	(a)	5250	5505	9970
Nio	60028	6000174	160	12570	[38]	[0]	[0]	(a)	[3] N/A	NI/A	NI/A
INd Nd	00028	6000174	100	15570	02900	0730	0020474	IN/A	IN/A 225	IN/A	IN/A
INU Ni	[1]	[141]			2470	204	204	(a)	225	[343]	0370
INI D	[1]	[141]			IN/A	IN/A	IN/A	N/A	IN/A	IN/A	IN/A
P	[18]	[1/98]			[//0]	[82]	[1881]	96%	[1003]	1415	113%
PD	[0]	[596]			1480	138	/33	/9%	643	[393]	108%
Pa					[1200]	[128]	[128]	(a)	[109]		
Rn											
Ru											
Sb											
Se				51103	11000	10/0	5(0)	0.40/		[5500]	1100/
S1	[63]	[6318]	[1]	[110]	11800	1263	7691	84%	6556	[5500]	119%
Sn					14500	1650	1550		1222	1240	1070/
Sr					14500	1552	1552	(a)	1323	1240	107%
Te					[1000]	[100]	[100]	()	[110]		
Th					[1300]	[139]	[139]	(a)	[119]		
Ti					392	42	42	(a)	36	[58]	62%
TI								<i>(</i>)	400.00	FRA F 0.03	
U					217800	23305	23305	(a)	19868	[23500]	85%
V					[68]	[7]	[7]	(a)	[6]		
W											
Y					[370]	[40]	[40]	(a)	[34]		
Zn	[2]	[245]			753	81	326	75%	278	[225]	123%
Zr					1720	184	184	(a)	157	[135]	116%

Table B.8. Results of Leaching S-110 Sludge With 3 M NaOH At 100°C

	Leaching Sol	lution	Washing Soli	ution	Leached Solids						
	Solution Mass, g:	106.523	Solution Mass, g:	88.233	Solids Mass, g:	0.099					
							Total		Calc Conc In	Measured Conc. In	
Component	Conc 119/9	Mass ug	Conc 119/9	Mass ug	Conc 119/9	Mass ug	Mass up	Removed %	Washed Solids ug/g	Washed Solids ug/g	Recovery %
Ag	cone., µ8/8	111000, μΒ	cone., µ8/8	111100, µB	[73]	[7]	[7]	(a)	[6]	Hubbled Bollas, µBB	1000101370
Al	3967	422563	134	11862	8840	875	435301	100%	373328	325000	115%
As	5707	122000	151	11002	0010	0,0	100001	100/0	575520	520000	11070
В					[380]	[38]	[38]	(a)	[32]	[135]	24%
Ba					1750	173	173	(a)	149	[110]	135%
Be					1,00	175	175	(u)	,	[110]	15070
Bi					5440	539	539	(a)	462	1365	34%
Ca	[10]	[1050]	[6]	[562]	12670	1254	2865	56%	2458	[1200]	205%
Cd	[10]	[1000]	[0]	[002]	355	35	35	(a)	30	[60]	50%
Ce					[1500]	[149]	[149]	(a)	[127]	[00]	5070
Co					[160]	[16]	[16]	(a)	[127]		
Cr	255	27203	9	781	22358	2213	30197	93%	25898	23050	112%
Cu	200	27205	,	/01	22550	2215	50177	2570	25070	[82]	0%
Dv										[02]	070
Eu											
Ee	[17]	[1758]			144830	14338	16096	11%	13805	14150	98%
ĸ	[1/]	[1/50]			N/A	N/A	N/A	N/A	N/A	N/A	N/A
La					1780	176	176	(a)	151	[160]	94%
La					[140]	[14]	[14]	(a)	[12]	[100]	J+70
Ma					3960	302	202	(a)	[12]	[380]	880/
$\mathbf{\overline{m}}_{Mn}^{Mg}$					61200	6059	6059	(a)	5106	5305	08%
So Mo					01200	0059	0059	(a)	5190	5505	9870
Na	98205	10461099	3757	331485	67900	6722	10799306	N/A	N/A	N/A	N/A
Nd	70200	10101077	5757	551105	2590	256	256	(a)	220	[345]	64%
Ni	[2]	[246]	[1]	[110]	2590 N/A	N/A	N/A	N/A	N/A	[545] N/A	N/A
P	[18]	[1927]	[1]	[110]	[250]	[25]	[1951]	99%	[1674]	1415	118%
Ph	[6]	[672]			1010	100	772	87%	662	[595]	111%
Pd	[0]	[0/2]			1010	100	772	0770	002	[575]	111/0
Rh											
Ru											
Sh											
Se											
Si	[64]	[6869]	[22]	[1918]	9450	936	9722	90%	8338	[5500]	152%
Sn	[01]	[0007]	[22]	[1710]	9150	,50	<i>)</i> 722	2070	0550	[5500]	15270
Sr					15400	1525	1525	(a)	1308	1240	105%
Te					10100	1020	1020	(u)	1500	1210	10070
Th											
Ti					427	42	42	(a)	36	[58]	63%
TI					127	.2	.2	(u)	50	[50]	0070
U U					232800	23047	23047	(a)	19766	[23500]	84%
v					252000	25017	25011	(a)	17700	[2000]	07/0
w											
Y					[380]	[38]	[38]	(a)	[32]		
Zn	[3]	[298]			450	45	343	87%	294	[225]	131%
Zr	[5]	[270]			1740	172	172	(a)	148	[135]	109%
(a) No dataat	ahla namayal				1/40	1/2	1/2	(a)	148	[155]	10970

Table B.9. Results of Leaching S-110 Sludge With 5 M NaOH At 100°C

Appendix C

Radionuclide Behavior

Appendix C: Radionuclide Behavior

Table C 1 Radionuclide Rehavior During Leaching of S 110 Solids at	$-60^{\circ}C^{(a)}$
Table C.1. Radionachae Denavior During Leaching of 5-110 Sonas a	.00 C

		Leaching With 1 M NaOH at 60°								
	Leaching Se	olution	Washing So	olution	Leached	Solids				
	Solution Mass, g:	87.77	Solution Mass, g:	90.98	Solids Mass, g:	0.799				
							Total		Calc. Conc. In	Measured Conc. In
	Conc., µCi/g	Activity, µCi	Conc., µCi/g	Activity, µCi	Conc., µCi/g	Activity, µCi	Activity, µCi	Removed, %	Washed Solids, µCi/g	Washed Solids, µCi/g
Cs-137	4.32E-01	3.79E+01	3.81E-02	3.46E+00	5.91E+00	4.73E+00	4.61E+01	90%	3.88E+01	3.11E+01
Co-60					<6E-02	4.79E-02	4.79E-02	(b)	4.03E-02	
Eu-154					9.33E-01	7.45E-01	7.45E-01	(b)	6.27E-01	
Eu-155					4.02E-01	3.21E-01	3.21E-01	(b)	2.70E-01	
Am-241(γ)					1.26E+00	1.00E+00	1.00E+00	(b)	8.43E-01	
U-238	2.86E-06	2.51E-04	1.81E-07	1.65E-05	1.45E-02	1.15E-02	1.18E-02	2%	9.94E-03	Not Determined
U-234	4.23E-06	3.71E-04	3.79E-07	3.45E-05	3.40E-02	2.72E-02	2.76E-02	1%	2.32E-02	Not Determined
Pu-239/240	2.55E-05	2.24E-03	7.09E-07	6.45E-05	1.95E+00	1.56E+00	1.56E+00	(b)	1.32E+00	Not Determined
Am-241+Pu-238	1.30E-06	1.14E-04	4.46E-07	4.06E-05	1.37E+00	1.10E+00	1.10E+00	(b)	9.23E-01	Not Determined
Cm-243/244					1.36E-02	1.09E-02	1.09E-02	(b)	9.14E-03	Not Determined
Cm-242										Not Determined
Total Alpha	3.39E-05	2.97E-03	1.71E-06	1.56E-04	3.38E+00	2.70E+00	2.71E+00	(b)	2.28E+00	1.83E+00
					Leachin	o With 3 M N	JaOH at 60°			
	Leaching S	olution	Washing Se	lution	Leached	Solids	uon u oo			
	Solution Mass. g.	98.066	Solution Mass. g.	90 345	Solids Mass g	0.671				
	Solution Muss, 5.	20.000	Solution Muss, 5.	20.545	56145 14455, 5.	0.071	Total		Cale Cone In	Measured Conc. In
	Conc uCi/g	Activity uCi	Conc uCi/g	Activity uCi	Conc uCi/g	Activity uCi	Activity uCi	Removed %	Washed Solids uCi/g	Washed Solids uCi/g
Cs-137	4 03E-01	3.95E+01	2 80E-02	2 53E+00	1 10E+00	7 37E-01	4 27E+01	98%	3 64E+01	3 11F+01
Co-60	4.052.01	5.751.01	2.001 02	2.551.00	7 99E-02	5.36E-02	5 36E-02	(b)	4 57E-02	5.112.01
Eu-154					1.01E+00	6 78E-01	6 78E-01	(b)	5.78E-01	
Eu-155					4 34E-01	2 91E-01	2 91E-01	(b)	2 48E-01	
Am-241(v)					1.45E+00	9.73E-01	9.73E-01	(b)	8 29E-01	
11-238	2.68E-06	2.63E-04	1 82E-07	1.64E-05	1.45E-00	9.80E-03	1.01E-02	3%	8.59E-03	Not Determined
U-234	7 35E-06	7 20E-04	2 43E-07	2 19E-05	3 40E-02	2 28E-02	2 36E-02	3%	2.01E-02	Not Determined
Pu-239/240	1.76E-04	1 73E-02	7 48E-07	6 76E-05	2 01E+00	1.35E+00	1 37E+00	1%	1.16E+00	Not Determined
Am-241+Pu-238	9.23E-06	9.05E-04	6 27E-07	5.66E-05	1.52E+00	1.02E+00	1.02E+00	0.1%	8 70E-01	Not Determined
Cm-243/244	7.202.00	2.002.01	0.272.07	0.002 00	1.522.00	1.021.00	1.022.00	0.170	0.7012 01	Not Determined
Cm-242										Not Determined
Total Alpha	1 95E-04	1 92E-02	1 80E-06	1.63E-04	3 58E±00	2 40E+00	2 42E+00	1%	2 06E+00	1.83E+00
rouirripiu	1.902.01	1.522 02	1.002.00	1.0512 01	T 1.	1.10E.00		170	2.001.00	1.002.00
					Leachin	g with 5 M P	NaOH at 60°			
	Leaching Se	olution	Washing Se	olution	Leached	Solids				
	Solution Mass, g:	98.896	Solution Mass, g:	93.136	Solids Mass, g:	0.598				
			a a:/		a au		Total	D	Cale. Conc. In	Measured Conc. In
	Conc., µC1/g	Activity, µCi	Conc., µCı/g	Activity, µCi	Conc., µC1/g	Activity, µCi	Activity, µCi	Removed, %	Washed Solids, µCi/g	Washed Solids, µCi/g
Cs-137	3./8E-01	3.74E+01	3.90E-02	3.63E+00	6.79E-01	4.06E-01	4.15E+01	99%	3.58E+01	3.11E+01
Co-60					1.09E-01	6.52E-02	6.52E-02	(b)	5.63E-02	
Eu-154					1.28E+00	7.65E-01	7.65E-01	(b)	6.61E-01	
Eu-155					6.41E-01	3.83E-01	3.83E-01	(b)	3.31E-01	
Am-241(γ)	0.005.07	0.0KE 0.1	2 00F 07	0 (1E 05	9.25E-01	5.53E-01	5.53E-01	(b)	4./8E-01	NO
U-238	2.99E-06	2.96E-04	2.80E-07	2.61E-05	2.17E-02	1.30E-02	1.33E-02	2%	1.15E-02	Not Determined
U-234	6.59E-06	6.52E-04	7.62E-07	7.10E-05	2.1/E-02	1.30E-02	1.3/E-02	5%	1.18E-02	Not Determined
Pu-239/240	5.20E-04	3.1/E-02	1.42E-06	1.33E-04	2.3/E+00	1.42E+00	1.45E+00	2%	1.25E+00	Not Determined
Am-241+Pu-238	1.70E-05	1.69E-03			1.62E+00	9.68E-01	9.70E-01	0.2%	8.37E-01	Not Determined
Cm-243/244					1.97/E-02	1.18E-02	1.18E-02	(b)	1.01E-02	Not Determined
Cm-242	2.475.04	2 425 62	0.475.07	2 205 24	4.055	0.405.400	0.465.000		0.107.00	Not Determined
I otal Alpha	3.4/E-04	3.43E-02	2.4/E-06	2.30E-04	4.05E+00	2.42E+00	2.46E+00	1%	2.12E+00	1.83E+00

(a) Analyte was below detection limit if left blank.

					Leachin	g With 1 M 1	VaOH at 80°			
	Leaching S	olution	Washing Se	olution	Leached	Leached Solids				
	Solution Mass, g:	90.105	Solution Mass, g:	86.262	Solids Mass, g:	0.423	Total		Cale Cone In	Measured Conc. In
	Conc uCi/g	Activity uCi	Conc uCi/g	Activity uCi	Cone_uCi/g	Activity uCi	Activity uCi	Removed %	Washed Solids uCi/g	Washed Solids uCi/g
Cs-137	4 38E-01	3.95E+01	1 69E-02	1 46E+00	9.76E+00	4 13E+00	4 50E+01	91%	3 86E+01	3 11E+01
Co-60					1 25E-01	5 29E-02	5 29E-02	(b)	4 53E-02	
Eu-154					1 75E+00	7 40E-01	7 40E-01	(b)	6 35E-01	
Eu-155					1.04E+00	4.40E-01	4.40E-01	(b)	3.77E-01	
Am-241(γ)					2.35E+00	9.94E-01	9.94E-01	(b)	8.53E-01	
U-238	2.57E-06	2.32E-04	1.14E-07	9.82E-06	2.52E-02	1.07E-02	1.09E-02	2%	9.35E-03	Not Determined
U-234	4.68E-06	4.22E-04	2.56E-07	2.21E-05	4.34E-02	1.84E-02	1.88E-02	2%	1.61E-02	Not Determined
Pu-239/240	1.67E-05	1.51E-03			3.46E+00	1.46E+00	1.46E+00	0.1%	1.26E+00	Not Determined
Am-241+Pu-238	1.66E-06	1.50E-04			2.43E+00	1.03E+00	1.03E+00	0.01%	8.81E-01	Not Determined
Cm-243/244					2.07E-02	8.74E-03	8.74E-03	(b)	7.49E-03	Not Determined
Cm-242					5.05E-03	2.14E-03	2.14E-03	(b)	1.83E-03	Not Determined
Total Alpha	2.56E-05	2.31E-03			5.98E+00	2.53E+00	2.53E+00	0.09%	2.17E+00	1.83E+00
					Leachin	g With 3 M N	VaOH at 80°			
	Leaching S	olution	Washing Se	olution	Leached	Solids				
	Solution Mass, g:	99.177	Solution Mass, g:	87.325	Solids Mass, g:	0.207				
							Total		Cale. Conc. In	Measured Conc. In
G (195	Conc., µC1/g	Activity, µCi	Conc., µC1/g	Activity, µCi	Conc., µC1/g	Activity, µCi	Activity, µCi	Removed, %	Washed Solids, µCi/g	Washed Solids, µCi/g
Cs-137	4.19E-01	4.16E+01	1.84E-02	1.60E+00	2.49E+00	5.15E-01	4.37E+01	99%	3.77E+01	3.11E+01
Co-60					2.78E-01	5.75E-02	5.75E-02	(b)	4.97E-02	
Eu-154					3.50E+00	7.25E-01	7.25E-01	(b)	6.26E-01	
Eu-155					1.79E+00	3.71E-01	3.71E-01	(b)	3.20E-01	
Am-241(γ)					4.16E+00	8.61E-01	8.61E-01	(b)	7.44E-01	
U-238	3.32E-06	3.29E-04	2.64E-07	2.31E-05	4.02E-02	8.32E-03	8.67E-03	4%	7.49E-03	Not Determined
U-234	6.08E-06	6.03E-04	4.34E-07	3.79E-05	6.93E-02	1.43E-02	1.50E-02	4%	1.29E-02	Not Determined
Pu-239/240	9.26E-05	9.18E-03	4.03E-07	3.52E-05	6.67E+00	1.38E+00	1.39E+00	1%	1.20E+00	Not Determined
Am-241+Pu-238	4.53E-06	4.49E-04	7.76E-08	6.78E-06	4.66E+00	9.64E-01	9.65E-01	0.05%	8.33E-01	Not Determined
Cm-243/244					6.73E-02	1.39E-02	1.39E-02	(b)	1.20E-02	Not Determined
Cm-242	1.075.04	1.0(7.02	1 105 07	1.025.04	6.11E-03	1.26E-03	1.26E-03	(b)	1.09E-03	Not Determined
I otal Alpha	1.0/E-04	1.06E-02	1.18E-06	1.03E-04	1.15E+01	2.38E+00	2.39E+00	0.4%	2.06E+00	1.83E+00
	I aachina S	olution	Washina S	Jution	Leachin	ig With 5 M I	NaOH at 80°			
	Solution Mass. g.	105 547	Solution Mass. g.	86 46	Solids Mass. g.	0 143				
							Total		Calc. Conc. In	Measured Conc. In
	Conc., µCi/g	Activity, µCi	Conc., µCi/g	Activity, µCi	Conc., µCi/g	Activity, µCi	Activity, µCi	Removed, %	Washed Solids, µCi/g	Washed Solids, µCi/g
Cs-137	3.81E-01	4.02E+01	1.80E-02	1.56E+00	1.09E+00	1.56E-01	4.19E+01	100%	3.59E+01	3.11E+01
Co-60					3.81E-01	5.45E-02	5.45E-02	(b)	4.67E-02	
Eu-154					5.38E+00	7.69E-01	7.69E-01	(b)	6.60E-01	
Eu-155					2.75E+00	3.93E-01	3.93E-01	(b)	3.37E-01	
Am-241(γ)					6.38E+00	9.12E-01	9.12E-01	(b)	7.82E-01	
U-238	2.08E-06	2.19E-04	1.19E-07	1.03E-05	6.30E-02	9.01E-03	9.24E-03	2%	7.92E-03	Not Determined
U-234	5.33E-06	5.63E-04	3.86E-07	3.33E-05	1.07E-01	1.53E-02	1.59E-02	4%	1.36E-02	Not Determined
Pu-239/240	2.06E-04	2.17E-02	4.89E-07	4.23E-05	9.76E+00	1.40E+00	1.42E+00	2%	1.22E+00	Not Determined
Am-241+Pu-238	1.18E-05	1.24E-03	1.04E-07	8.98E-06	7.00E+00	1.00E+00	1.00E+00	0.1%	8.59E-01	Not Determined
Cm-243/244					6.84E-02	9.77E-03	9.77E-03	(b)	8.38E-03	Not Determined
Cm-242					1.18E-02	1.69E-03	1.69E-03	(b)	1.45E-03	Not Determined
Total Alpha	2.25E-04	2.38E-02	1.10E-06	9.49E-05	1.70E+01	2.43E+00	2.45E+00	1%	2.11E+00	1.83E+00
(a) Analyte was belo	w detection limit if left	blank.								
(b) No detectable ren	noval.									

Table C.2. Radionuclide Behavior During Leaching of S-110 Solids at 80°C^(a)

			Leaching With 1 M NaOH at 100°							
	Leaching S	olution	Washing Se	olution	Leached	Solids				
	Solution Mass, g:	94.577	Solution Mass, g:	87.026	Solids Mass, g:	0.21				
							Total		Calc. Conc. In	Measured Conc. In
	Conc., µCi/g	Activity, µCi	Conc., µCi/g	Activity, µCi	Conc., µCi/g	Activity, µCi	Activity, µCi	Removed, %	Washed Solids, µCi/g	Washed Solids, µCi/g
Cs-137	4.08E-01	3.86E+01	1.49E-02	1.30E+00	1.84E+01	3.86E+00	4.37E+01	91%	3.78E+01	3.11E+01
Co-60					2.80E-01	5.88E-02	5.88E-02	(b)	5.08E-02	
Eu-154					3.97E+00	8.34E-01	8.34E-01	(b)	7.20E-01	
Eu-155					1.87E+00	3.93E-01	3.93E-01	(b)	3.39E-01	
Am-241(γ)					4.14E+00	8.69E-01	8.69E-01	(b)	7.51E-01	
U-238	6.72E-06	6.35E-04	8.23E-07	7.16E-05	5.52E-02	1.16E-02	1.23E-02	6%	1.06E-02	Not Determined
U-234	1.13E-05	1.07E-03	8.65E-07	7.53E-05	8.80E-02	1.85E-02	1.96E-02	6%	1.69E-02	Not Determined
Pu-239/240	5.16E-05	4.88E-03	1.69E-06	1.47E-04	6.92E+00	1.45E+00	1.46E+00	0.3%	1.26E+00	Not Determined
Am-241+Pu-238	2.60E-06	2.46E-04	0.00E+00	0.00E+00	4.98E+00	1.05E+00	1.05E+00	0.02%	9.03E-01	Not Determined
Cm-243/244					2.88E-02	6.04E-03	6.04E-03	(b)	5.21E-03	Not Determined
Cm-242										Not Determined
Total Alpha	7.23E-05	6.84E-03	3.39E-06	2.95E-04	1.21E+01	2.54E+00	2.55E+00	0.3%	2.20E+00	1.83E+00
					Leaching	g With 3 M N	aOH at 100°			
	Leaching S	olution	Washing Se	olution	Leached	Solids				
	Solution Mass, g:	99.957	Solution Mass, g:	84.813	Solids Mass, g:	0.107				
							Total		Cale. Conc. In	Measured Conc. In
G 105	Conc., µC1/g	Activity, µCi	Conc., µCi/g	Activity, µCi	Conc., µC1/g	Activity, µCi	Activity, µCi	Removed, %	Washed Solids, µCi/g	Washed Solids, µCi/g
Cs-137	4.31E-01	4.30E+01	1.3/E-02	1.16E+00	2.21E+00	2.36E-01	4.44E+01	99%	3./9E+01	3.11E+01
Co-60					5.30E-01	5.6/E-02	5.6/E-02	(b)	4.83E-02	
Eu-154					7.05E+00	7.54E-01	7.54E-01	(b)	6.43E-01	
Eu-155					3.51E+00	3.76E-01	3.76E-01	(b)	3.20E-01	
Am-241(γ)	0.475.04	0.475.04	5 01E 07	4.425.05	8.25E+00	8.83E-01	8.83E-01	(b)	7.53E-01	NOT
U-238	8.47E-06	8.47E-04	5.21E-07	4.42E-05	1.06E-01	1.13E-02	1.22E-02	120/	1.04E-02	Not Determined
U-234	1.32E-05	1.32E-03	9.80E-07	8.31E-05	9.34E-02	9.99E-03	1.14E-02	12%	9.72E-03	Not Determined
Pu-239/240	1.98E-04	1.98E-02	5.82E-07	4.93E-05	1.33E+01	1.42E+00	1.44E+00	1%	1.23E+00	Not Determined
Am-241+Pu-238	9.99E-06	9.99E-04	0.00E+00	0.00E+00	9.39E+00	1.00E+00	1.01E+00	0.1%	8.5/E-01	Not Determined
Cm-243/244					8.11E-02	8.0/E-03	8.0/E-03	(0)	7.39E-03	Not Determined
Cm-242 Total Alaba	2 20E 04	2 20E 02	2.095.04	1.775.04	2 200 + 01	2.46E+00	2 495 100	10/	2 12E+00	Not Determined
Total Alpha	2.2915-04	2.2912-02	2.081-00	1.7712-04	2.50E+01	2.40E+00	2.48E+00	1 /0	2.121-00	1.651-00
	Laashina S	alution	Washing S.	Jution	Leaching	g with 5 with	aOH at 100			
	Solution Mass or	106 523	Solution Mass g	88 233	Solids Mass g	0.099				
	Solution muss, g.	100.020	Solution Muss, g.	00.200	5011 0 5 11 10 55, B.	0.077	Total		Cale Cone In	Measured Conc. In
	Conc uCi/g	Activity uCi	Conc uCi/g	Activity uCi	Conc uCi/g	Activity uCi	Activity uCi	Removed %	Washed Solids uCi/g	Washed Solids uCi/g
Cs-137	3.84E-01	4.09E+01	1.22E-02	1.08E+00	1.19E+00	1.18E-01	4.21E+01	100%	3.61E+01	3.11E+01
Co-60					5.93E-01	5.87E-02	5.87E-02	(b)	5.03E-02	
Eu-154					7.29E+00	7.22E-01	7.22E-01	(b)	6.19E-01	
Eu-155					3.78E+00	3.74E-01	3.74E-01	(b)	3.21E-01	
Am-241(γ)					8.49E+00	8.41E-01	8.41E-01	(b)	7.21E-01	
U-238	5.46E-06	5.82E-04	2.77E-07	2.45E-05	8.89E-02	8.80E-03	9.41E-03	6%	8.07E-03	Not Determined
U-234	1.04E-05	1.11E-03	7.93E-07	6.99E-05	1.34E-01	1.33E-02	1.44E-02	8%	1.24E-02	Not Determined
Pu-239/240	3.31E-04	3.53E-02	4.76E-07	4.20E-05	1.32E+01	1.31E+00	1.34E+00	3%	1.15E+00	Not Determined
Am-241+Pu-238	1.67E-05	1.78E-03			9.09E+00	9.00E-01	9.02E-01	0.2%	7.73E-01	Not Determined
Cm-243/244					1.00E-01	9.94E-03	9.94E-03	(b)	8.53E-03	Not Determined
Cm-242					2.00E-02	1.98E-03	1.98E-03	(b)	1.70E-03	Not Determined
Total Alpha	3.63E-04	3.86E-02	1.54E-06	1.36E-04	2.26E+01	2.24E+00	2.28E+00	2%	1.95E+00	1.83E+00
(a) Analyte was below	w detection limit if left	blank.								
(b) No detectable ren	noval.									

Table C.3. Radionuclide Behavior During Leaching of S-110 Solids at 100°C^(a)

Distribution

No. of Copies

OFFSITE

Harry Babad 2540 Cordova Ct. Richland, Washington 99352

Gilbert Brown Oak Ridge National Laboratory P.O. BOX 2008 Oak Ridge, Tennessee 37831-6119

Dale D. Ensor Tennessee Technological University Chemistry Department – Box 5055 Cookeville, Tennessee 38505

Kurt Gerdes U.S. Department of Energy Office of Technology Systems EM-53 Cloverleaf 1186 U.S. Department of Energy PO Box 23865 Germantown, Maryland 20026-3865

Jerry Harness U.S. Department of Energy Oak Ridge Operations Office 200 Administration Road Oak Ridge, Tennessee 37830

David Hobbs Westinghouse Savannah River Co. 773-A Aiken, South Carolina 29808

No. of Copies

OFFSITE

Rodney D. Hunt Oak Ridge National Laboratory P.O. Box 2008 Oak Ridge, Tennessee 37831-6223

Phil McGinnis Oak Ridge National Laboratory P.O. Box 2008 Oak Ridge, Tennessee 37831-6223

John Swanson 1318 Cottonwood Richland, Washington

Major Thompson Westinghouse Savannah River Co. 773-A, C140 Aiken, South Carolina 29808

Jack Watson Oak Ridge National Laboratory P.O. Box 2008 Oak Ridge, Tennessee 37831-6178

David Wesolowski Oak Ridge National Laboratory P.O. Box 2008 Oak Ridge, Tennessee 37831-6110

K9-69 K9-14

K6-24

K7-62

P7-28 K6-24

P7-28

P7-22

P7-25

No. of Copie	f es		No. o Copi	of es	
ONSI	TE		ONS	ITE	
1	Fluor Hanford Corporation		37	Pacific Northwest National Labor	atory
	D.L. Herting	T6-07		TFA Technical Team Office (8)	K9-
				W.F. Bonner	K9-
2	Numatec Hanford Corporation			K.P. Brooks	K6-
	R.A. Kirkbride	R3-73		W.C. Cosby	K7-
	R.M. Orme R3-73			J.G.H. Geeting	P7-
				G.R. Golcar	K6-
4	DOE Richland Operations Office			D.E. Kurath	P7-
	J. Cruz	H6-60		G.J. Lumetta (20)	P7-
	M.J. Glasper	K8-50		B.M. Rapko	P7-
	B.M. Mauss	H6-60		Technical Report Files (2)	
	T.P. Pietrok	K8-50			
3	Bechtel				
	R. Peterson	H4-02			
	P. Townson	H4-02			
	T. Wright	H4-02			
2	CHG				
	K.A. Gasper	L4-07			
	D.J. Washenfelder	R2-12			