PNNL-13956

Caustic Leaching of Hanford Tank T-110 Sludge

- G.J Lumetta L.P. Darnell P.A. Garza L.R. Greenwood B.M. Oliver D.E. Rinehart
- D.R. Sanders C.Z Soderquist T. Trang-Le M.W. Urie J.J. Wagner

July 2002

Prepared for the U.S. Department of Energy under Contract DE-AC06-76RL01830

This work is funded by the Office of Science and Technology, within the Department of Energy's Office of Environmental Management, under the Efficient Separations and Processing Crosscutting Program.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes **any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights**. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

PACIFIC NORTHWEST NATIONAL LABORATORY operated by BATTELLE for the UNITED STATES DEPARTMENT OF ENERGY under Contract DE-ACO6-76RL01830

Printed in the United States of America

Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831-0062; ph: (865) 576-8401 fax: (865) 576-5728 email: reports@adonis.osti.gov

Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161 ph: (800) 553-6847 fax: (703) 605-6900 email: orders@ntis.fedworld.gov online ordering: http://www.ntis.gov/ordering.htm

Caustic Leaching of Hanford Tank T-110 Sludge

G. J. Lumetta	Γ
L. P. Darnell	C
P. A. Garza	Т
L. R. Greenwood	Ν
B. M. Oliver	J
D. E. Rinehart	

D. R. Sanders C. Z. Soderquist T. Trang-Le M. W. Urie J. J. Wagner

July 2002

Prepared for the U.S. Department of Energy under Contract DE-AC06-76RL01830

This work is funded by the Office of Science and Technology, within the Department of Energy's Office of Environmental Management, under the Efficient Separations and Processing Crosscutting Program.

Pacific Northwest National Laboratory Richland, Washington 99352

Summary

This report describes the caustic leaching test conducted on Hanford Tank T-110 sludge during FY 2002 at the Pacific Northwest National Laboratory. The data presented here can be used to develop the baseline and alternative flowsheets for pretreating Hanford tank sludge. The U.S. Department of Energy funded the work through the Efficient Separations and Processing Crosscutting Program (ESP; EM-50).

The T-110 sludge sample was first subjected to washing with dilute sodium hydroxide solution at ambient temperature. Following the dilute hydroxide washing, several aliquots of the washed solids were taken for leaching tests. The washed solids were subjected to leaching with 1, 3, or 5 M NaOH at 60, 80, or 100°C for up to 168 h. The leachates were sampled at 4, 8, 24, 72, and 168 h. The leached solids were dried to constant mass at 105°C and then analyzed.

Bismuth, Fe, Na, P, and Si are the dominant elements present in the T-110 sludge. As expected, Na is largely (> 90%) removed by dilute hydroxide washing. However, dilute hydroxide washing is ineffectual at removing Bi, Fe, or Si. For this particular sludge, the behavior of P is of major concern due to the relatively low tolerance for this element in the high-level waste (HLW) immobilization process and the high concentration of P in the waste. Only 33% of the P was removed by dilute hydroxide washing, resulting in washed solids that were 8.8 wt% P. This is presumably because the P is present as bismuth phosphate in the T-110 solids. More rigorous pretreatment (e.g., caustic leaching) will be required to remove enough P so that it is not a limiting component in the sludge solids. The minor sludge component, Cr, can also adversely affect the HLW immobilization process. The Cr in the T-110 sludge was largely insoluble in 0.01 M NaOH, with only 3% being removed by dilute hydroxide washing.

The solution obtained by washing the T-110 solids with dilute hydroxide could likely be immobilized as a Class A low-level waste (LLW), even without removing ¹³⁷Cs.

The work presented here indicates caustic leaching to be a very effective method for pretreating Hanford Tank T-110 sludge, primarily because this method essentially quantitatively removes P from the water-washed T-110 solids. Assuming a P_2O_5 limit of 3 wt% in the immobilized high-level waste (IHLW) glass, it is estimated that caustic leaching will result in an ~80% reduction in the IHLW mass. Unlike high-Al tanks (see for example, Lumetta et al. 2001), relatively mild leaching conditions (1 M NaOH at 60°C) should sufficiently remove P from the T-110 solids. However, more rigorous leaching conditions (or oxidative leaching) may be needed to avoid encountering the Cr limit in the glass formulation. The leaching of P from the sludge solids is rapid and largely independent of temperature and NaOH concentration.

Some of the caustic-leaching solutions contained significant concentrations of transuranic (TRU) elements (primarily Pu). The dissolved TRU generally increased with increasing NaOH concentration and temperature. Immobilization of these solutions could result in a waste form that exceeds the 10 nCi/g TRU limit for LLW, but they would be within the Class C limit of 100 nCi/g. This should be considered in managing these leaching solutions. As was the case with the dilute hydroxide wash solution, ¹³⁷Cs would likely not need to be removed to meet the Class A LLW criterion of 1 Ci/m³.

Glossary

DOE	U.S. Department of Energy
ESP ESW	Efficient Separations and Processing Crosscutting Program enhanced sludge washing
GEA	gamma energy analysis
HDPE HLW	high-density polyethylene high-level waste
ICP-AES IHLW ILAW	inductively coupled plasma/atomic emission spectroscopy immobilized high-level waste immobilized low-activity waste
LAW LLW	low-activity waste low-level waste
NRC	U.S. Nuclear Regulatory Commission
PNNL PP	Pacific Northwest National Laboratory polypropylene
TRU	transuranic elements
UV/vis	ultraviolet/visible
WOL	Waste Oxide Loading

Acknowledgments

This work was funded by the U.S. Department of Energy Office of Science and Technology through the Efficient Separations and Processing Crosscutting Program (ESP). The authors thank Jerry Harness and Jack Watson of the ESP and Phil McGinnis of the Tanks Focus Area. The authors also acknowledge Ted Pietrok and Marcus Glasper in the U.S. Department of Energy Richland Operations Office.

The authors gratefully acknowledge W. C. Cosby and S. I. Sinkov for reviewing this document. The authors also thank C. L. Blair, W. F. Bonner, M. Larson, and J. R. Andrie for their project-management support.

Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy under Contract DE-AC06-76RL01830.

Contents

Sun	nmary	iii
Glo	ssary	V
Ack	nowledgments	vii
1.0	Introduction	1.1
2.0	Experimental	2.1
	2.1 Description of the T-110 Sludge Sample	2.1
	2.2 Initial Washing of the T-110 Solids	2.1
	2.3 Division of the Washed T-110 Solids	2.3
	2.4 Caustic Leaching of the Washed T-110 Solids	2.3
	2.5 Determination of Hydroxide Concentration	2.4
	2.6 Determination of Chromium(VI) Concentration	2.4
3.0	Results and Discussion	3.1
	3.1 Dilute-Hydroxide Washing	3.1
	 3.2 Caustic Leaching	3.3 3.4 3.4 3.4 3.19
	3.3 Impact of Leaching on Immobilized High-Level Waste Glass Mass	3.20
4.0	Conclusions and Recommendations	4.1
5.0	References	5.1
App	pendix A: Solution Concentrations as a Function of Time	A.1
App	bendix B: Leaching Results in Terms of Percent Component Removed	B.1
App	endix C: Radionuclide Behavior	C.1

Figures

3.1.	Aluminum Concentration as a Function of Time During Leaching of T-110 Solids at 60°C	3.5
3.2.	Aluminum Concentration as a Function of Time During Leaching of T-110 Solids at 80°C	3.6
3.3.	Aluminum Concentration as a Function of Time During Leaching of T-110 Solids at 100°C	3.6
3.4.	Aluminum Concentration and Removal as a Function of Time During Leaching of T-110 Solids at 1 M NaOH	3.7
3.5.	Aluminum Concentration and Removal as a Function of Time During Leaching of T-110 Solids at 3 M NaOH	3.8
3.6.	Aluminum Concentration and Removal as a Function of Time During Leaching of T-110 Solids at 5 M NaOH	3.9
3.7.	Chromium Concentration as a Function of Time During Leaching of T-110 Solids at 60°C	3.10
3.8.	Chromium Concentration as a Function of Time During Leaching of T-110 Solids at 80°C	3.10
3.9.	Chromium Concentration as a Function of Time During Leaching of T-110 Solids at 100°C	3.1
3.10.	Chromium Concentration and Removal as a Function of Time During Leaching of T-110 Solids at 1 M NaOH	3.12
3.11.	Chromium Concentration and Removal as a Function of Time During Leaching of T-110 Solids at 3 M NaOH	3.1.
3.12.	Chromium Concentration and Removal as a Function of Time During Leaching of T-110 Solids at 5 M NaOH	3.14
3.13.	Phosphorus Concentration as a Function of Time During Leaching of T-110 Solids at 60°C	3.1
3.14.	Phosphorus Concentration as a Function of Time During Leaching of T-110 Solids at 80°C	3.1
3.15.	Phosphorus Concentration as a Function of Time During Leaching of T-110 Solids at 100°C	3.1

3.16.	Phosphorus Concentration and Removal as a Function of Time During Leaching of T-110 Solids at 1 M NaOH	3.17
3.17.	Phosphorus Concentration and Removal as a Function of Time During Leaching of T-110 Solids at 3 M NaOH	3.18
3.18.	Phosphorus Concentration and Removal as a Function of Time During Leaching of T-110 Solids at 5 M NaOH	3.19
3.19.	TRU Concentration In the T-110 Caustic Leaching Solutions	3.20

Tables

2.1.	Description of T-110 Sludge Composite	2.1
2.2.	Composition of the Dilute Hydroxide-Washed T-110 Solids	2.2
2.3.	Mass of Washed T-110 Solids in Each Leaching Aliquot	2.3
2.4.	Caustic Leaching Conditions	2.4
2.5.	Mass of the Leached T-110 Solids and the Mass Loss Achieved During Leaching	2.4
2.6.	Comparison of Measured Cr(VI) and Total Cr Concentrations	2.5
3.1.	Results of Dilute-Hydroxide Washing of the As-Received T-110 Sludge	3.1
3.2.	Radionuclide Behavior During Dilute-Hydroxide Washing of the As-Received T-110 Sludge	3.3
3.3.	Aluminum, Chromium, and Phosphorus Removal Achieved After One Week of Leaching	3.3
3.4.	Estimated Concentrations of Waste-Derived Components in the IHLW Glass from T-110 Waste	3.21

1.0 Introduction

Since 1990, the primary mission at the U.S. Department of Energy's Hanford Site has changed from producing plutonium to restoring the environment. Large volumes of high-level radioactive wastes (HLW), generated during past Pu production and other operations, are stored in underground tanks onsite. The current plan for remediating the Hanford tank farms consists of waste retrieval, pretreatment, treatment (immobilization), and disposal. The tank wastes will be partitioned into high-level and low-activity fractions. The low-activity waste (LAW) will be processed to remove ¹³⁷Cs and ⁹⁹Tc (and ⁹⁰Sr and transuranic [TRU] elements in selected cases), and then it will be immobilized in a glass matrix and disposed of by shallow burial onsite. The HLW will be immobilized in a borosilicate glass matrix; the resulting glass canisters will then be disposed of in a geologic repository (DOE/ORP 2001). Because of the expected high cost of HLW vitrification and geologic disposal, pretreatment processes will be implemented to reduce the volume of immobilized high-level waste (IHLW).

Dilute hydroxide washing is the minimum pretreatment that would be performed on Hanford tank sludges. This method simply involves mixing the sludge with dilute (0.1 M or less) NaOH and then performing some sort of solid/liquid separation. This is meant to remove water-soluble sludge components (mainly sodium salts) from the HLW stream. Dilute hydroxide is used rather than water to maintain the ionic strength high enough that colloidal suspensions are avoided.

Caustic leaching (sometimes referred to as enhanced sludge washing or ESW) represents the baseline method for pretreating Hanford tank sludges. Caustic leaching is expected to remove a large fraction of the Al, which is present in large quantities in Hanford tank sludges. The Al will be removed by converting aluminum oxides/hydroxides to sodium aluminate. For example, boehmite and gibbsite are dissolved according to the following equations (Weber 1982).

$$AlOOH(s) + NaOH(aq) \rightarrow NaAlO_2(aq) + H_2O$$
 (1.1)

$$Al(OH)_{3}(s) + NaOH(aq) \rightarrow NaAlO_{2}(aq) + 2H_{2}O$$
(1.2)

A significant portion of the P is also expected to be removed from the sludge by the metathesis of water-insoluble metal phosphates to insoluble hydroxides and soluble Na₃PO₄. An example of this is shown for iron(III) phosphate in the following equation.

$$FePO_4(s) + 3NaOH(aq) \rightarrow Fe(OH)_3(s) + Na_3PO_4(aq)$$
(1.3)

Similar metathesis reactions can also occur for insoluble sulfate salts, allowing the removal of sulfate from the HLW stream.

Based on its known amphoteric behavior (Rai et al. 1987), Cr(III) was expected to be removed by caustic leaching according to the following equation:

$$Cr(OH)_3(s) + NaOH(aq) \rightarrow Na[Cr(OH)_4](aq)$$
 (1.4)

However, studies conducted at the Pacific Northwest National Laboratory (PNNL) have suggested that the behavior of Cr in the caustic leaching process is more complex (Lumetta et al. 1997). It is now generally recognized that oxidative mechanisms are also involved because the Cr in the leaching solutions is invariably present as primarily the CrO_4^{2-} ion.

Results of previous studies of the baseline Hanford sludge-washing and caustic-leaching process have been reported (Lumetta and Rapko 1994; Rapko et al. 1995, Lumetta et al. 1996a, 1996b, 1997, 1998; Temer and Villarreal 1995, 1996, 1997). In the initial work, each sludge sample was subjected to a standard testing condition. In FY 1998, the focus of the testing effort shifted to performing parametric tests on selected sludge samples (Lumetta et al. 1998, 2001). The purpose of the parametric tests is to provide data that process engineers can use to optimize process flowsheets for specific waste types. The parameters being considered are time, temperature, and caustic (NaOH) concentration. This report describes the results of parametric caustic-leaching tests performed on sludge from Hanford Tank T-110. This tank contains primarily waste from the second purification cycle of the bismuth phosphate process for Pu recovery. It also received waste from the final lanthanum fluoride precipitation step for purifying the Pu (Hill et al. 1995).

2.0 Experimental

This section describes composition of the T-110 sludge sample, the initial washing of its solids, the division of the washed T-110 solids, and the caustic leaching of the washed T-110 solids. Also described are the methods used to determine the hydroxide and the chromium(VI) concentrations.

2.1 Description of the T-110 Sludge Sample

The T-110 sludge sample used was a composite of segments from two different core samples (Table 2.1). The composite sample was prepared at the Hanford 222-S Laboratory and shipped to PNNL in March 2001.

Sample	Core	Segment	Amount
ID ^(a)	No.	No.	Added, g
S97T000215	180	1	10.3
S97T000255	180	2	10.0
S97T000225	180	3	10.0
S97T000227	180	4	10.1
S97T000229	180	6	10.0
S97T000258	180	7	10.2
S97T000260	180	8	10.0
S97T000126	181	1	10.3
S97T000135	181	2	10.1
S97T000138	181	3	10.0
S97T000139	181	4	9.9
S97T000167	181	5	10.0
S97T000177	181	6	9.9
S97T000161	181	7	9.9
S97T000194	181	8	10.2
	N	et Mass, g:	150.9
(a) Unique identifier used at the Hanford 222-S			
Laboratory.			

 Table 2.1.
 Description of T-110 Sludge Composite

2.2 Initial Washing of the T-110 Solids

The 150-g T-110 composite sample was dry when received. The as-received solids were transferred to a 1-L high-density polyethylene (HDPE) bottle. Dilute (0.01 M) NaOH solution was added to yield a total volume of 500 mL, and then the mixture was agitated using a mechanical stirrer for \sim 1 h. The mixture was allowed to stand for 2 h, after which time the settled-solids layer was \sim 250 mL. The supernatant liquid was removed using a pipette. The settled-solids layer was mobilized by stirring and was divided equally between two 200-mL centrifuge bottles. The two portions were diluted to 200 mL

with 0.01 M NaOH and then magnetically stirred for \sim 1 h. The wash slurries were centrifuged at \sim 1200 G. The wash liquor was decanted from each centrifuge bottle, and these were combined with the previous wash liquid. Dilute (0.01 M) NaOH solution was added to yield a total volume of 200 mL in each bottle, and the washing process was repeated.

After decanting the final leaching solution, the washed solids were slurried with a minimum amount of deionized water and were combined together. The mass of the slurry of washed solids was 508.2 g, and the mass of the combined washing solution was 985.8 g. The slurry of washed solids was homogenized with a mechanical stirrer, and two approximately 2-g aliquots were taken for analysis. The two aliquots were dried to constant weight at 105°C to determine the solids composition of the slurry. The slurry contained 8.3 wt% solids, which translated to a total of 42.2 g of washed solids. The two dried aliquots of washed solids were analyzed by inductively coupled plasma-atomic emission spectroscopy (ICP-AES), gamma energy analysis (GEA), and for total alpha and total beta activity (Table 2.2).

Component	Concentration, µg/g	Component	Concentration, µCi/g	
Al	1050	Total Alpha	7.19E-01	
В	[340]	²³⁹⁺²⁴⁰ Pu	6.73E-01	
Ba	[62]	²³⁸ Pu+ ²⁴¹ Am	4.49E-02	
Bi	146000	²⁴³⁺²⁴⁴ Cm	1.40E-03	
Ca	3580	²⁴² Cm	1.72E-05	
Cr	5943	¹³⁷ Cs	1.55E-01	
Fe	140000	²⁴¹ Am (gamma)	3.83E-02	
La	[80]	⁶⁰ Co	< 6E-04	
Mg	[380]			
Mn	992			
Na	76400			
Р	88300			
Pb	[660]			
Si	79870			
Sr	1170			
Ti	[70]			
U	[5100]			
Zn	[270]			
(a) Experim	ental uncertainties are	15%, except for v	alues given in brackets.	
Values g	Values given in brackets are within 10 times the detection limit, and the			
uncertain	uncertainties for these values are greater than 15%.			

Table 2.2. Composition of the Dilute Hydroxide-Washed T-110 Solids

2.3 Division of the Washed T-110 Solids

The slurry of washed T-110 solids was homogenized with a mechanical stirrer. Nine aliquots, nominally 30 g each, were transferred to 60-mL polypropylene (PP) bottles using a large (23-mL capacity) disposable polyethylene pipette. Table 2.3 lists the bottle labels, the mass of each aliquot, and the amount of solids in each aliquot, based on 8.4 wt% solids in the slurry.

Bottle ID	Mass Slurry, g	Mass Solids, g
T110-60-1	30.1	2.498
T110-60-3	30.1	2.498
T110-60-5	30.1	2.498
T110-80-1	30.2	2.507
T110-80-3	30.3	2.515
T110-80-5	30.3	2.515
T110-100-1	30.2	2.507
T110-100-3	30.2	2.507
T110-100-5	30.3	2.515

Table 2.3. Mass of Washed T-110 Solids in Each Leaching Aliquot

2.4 Caustic Leaching of the Washed T-110 Solids

Table 2.4 summarizes the leaching conditions for each aliquot of washed T-110 solids. The aluminum heating block was preheated to the desired temperature. Sodium hydroxide solution (10 M) was added to each aliquot of washed T-110 solids in the following amounts: 5.5 mL to yield 1 M NaOH, 15.5 mL to yield 3 M NaOH, and 25.5 mL to yield 5 M NaOH. The leaching mixtures were then diluted to 50 mL with deionized water. The ratio of ~20 mL solution per gram of washed T-110 solids was chosen so that the solutions would be under-saturated with respect to sodium phosphate.

The liquid level was marked on each reaction vessel, and each vessel was closed with a cap equipped with a tube-condenser. The leaching mixtures were mixed at temperature with a magnetic stirrer. Evaporation was minimal during the course of the experiment; occasionally, deionized water was added to bring the liquid level up to its original position. The leachates were sampled at intervals of 4, 8, 24, 72, and 168 h. The transfer pipette and the syringe filter assembly (0.45-µm nylon membrane) used in each sampling event were preheated by inserting in a boiling water bath. These were then used to filter ~1 mL of the leachate solution. A 0.5-mL aliquot of the filtered solution was immediately acidified with 15 mL of 0.3 M HNO₃. The remaining filtered solution was added back to the reaction vessel, and the leaching was continued. After 168 h, additional samples were taken for titrimetric (diluted into deionized water) analysis and Cr(VI) analysis by ultraviolet (UV) spectrophotometry (diluted into 0.1 M NaOH).

At the conclusion of the test, the reaction vessels were centrifuged for 5 min (~1200 G) immediately after removing from the heating block. The leachate was decanted and saved. The leached solids were washed thrice with 30-mL portions of 0.01 M NaOH and then were dried at 105°C. Table 2.5 gives the weights of the leached solids and the weight reductions achieved after leaching for 168 h. The mass

losses are not corrected for the mass lost through filtration during sampling, so the actual mass lost through leaching is slightly less than those listed in the table.

	[NaOH], M		
Bottle ID	Target	Measured	Temperature, °C
T110-60-1	1	0.6	60
T110-60-3	3	2.5	60
T110-60-5	5	3.8	60
T110-80-1	1	0.6	80
T110-80-3	3	2.7	80
T110-80-5	5	4.2	80
T110-100-1	1	0.6	100
T110-100-3	3	2.5	100
T110-100-5	5	4.3	100

Table 2.4. Caustic Leaching Conditions

Table 2.5. Mass of the Leached T-110 Solids and the Mass Loss Achieved During Leaching

Bottle ID	Mass of Leached Solids, g	Mass Loss, %
T110-60-1	1.362	45
T110-60-3	1.220	51
T110-60-5	1.173	53
T110-80-1	1.359	46
T110-80-3	1.204	52
T110-80-5	1.053	58
T110-100-1	1.324	47
T110-100-3	1.140	54
T110-100-5	1.162	54

2.5 Determination of Hydroxide Concentration

The free hydroxide concentration in the T-110 caustic leaching solutions was determined by titration with standard HCl. Aliquots (0.1-mL) of the leaching solutions were diluted into 10 mL of deionized water. To these analyte solutions was added 0.1 mL of 2 M Ca(NO₃)₂ to precipitate any carbonate present in the samples. The resulting solutions were then titrated with 0.1 M HCl. The titration was conducted using a Mettler DL-21 automatic titrator equipped with a combination Ross® Electrode (ATI Orion, Boston, MA). The first measured equivalence point in the titration curves was assumed to be due to free hydroxide. Table 2.4 presents the measured free hydroxide concentrations.

2.6 Determination of Chromium(VI) Concentration

The CrO_4^{2-} concentration in the leaching solutions (after 1 week of leaching) was determined by ultraviolet/visible (UV/vis) spectrophotometry. A calibration curve was generated by measuring the

spectra of standard $\text{CrO}_4^{2^-}$ solutions (in 0.1 M NaOH). The absorption at 372 nm was used. The leaching solutions were diluted with 0.1 M NaOH as needed, and the absorption was measured at 372 nm. The $\text{CrO}_4^{2^-}$ concentrations were calculated from the measured absorbance and the calibration curve. Table 2.6 compares the measured $\text{CrO}_4^{2^-}$ values to the total Cr concentrations determined by ICP-AES. In all cases, the Cr(VI) and total Cr concentrations were the same within experimental uncertainty. Thus, it can be concluded that all the Cr in the leaching solutions is present in the form of $\text{CrO}_4^{2^-}$.

	Concentration, µg/g	
Solution	Cr(VI)	Total Cr
1 M NaOH at 60°C	26	27
3 M NaOH at 60°C	139	136
5 M NaOH at 60°C	149	145
1 M NaOH at 80°C	71	77
3 M NaOH at 80°C	215	190
5 M NaOH at 80°C	205	188
1 M NaOH at 100°C	128	116
3 M NaOH at 100°C	211	200
5 M NaOH at 100°C	199	189

Table 2.6. Comparison of Measured Cr(VI) and Total Cr Concentrations

3.0 Results and Discussion

This section presents the results from the dilute hydroxide washing and the caustic leaching. The behaviors of aluminum, chromium, phosphorous, and radionuclides are described. The impact of leaching on the mass of IHLW glass is discussed.

3.1 Dilute-Hydroxide Washing

Table 3.1 presents the behavior of the various non-radioactive T-110 sludge components during washing of the as-received T-110 sludge sample with 0.01 M NaOH. Bismuth, Fe, Na, P, and Si are the dominant elements present in the T-110 sludge. As expected, Na is largely removed by dilute hydroxide washing. On the other hand, dilute hydroxide washing is ineffectual at removing Bi, Fe, or Si. No detectable Bi or Fe was removed, and only 2% of the Si was found in the washing solution. For this particular sludge, the behavior of P is of major concern due to the relatively low tolerance for this element in the HLW immobilization process and the high concentration of P in the waste. Only 33% of the P was removed by dilute hydroxide washing, resulting in washed solids that were 8.8 wt% P. This is presumably because the P is present as bismuth phosphate ($K_{sp} = 1.3 \times 10^{-23}$) in the T-110 solids. More rigorous pretreatment (e.g., caustic leaching) will be required to remove enough P so that it is not a limiting component in the sludge solids. The minor sludge component, Cr, can also adversely affect the HLW immobilization process. The Cr in the T-110 sludge was largely insoluble in 0.01 M NaOH, with only 3% being removed by dilute hydroxide washing.

	Initial Washing Solution		Washed	Solids		
	Solution		Solids			
	Mass, g	985.8	Mass, g	42.2		
Component	Conc. µg/g	Mass, µg	Conc. µg/g	Mass, µg	Total Mass, µg	Removed, %
Ag						
Al			1048	44226	44226	(b)
As						
В	[4.4]	[4288]	[343]	[14475]	[18763]	23%
Ba			[62]	2616	2616	(b)
Be						
Bi			146000	6161200	6161200	(b)
Ca			3580	151076	151076	(b)
Cd						
Ce						
Co						
Cr	7.8	7650	5943	250795	258444	3%
Cu						
Dy						
Eu						
Fe			140000	5908000	5908000	(b)
K			N/A	N/A	N/A	N/A

Table 3.1. Results of Dilute-Hydroxide Washing of the As-Received T-110 Sludge

	Initial Washi	ng Solution	Washed Solids			
	Solution		Solids			
	Mass, g	985.8	Mass, g	42.2		
Component	Conc. µg/g	Mass, µg	Conc. µg/g	Mass, µg	Total Mass, µg	Removed, %
La			[80]	[3376]	[3376]	(b)
Li						
Mg			[1400]	[59080]	[59080]	(b)
Mn			[992]	[41862]	[41862]	(b)
Мо						
Na	10900	10745111	76400	3224080	13969191	91% ^(c)
Nd						
Ni			N/A	N/A	N/A	N/A
Р	1845	1818783	88300	3726260	5545043	33%
Pb			[660]	[27852]	[27852]	(b)
Pd						
Rh						
Ru						
Sb						
Se		1		ľ		
Si	[74]	[72948]	79867	3370387	3443336	2%
Sn		1		ľ		
Sr			1170	49374	49374	(b)
Те						
Th						
Ti			[70]	[2954]	[2954]	(b)
Tl						
U		1	[5100]	[215220]	[215220]	(b)
W		1		ľ		
Y		1		ľ		
Zn		1	[267]	[11267]	[11267]	(b)
Zr		1		ľ		
(a) Analyte v	vas below detecti	on limit if left	blank. Experi	mental uncert	tainties are 15%, ex	cept for values
given in t	orackets. Values	given in brack	cets are within	10 times the d	letection limit, and	the
uncertain	ties for these valu	les are greater	than 15%.			
(b) No detect	able removal.					

 Table 3.1 (Contd)

(c) Not corrected for Na added as NaOH in washing solution.

Table 3.2 presents the behavior of the radioactive components during washing of the as-received T-110 sludge sample with 0.01 M NaOH.^(a) The TRU isotopes were detected at low levels in the washing solution. If this wash solution were converted to a LAW glass form with 20-wt% Na₂O, the TRU content of the resulting waste form would only be 0.04 nCi/g, which is well below the 10 nCi/g limit for Class A low-level waste (LLW). On the other hand, the washed solids contain ~700 nCi TRU/g, so they must be managed as HLW. Interestingly, only 37% of the ¹³⁷Cs was found in the washing liquor. Again, assuming a LAW waste form with 20 wt% Na₂O and a density of 2.7 MT/m³, converting the washing solution to LAW glass would give a waste form containing 0.14 Ci/m³. This also is well below the Class

⁽a) Analysis of the Sr-90 behavior was not done.

A LLW limit of 1 Ci/m³, so it appears that Cs removal would not be needed before vitrifying the washing solution.

	Initial Washi	ng Solution	Washed	Solids		
	Solution Mas	s, g: 985.79	Solids Mass	s, g: 42.2	Total	
Component	Conc., µCi/g	μCi	Conc., µCi/g	μCi	μCi	Removed, %
¹³⁷ Cs	3.82E-03	3.77E+00	1.55E-01	6.54E+00	1.03E+01	37
$^{241}Am(g)$	<5E-05	<5E-02	3.83E-02	1.62E+00	1.67E+00	< 3
^{239/240} Pu	2.48E-06	2.44E-03	6.73E-01	2.84E+01	2.84E+01	0.01
²⁴¹ Am+ ²³⁸ Pu	1.35E-07	1.33E-04	4.49E-02	1.89E+00	1.89E+00	0.01
^{243/244} Cm	2.69E-08	2.65E-05	1.40E-03	5.91E-02	5.91E-02	0.04
Total Alpha	2.66E-06	2.62E-03	7.19E-01	3.03E+01	3.03E+01	0.01

Table 3.2. Radionuclide Behavior During Dilute-Hydroxide Washing of the As-Received T-110 Sludge

3.2 Caustic Leaching

Appendix A presents the concentrations of the various T-110 sludge components in the leaching solutions as a function of time, as well as the concentrations in the final washing solutions. Appendix B presents detailed results of the T-110 leaching test in terms of the concentration and mass of each component in 1) the leaching solution (after one week), 2) the post-leach washing solution, and 3) the leached solids. Appendix B also presents the concentration of each component in the water-washed solids, calculated by summing the mass of each component in the leaching and washing solutions and the residual solids and then dividing by the amount of washed solids used in the test. The concentrations determined in this manner are compared to those obtained by direct analysis of the washed solids. Mass recoveries obtained were generally within 20% for the major sludge components—Bi, Fe, P, and Si. The recoveries were especially good (near 100%) for Bi and Si. The recoveries for P were consistently ~10% high, whereas those for Fe were consistently ~15% low. Mass recoveries were also good for Cr (84 to 93%), but the recoveries for Al were generally low. However, Al is a relatively minor component in the T-110 sludge, and there was significant experimental uncertainty in the determination of this element.

Table 3.3 summarizes the removal achieved for the sludge components Al, Cr, and P by leaching the washed T-110 solids with NaOH for one week. A more detailed discussion of the behavior of these components is given in the following paragraphs.

		R	emoved, ⁶	%
Т, ° С	[NaOH], M	Al	Cr	Р
60	0.59	27	11	99
60	2.5	42	53	100
60	3.8	59	65	100
80	0.55	53	29	99
80	2.7	67	68	100
80	4.3	83	77	99
100	0.62	50	48	99
100	2.5	75	81	99
100	4.3	77	77	99

Table 3.3. Aluminum, Chromium, and Phosphorus Removal Achieved After One Week of Leaching

3.2.1 Aluminum Behavior

Because of its low concentration, removing Al from the T-110 sludge is relatively unimportant. However, its behavior is of academic interest. Figures 3.1, 3.2, and 3.3 illustrate the Al dissolution at 60, 80, and 100°C, respectively; Figures 3.4, 3.5, and 3.6 illustrate the Al dissolution at 1, 3, and 5 M NaOH, respectively. In the latter plots, the data are presented in terms of both the Al concentration and the percentage of Al removed as a function of time. Scatter in the data makes interpretation difficult. This scatter is a result of the fact that the Al concentrations in the solutions are very low. It can be concluded that, as expected, Al dissolution increases with increasing NaOH concentration. The most marked gain is obtained in increasing [NaOH] from 1 to 3 M; only a modest increase is obtained by increasing [NaOH] from 3 to 5 M. For the most part, the Al concentrations are relatively constant (within experimental uncertainty) after leaching for 8 h. The data from the 3 M NaOH/60°C test suggest that the Al concentration decreases after 8 h. It is not clear if this is a real phenomenon or just due to experimental uncertainty. The sharp drop in the Al concentration after 4 h in the 3 M NaOH/100°C test is believed to be due to a dilution error in the 4-h sample.

3.2.2 Chromium Behavior

Figures 3.7, 3.8, and 3.9 illustrate the Cr dissolution at 60, 80, and 100 °C, respectively; Figures 3.10, 3.11, and 3.12 illustrate the Cr dissolution at 1, 3, and 5 M NaOH, respectively. The data are presented in terms of both the Cr concentration and the percentage of Cr removed as a function of time. At all temperatures examined, there was a marked increase in the amount of Cr in solution when [NaOH] was increased from 1 to 3 M. Increasing [NaOH] from 3 to 5 M resulted in only a modest increase in the dissolved Cr concentration. The amount of Cr removed also increased with increasing temperature. At 1 and 3 M NaOH, the increases obtained by increasing temperature were fairly regular. However, at 5 M NaOH, no significant increase was obtained in raising the temperature from 80 to 100°C.

3.2.3 Phosphorus Behavior

Figures 3.13, 3.14, and 3.15 illustrate the P dissolution at 60, 80, and 100 °C, respectively; Figures 3.16, 3.17, and 3.18 illustrate the P dissolution at 1, 3, and 5 M NaOH, respectively. The data are

presented in terms of both the P concentration and the percentage of P removed as a function of time. Although there is some scatter in the data, it can be concluded that P removal from the washed T-110 solids is rapid, with near quantitative removal achieved within 4 h for all conditions examined.^(a)

Figure 3.1. Aluminum Concentration as a Function of Time During Leaching of T-110 Solids at 60°C

⁽a) As with the Al concentration, the sharp drop in the P concentration after 4 h in the 3 M NaOH/100°C test is believed to be due to a dilution error in the 4-h sample. That the amount of P removed is indicated to be greater than 100% in some cases is an artifact of how the percent removal was calculated. The percent removed at time t was calculated as (C_t)(%R₁₆₈)/C₁₆₈, where C_t is the concentration at time t, C₁₆₈ is the concentration at 168 h, and %R₁₆₈ is the total percent removed after 168 h of leaching. When C_t was greater than C₁₆₈, the percent removed at time t is sometimes calculated to be greater than 100%. However, in such cases, C_t and C₁₆₈ are essentially the same within experimental uncertainty.

Figure 3.2. Aluminum Concentration as a Function of Time During Leaching of T-110 Solids at 80°C

Figure 3.3. Aluminum Concentration as a Function of Time During Leaching of T-110 Solids at 100°C

Figure 3.4. Aluminum Concentration and Removal as a Function of Time During Leaching of T-110 Solids at 1 M NaOH

Figure 3.5. Aluminum Concentration and Removal as a Function of Time During Leaching of T-110 Solids at 3 M NaOH

Figure 3.6. Aluminum Concentration and Removal as a Function of Time During Leaching of T-110 Solids at 5 M NaOH

Figure 3.7. Chromium Concentration as a Function of Time During Leaching of T-110 Solids at 60°C

Figure 3.8. Chromium Concentration as a Function of Time During Leaching of T-110 Solids at 80°C

Figure 3.9. Chromium Concentration as a Function of Time During Leaching of T-110 Solids at 100°C

Figure 3.10. Chromium Concentration and Removal as a Function of Time During Leaching of T-110 Solids at 1 M NaOH

Figure 3.11. Chromium Concentration and Removal as a Function of Time During Leaching of T-110 Solids at 3 M NaOH

Figure 3.12. Chromium Concentration and Removal as a Function of Time During Leaching of T-110 Solids at 5 M NaOH

Figure 3.13. Phosphorus Concentration as a Function of Time During Leaching of T-110 Solids at 60°C

Figure 3.14. Phosphorus Concentration as a Function of Time During Leaching of T-110 Solids at 80°C

Figure 3.15. Phosphorus Concentration as a Function of Time During Leaching of T-110 Solids at 100°C

Figure 3.16. Phosphorus Concentration and Removal as a Function of Time During Leaching of T-110 Solids at 1 M NaOH

Figure 3.17. Phosphorus Concentration and Removal as a Function of Time During Leaching of T-110 Solids at 3 M NaOH

Figure 3.18. Phosphorus Concentration and Removal as a Function of Time During Leaching of T-110 Solids at 5 M NaOH

3.2.4 Radionuclide Behavior

Appendix C summarizes the behavior of the radionuclides in the T-110 caustic leaching tests. Caustic leaching liberated ¹³⁷Cs from the water-washed T-110 solids, with 68 to 89% of the ¹³⁷Cs removed from the solids. There was no apparent trend regarding the influence of NaOH concentration or temperature on ¹³⁷Cs removal. In contrast, the concentration of the TRU elements (which is dominated by ²³⁹Pu) was dependent upon both NaOH concentration and temperature (Figure 3.19). Peretrukhin et al. (1996) investigated the solubility of TRU elements over a range of NaOH concentrations. Their data indicated that the solubility of ²³⁹PuO₂·xH₂O is $6 \times 10^{-3} \,\mu$ Ci/mL in 3 M NaOH and $2 \times 10^{-2} \,\mu$ Ci/mL in 5 M NaOH at 25°C. The measured TRU concentrations in the leaching solutions were less than these values, even though higher temperatures were used. However, the concentrations were on the same order of magnitude when the T-110 solids were leached with 3 or 5 M NaOH at 100°C.

The highest TRU concentration in the leachate was $\sim 5 \times 10^{-3} \,\mu$ Ci/g (e.g., for leaching with 5 M NaOH at 100°C). To assess whether this would lead to an immobilized low-activity waste (ILAW) form exceeding the 10 nCi TRU/g limit for Class A LLW (10 CFR 61), we considered a 3 M NaOH leaching solution with a TRU concentration of $5 \times 10^{-3} \,\mu$ Ci/g as a limiting case. Assuming that the density of the leaching solution is 1.12 g/mL (i.e., the density of 3 M NaOH), and the ILAW form contains 20 wt% Na₂O, the resulting TRU concentration would be 12 nCi/g. Thus, vitrification of such a leachate would result in a glass waste form that exceeds the Class A TRU criterion. However, it would qualify as a Class C waste (< 100 nCi TRU/g).

A similar analysis can be done for ¹³⁷Cs. In this case, the highest concentration was ~0.01 μ Ci/g. Assuming that the ILAW form contains 20 wt% Na₂O and has a density of 2.7 MT/m³, immobilization of a 3 M NaOH leachate containing 0.01 μ Ci/g¹³⁷Cs would lead to a waste form with 0.065 Ci/m³. This is well within the U.S. Nuclear Regulatory Commission (NRC) Class A limit of 1 Ci¹³⁷Cs/m³. Thus, no Cs removal step would be needed for this leaching solution before vitrification.

Figure 3.19. TRU Concentration In the T-110 Caustic Leaching Solutions

3.3 Impact of Leaching on Immobilized High-Level Waste Glass Mass

To illustrate the effects of caustic leaching on the production of IHLW glass, Table 3.4 shows the concentration of waste oxides in the dilute hydroxide-washed T-110 solids and in the leached T-110 solids. For the sake of discussion, the table also shows the concentrations of waste-derived components

	Wa	ished Solids	Leached Solids	(1 M NaOH/60°C/168 h)	Leached Solids	(3 M NaOH/80°C/168 h)
Component	g oxide/g solids	Conc. in IHLW, wt% ^(a)	g oxide/g solids	Conc. in IHLW, wt% ^(a)	g oxide/g solids	Conc. in IHLW, wt% ^(a)
Al ₂ O ₃	0.0020	0.1	0.0015	0.06	0.0009	0.0
BaO	0.0001	0.003	0.0001	0.004	0.0001	0.004
Bi ₂ O ₃	0.1628	6.9	0.2977	11.6	0.3323	11.6
CaO	0.0050	0.2	0.0040	0.2	0.0043	0.2
Cr ₂ O ₃	0.0087	0.4	0.0119	0.5	0.0054	0.2
Fe ₂ O ₃	0.2002	8.4	0.3115	12.2	0.3602	12.6
MgO	0.0023	0.1	0.0022	0.1	0.0027	0.1
MnO ₂	0.0016	0.1	0.0016	0.1	0.0015	0.1
P ₂ O ₅	0.2023	8.5	0.0030	0.1	0.0019	0.1
PbO	0.0007	0.03	0.0011	0.04	0.0011	0.04
SrO	0.0014	0.1	0.0014	0.1	0.0026	0.1
UO ₃	0.0061	0.3	0.0044 ^(b)	0.2	0.0038 ^(c)	0.1
ZnO	0.0003	0.01	0.0004	0.02	0.0003	0.01
(a) Based on	25 wt% waste ovi	de loading (excluding Na-O	and SiOa)			

Table 3.4. Estimated Concentrations of Waste-Derived Components in the IHLW Glass from T-110 Waste

(a) Based on 25 wt% waste oxide loading (excluding Na₂O and SiO₂).
(b) Uranium was below the detection limit in the leached solids. For this analysis, the detection limit (3636 µg U/g) was used as the U concentration.
(c) Uranium was below the detection limit in the leached solids. For this analysis, the detection limit (3133 µg U/g) was used as the U concentration.

that would result from vitrifying these solids at 25-wt% waste oxide loading (WOL), excluding oxides of Na and Si. Two cases are presented—leaching with 1 M NaOH at 60° and leaching with 3 M NaOH at 80°C. In both cases, the results are based on the solids remaining after leaching for one week. The oxide concentrations in the washed and leached solids were determined by converting the elemental concentrations listed in Tables 2.2 (washed solids), B.1, and B.5 (leached solids) to the corresponding oxide concentrations. The oxide concentrations in the IHLW were determined according to the following formula:

$$[C_{x}]_{IHLW} = WOL \bullet \left(\frac{C_{x}}{\sum_{i} C_{i}}\right)$$
(3.1)

where $[C_x]_{IHLW}$ is the concentration of component x oxide (wt%) in the IHLW, C_x is the concentration of component x oxide in the washed or leached solids, and $\sum C_i$ is the sum of the concentration of all the component oxides in the washed or leached solids (excluding Na₂O and SiO₂).

Assuming upper limits of 15, 0.5, and 3.0 wt% for Al, Cr, and P oxides, respectively, in the IHLW, a 25 wt% WOL could not be achieved for the dilute-hydroxide-washed T-110 solids because of the high P content. Aluminum certainly does not pose a problem for vitrifying the washed T-110 solids. The Cr_2O_3 content of the washed solids from the sample used in this experiment is below 0.5 wt%, but is close enough to that level that Cr should probably be considered a potential limiting component for this waste.

The mass (W_{IHLW}) of IHLW glass produced from 1 g of the washed solids can be calculated as follows:

$$W_{\rm IHLW} = 100 \bullet \frac{\sum_{i} C_{i}}{\rm WOL}$$
(3.2)

Likewise, the mass of IHLW glass produced from the leached solids can be determined as follows:

$$W_{\rm IHLW} = 100 \bullet \frac{W_{\rm L}}{W_{\rm W}} \bullet \frac{\sum_{\rm i} C_{\rm i}}{\rm WOL}$$
(3.3)

where W_L is the weight of the leached solids obtained by leaching W_W grams of washed solids. In the cases considered here, $W_L = 1.363$ g and $W_W = 2.498$ g for the 1 M/60°C test, and $W_L = 1.204$ g and $W_W = 2.515$ g for the 3 M/80°C test. Setting the upper limit for P₂O₅ in the IHLW as 3.00 wt%, it can be derived from Equation 3.1 that the maximum WOL achievable for the washed T-110 solids would be 8.8 wt%. At this WOL, applying Equation 3.2 indicates that 6.7 g of IHLW would be produced per gram of washed T-110 solids.

Leaching under either condition (1 M NaOH/60°C or 3 M NaOH/80°C) would remove the P constraint for vitrifying the T-110 solids. As indicated in Table 3.4, the P_2O_5 concentration in the IHLW glass at 25wt% WOL would only be 0.1 wt% in either case. So for the purposes of this discussion, we

assume that the leached T-110 solids can be immobilized at 25-wt% WOL.^(a) This being the case, leaching with 1 M NaOH at 60°C for one week would result in essentially the same mass of IHLW glass as leaching with 3 M NaOH at 80°C for one week—1.4 g IHLW glass per gram of washed solids processed. So, applying caustic leaching to the washed T-110 solids can be expected to yield an approximately 80% reduction in the mass of IHLW glass produced from vitrifying this waste.

⁽a) In the 1 M NaOH/60°C case, the Cr_2O_3 content in the IHLW at 25 wt% WOL would be right at the 0.5 wt% limit (Table 3.4). So, as mentioned in the text above, the behavior of Cr might be an issue for the T-110 waste.

4.0 Conclusions and Recommendations

Bismuth, Fe, Na, P, and Si are the dominant elements present in the T-110 sludge. As expected, Na is largely (> 90%) removed by dilute hydroxide washing. Dilute hydroxide washing is ineffectual at removing Bi, Fe, or Si. For this particular sludge, the behavior of P is of major concern due to the relatively low tolerance for this element in the HLW immobilization process and the high concentration of P in the waste. Only 33% of the P was removed by dilute hydroxide washing, resulting in washed solids that were 8.8 wt% P. This is presumably because the P is present as bismuth phosphate in the T-110 solids. More rigorous pretreatment (e.g., caustic leaching) will be required to remove enough P so that it is not a limiting component in the sludge solids. The minor sludge component, Cr, can also adversely affect the HLW immobilization process. The Cr in the T-110 sludge was largely insoluble in 0.01 M NaOH, with only 3% being removed by dilute hydroxide washing.

The solution obtained by washing the T-110 solids with dilute hydroxide could likely be immobilized as a Class A LLW, even without removing ¹³⁷Cs.

The work presented here indicates caustic leaching to be a very effective method of pretreating Hanford Tank T-110 sludge, primarily because this method essentially quantitatively removes P from the water-washed T-110 solids. Assuming a P_2O_5 limit of 3 wt% in the IHLW glass, it is estimated that caustic leaching will result in an ~80% reduction in the IHLW mass. Unlike high-Al tanks (see, for example, Lumetta et al. 2001), relatively mild leaching conditions (1 M NaOH at 60°C) should sufficiently remove P from the T-110 solids. However, more rigorous leaching conditions (or oxidative leaching) may be needed to avoid encountering the Cr limit in the glass formulation. Leaching of P from the sludge solids is rapid and largely independent of temperature and NaOH concentration. On the other hand, the leaching of Cr is much slower and is highly dependent on temperature and NaOH concentration.

Some of the caustic leaching solutions contained significant concentrations of TRU elements (primarily Pu). The dissolved TRU generally increased with increasing NaOH concentration and temperature. Immobilization of these solutions could result in a waste form that exceeds the 10 nCi/g TRU limit for LLW, but they would be within the Class C limit of 100 nCi/g. This should be considered in managing these leaching solutions. As was the case with the dilute hydroxide wash solution, ¹³⁷Cs would likely not need to be removed to meet the Class A LLW criterion of 1 Ci/m³.

5.0 References

10 CFR 61. 1988. U.S. Nuclear Regulatory Commission, "Licensing Requirements for Land Disposal of Radioactive Waste." U.S. Code of Federal Regulations.

Hill, J. G., G. S. Anderson, and B. C. Simpson. 1995. *The Sort on Radioactive Waste Type Model: A Method to Sort Single-Shell Tanks into Characteristic Groups*, PNL-9814 Rev. 2, Pacific Northwest National Laboratory, Richland, Washington.

Lumetta, G. J. and B. M. Rapko. 1994. *Washing and Alkaline Leaching of Hanford Tank Sludges: A Status Report*, PNL-10078, Pacific Northwest National Laboratory, Richland, Washington.

Lumetta, G. J., B. M. Rapko, M. J. Wagner, J. Liu, and Y. L. Chen. 1996a. *Washing and Caustic Leaching of Hanford Tank Sludges: Results of FY 1996 Studies*, PNNL-11278, Rev. 1, Pacific Northwest National Laboratory, Richland, Washington.

Lumetta, G. J., M. J. Wagner, F. V. Hoopes, R. T. Steele. 1996b. *Washing and Caustic Leaching of Hanford Tank C-106 Sludge*, PNNL-11381, Pacific Northwest National Laboratory, Richland, Washington.

Lumetta, G. J., I. E. Burgeson, M. J. Wagner, J. Liu, and Y. L. Chen. 1997. *Washing and Caustic Leaching of Hanford Tank Sludges: Results of FY 1997 Studies*, PNNL-11636, Pacific Northwest National Laboratory, Richland, Washington.

Lumetta, G. J., B. M. Rapko, J. Liu, D. J. Temer, and R. D. Hunt. 1998. *Washing and Caustic Leaching of Hanford Tank Sludges: Results of FY 1998 Studies*, PNNL-12026, Pacific Northwest National Laboratory, Richland, Washington.

Lumetta, G. J., K. J. Carson, L. P. Darnell, L. R. Greenwood, F. V. Hoopes, R. L. Sell, S. I. Sinkov, C. Z. Soderquist, M. W. Urie, J. J. Wagner. 2001. *Caustic Leaching of Hanford Tank S-110 Sludge*, PNNL-13702, Pacific Northwest National Laboratory, Richland, Washington.

Peretrukhin, V. F., S. V. Kryutchkov, V. I. Silin, and I. G. Tananaev. 1996. *Determiniation of the Solubility of Np(IV)-(VI), Pu(III)-(VI), Am(III)-(VI), and Tc(IV), (V) Hydroxo Compounds in 0.5 – 14 M NaOH Solutions*, WHC-EP-0987, Westinghouse Hanford Company, Richland, Washington.

Rai, D., M. Sass, and D. A. Moore. 1987. "Chromium(III) Hydrolysis Constants and Solubility of Chromium(III) Hydroxide." *Inorg. Chem.*, 26: 345-349.

Rapko, B. M, G. J. Lumetta, and M. J. Wagner. 1995. *Washing and Caustic Leaching of Hanford Tank Sludges: Results of FY 1995 Studies*, PNL-10712, Pacific Northwest Laboratory, Richland, Washington.

Temer, D. J. and R. Villarreal. 1995. *Sludge Washing and Alkaline Leaching Tests on Actual Hanford Tank Sludge: A Status Report,* LAUR-95-2070, Los Alamos National Laboratory, Los Alamos, New Mexico.

Temer, D. J. and R. Villarreal. 1996. *Sludge Washing and Alkaline Leaching Tests on Actual Hanford Tank Sludge: FY 1996 Results*, LAUR-96-2839, Los Alamos National Laboratory, Los Alamos, New Mexico.

Temer, D. J., and R. Villerreal. 1997. *Sludge Washing and Alkaline Leaching Tests on Actual Hanford Tank Sludge: FY 1997 Results*, LAUR-97-2889, Los Alamos National Laboratory, Los Alamos, New Mexico.

U.S. Department of Energy/Office or River Protection (DOE/ORP). 2001. *River Protection Project – Project Management Plan*, DOE/ORP-2000-06, Richland, Washington. http://www.hanford.gov/orp/documents/orp-2000-06/index.html#P572_20332

Weber, E. J. 1982. *Aluminum Hydroxide Dissolution in Synthetic Sludges*, DP-1617, Savannah River Laboratory, Aiken, South Carolina.

Appendix A

Solution Concentrations as a Function of Time

Appendix A: Solution Concentrations as a Function of Time

	Concentration, $\mu g/g^{(a)}$									
Time, h:	4	8	24	72	168	168	Final Wash			
Ag										
Al	[5.4]	[5.6]	[5.4]	[5.0]	[5.1]	[3.6]	[2.3]			
As										
В										
Ba	[0.3]	[0.3]	[1.1]	[0.4]	[0.3]	[0.4]				
Be										
Bi	[11.8]	[15.5]	[14.1]	[10.6]	[11.1]	[10.1]				
Ca			[9.0]	[8.3]	[7.4]		[10.4]			
Cd										
Ce										
Co										
Cr	7	9	11	18	27	27	2			
Cu										
Dy										
Eu										
Fe	8	9	8	6	6	5	2			
K	[85]	[102]	[93]	[89]	[103]	[70]				
La										
Li										
Mø										
Mn										
Mo										
Na	25668	25999	26035	25642	24685	24908	5166			
Nd					21005	21900				
Ni										
P	4934	5053	5044	4963	4800	4819	378			
Ph										
Pd										
Rh										
Ru										
Sh										
Se										
Si	2064	2075	2034	1970	1883	1894	248			
Sn	2004	2015	2034	1770	1005	1074	240			
Sr										
Те										
Th										
Tii Ti										
T1										
II II										
V										
v W/										
vv V										
1 7										

Table A.1. Component Concentrations As a Function of Time For Leaching ofT-110 Solids With 1 M NaOH at 60°C

	Concentration, $\mu g/g^{(a)}$								
Time, h:	4	8	24	72	168	168	Final Wash		
Ag									
Al	[11.3]	[12.1]	[11.9]	[9.0]	[8.5]	[8.0]			
As									
В									
Ba	[0.4]	[0.3]	[0.7]	[0.6]		[0.9]	[0.5]		
Be									
Bi	42.0	[13.5]	[13.0]	[10.5]	[10.1]	[13.8]			
Ca	[7.9]						[8.9]		
Cd									
Ce									
Co									
Cr	22	37	71	114	134	137	12		
Cu									
Dy									
Eu									
Fe	21	26	25	19	15	16	1		
K	[124]	[13]							
La									
Li									
Mø									
Mn									
Mo									
Na	55474	63634	68805	62.246	66239	66833	6973		
Nd		[3]							
Ni									
P	4111	4541	4737	4656	4460	4562	370		
Ph	[4]	[5]							
Pd									
Rh									
Ru									
Sh									
Se									
Si	2329	2585	2726	2701	2585	2647	256		
Sn									
Sr									
Te									
Th									
Ti									
TI									
II II									
V									
W/									
v									
T Zn									
Zn 7r	[J.0] 		[0.9]		[5.0]	[0.0]			
L1									

Table A.2. Component Concentrations As a Function of Time For Leaching ofT-110 Solids With 3 M NaOH at 60°C

	Concentration, µg/g ^(a)								
Time, h:	4	8	24	72	168	168	Final Wash		
Ag									
Al	[10.7]	[12.6]	[13.5]	[13.4]	[15.2]	[11.3]	[5.8]		
As									
В					34		41		
Ba	[0.3]	[0.3]	[0.5]		[0.7]	[0.3]	[0.9]		
Be									
Bi	12.5	[3.9]	[3.0]	[2.7]	[4.5]	[3.6]			
Ca					[8.2]		[10.3]		
Cd									
Ce									
Co									
Cr	25	46	93	135	142	146	13		
Cu									
Dy									
Eu									
Fe	31	43	38	30	21	24	1		
K	[61]	[77]							
La									
Li									
Mg									
Mn									
Mo									
Na	/0/10	93030 #VALUEI	99104	100/84	90830	8/310	9400		
Nu Ni		#VALUE!							
D							241		
Ph	[5 3]	42 <i>9</i> 4	4328	[7 0]	[6 2]	4094 [5 4]	541		
Pd	[5.5]	[0.7]	[/.4]	[7.0]	[0.2]	[3.4]			
Rh									
Ru									
Sh									
Se									
Si	2224	2665	2705	2762	2474	2546	261		
Sn									
Sr									
Те									
Th									
Ti									
Tl									
U									
V									
W									
Y									
Zn	[6.7]	[7.7]	[7.9]	[8.0]	[7.2]	[7.2]			
Zr									

Table A.3. Component Concentrations As a Function of Time For Leaching ofT-110 Solids With 5 M NaOH at 60°C

	Concentration, $\mu g/g^{(a)}$								
Time, h:	4	8	24	72	168	168	Final Wash		
Ag									
Al	[4.1]	[4.3]	[3.9]	[3.7]	[8.3]	[4.2]	[6.3]		
As									
В					37		40		
Ва	[1.1]	[0.5]	[0.8]		[1.1]	[1.4]	[0.8]		
Be									
Bi	[18.6]	[13.4]	[12.9]	[11.9]	[16.0]	[16.8]			
Ca	[11.9]			[7.4]		[7.5]	[9.3]		
Cd									
Ce									
Со									
Cr	11	14	24	45	75	79	7		
Cu									
Dy									
Eu									
Fe	10	8	7	[6]	[6]	[6]	[1]		
Κ		[66]			[57]	[64]			
La									
Li									
Mg									
Mn									
Мо									
Na	25307	25289	25719	25476	24646	25859	5866		
Nd									
Ni									
Р	5044	5144	5234	5169	4986	5278	449		
Pb									
Pd									
Rh									
Ru									
Sb									
Se									
Si	1951	1972	1981	1948	1883	1958	286		
Sn									
Sr									
Te									
Th									
Ti									
Tl									
U									
V									
W									
Y									
Zn									
Zr									

Table A.4. Component Concentrations As a Function of Time For Leaching ofT-110 Solids With 1 M NaOH at 80°C

	Concentration, $\mu g/g^{(a)}$								
Time, h:	4	8	24	72	168	168	Final Wash		
Ag									
Al	[11.6]	[12.5]	[11.5]	[12.4]	[14.3]	[12.1]	[7.3]		
As									
В					29		38		
Ba	[0.4]	[1.1]	[0.4]	[0.4]	[1.0]	[0.3]	[1.0]		
Be									
Bi	[12.4]	[12.3]	[11.8]	[11.3]	[11.1]	[8.7]	[3.0]		
Ca			[7.9]		[7.3]	[6.9]	[12.7]		
Cd									
Ce									
Co									
Cr	50	81	132	157	191	189	17		
Cu									
Dy									
Eu									
Fe	29	28	22	16	15	15	[1.5]		
K	[75]	[88]	[73]	[89]	[73]	[90]			
La									
Li									
Mg									
Mn									
Мо									
Na	62774	58446	62691	54395	59137	57610	6275		
Nd									
Ni									
Р	4908	4766	4984	4467	4915	4835	415		
Pb	[4.1]	[4.8]	[3.7]	[3.9]	[3.2]	[4.1]			
Pd									
Rh									
Ru									
Sb									
Se									
Si	2712	2759	2807	2515	2781	2726	298		
Sn									
Sr									
Те									
Th									
Ti									
Tl									
U									
V									
W									
Y									
Zn	[6.7]	[9.3]	[6.8]	[5.8]	[6.5]	[5.9]			
Zr									

Table A.5. Component Concentrations As a Function of Time For Leaching ofT-110 Solids With 3 M NaOH at 80°C

	Concentration, $\mu g/g^{(a)}$								
Time, h:	4	8	24	72	168	168	Final Wash		
Ag									
Al	[11.7]	[12.1]	[12.8]	[13.1]	[15.0]	[13.5]	[9.0]		
As									
В					28		67		
Ba	[0.0]	[0.0]	[0.3]		[0.3]	[0.3]	[1.1]		
Be									
Bi	0.0	[0.0]	[0.0]	[5.1]	[5.9]	[5.5]			
Ca					[6.7]		[18.4]		
Cd									
Ce									
Co									
Cr	44	79	134	166	182	194	22		
Cu									
Dy									
Eu									
Fe	44	40	35	27	26	27	2		
K	[53]	[53]							
La									
Li									
Mg									
Mn									
Mo									
Na	97507	97513	98023	90738	92560	99010	13661		
Nd		[0]							
Ni									
Р	4280	4359	4437	4241	4203	4496	479		
Pb	[6.6]	[6.8]	[7.3]	[5.9]	[4.9]	[4.9]			
Pd									
Rh									
Ru									
Sb									
Se									
Si	2685	2747	2808	2622	2681	2833	398		
Sn									
Sr									
Te									
Th									
Ti									
Tl									
U									
V									
W									
Y									
Zn	[7.6]	[7.8]	[7.8]	[6.9]	[7.0]	[7.5]			
Zr									

Table A.6. Component Concentrations As a Function of Time For Leaching ofT-110 Solids With 5 M NaOH at 80°C

	Concentration, $\mu g/g^{(a)}$								
Time, h:	4	8	24	72	168	168	Final Wash		
Ag									
Al	[4.6]	[5.2]	[5.0]	[4.5]	[8.8]	[2.7]	[6.4]		
As									
В					38		45		
Ba	[0.4]	[0.3]	[1.3]	[0.6]	[0.6]		[1.6]		
Be									
Bi	[19]	[21]	[24]	[27]	[28]	[26]			
Ca			[9.5]	[7.5]	[7.3]	[8.1]	[11.0]		
Cd									
Ce									
Co									
Cr	16	23	47	83	115	116	10		
Cu									
Dy									
Eu									
Fe	10	10	9	7	[6]	[6]	[1]		
Κ	[66]	[79]	[66]	[64]	[68]				
La									
Li									
Mg									
Mn									
Mo									
Na	25188	24446	26779	25806	23293	24413	5735		
Nd									
Ni									
Р	4951	4906	5170	5128	4546	4566	397		
Pb									
Pd									
Rh									
Ru									
Sb									
Se									
Si	1940	1910	2036	1979	1790	1797	280		
Sn									
Sr									
Те									
Th									
Ti									
Tl									
U									
V									
W									
Y									
Zn			[8]						
Zr									

Table A.7. Component Concentrations As a Function of Time For Leaching ofT-110 Solids With 1 M NaOH at 100°C

	Concentration, $\mu g/g^{(a)}$										
Time, h:	4	8	24	72	168	168	Final Wash				
Ag											
Al	[19.1]	[12.6]	[13.1]	[13.9]	[13.1]	[11.6]	[7.2]				
As											
В					16		41				
Ba	[0.7]	[0.3]	[0.5]	[0.4]	[0.5]	[0.4]	[0.6]				
Be											
Bi	21.6	[10.2]	[7.6]	[7.3]	[22.2]	[21.7]					
Ca	[11.6]	[8.6]			[7.8]		[11]				
Cd											
Ce											
Co											
Cr	99	104	154	194	200	200	13				
Cu											
Dy											
Eu											
Fe	35	24	23	18	15	15	1				
K	[121]	[97]	[107]	[113]	[91]	[90]					
La											
Li											
Mg											
Mn											
Мо											
Na	107265	69124	64415	66567	60129	58549	5131				
Nd											
Ni											
Р	7650	4868	4609	4665	4116	4127	256				
Pb	[7]	[6]	[7]	[6]	[3]	[3]					
Pd											
Rh											
Ru											
Sb											
Se											
Si	4241	2717	2618	2699	1668	2466	231				
Sn											
Sr											
Те											
Th											
Ti											
Tl											
U											
V											
W											
Y											
Zn	[10.8]	[7.0]	[6.5]	[6.3]	[5.1]	[4.9]					
Zr											

Table A.8. Component Concentrations As a Function of Time For Leaching ofT-110 Solids With 3 M NaOH at 100°C

	Concentration, $\mu g/g^{(a)}$									
Time, h:	4	8	24	72	168	168	Final Wash			
Ag										
Al	[10.4]	[14.4]	[14.1]	14.8	17.9	[14.1]	[3.7]			
As										
В					40		[15]			
Ba	[0.4]	[0.3]		[0.9]	[0.7]	[0.5]	[0.3]			
Be										
Bi	[2.3]	[2.9]	[2.6]	[3.4]	[6.8]	[5.7]				
Ca	[5.6]			[7.4]	[7.6]	[8.4]	[10.1]			
Cd										
Ce										
Co										
Cr	41	91	169	191	194	184	13			
Cu										
Dy										
Eu										
Fe	34	40	41	31	24	23	1			
K	[75]	[122]	[88]	[99]	[101]	[104]				
La										
Li										
Mg										
Mn										
Mo										
Na	74272	99127	98752	98507	93781	89701	7470			
Nd		[3]								
Ni										
Р	3269	4346	4461	4397	4283	4077	272			
Pb	[7.7]	[10.3]	[9.1]	[7.9]	[6.8]	[6.4]				
Pd										
Rh										
Ru										
Sb										
Se										
Si	2050	2686	2839	2835	2788	2644	231			
Sn										
Sr										
Te										
Th										
Ti										
T1										
U										
V										
W										
Y										
Zn	[6.4]	[8.3]	[8.1]	[8.4]	[7.6]	[7.4]				
Zr										

Table A.9. Component Concentrations As a Function of Time For Leaching ofT-110 Solids With 5 M NaOH at 100°C

Appendix B

Leaching Results in Terms of Percent Component Removed

	Leaching So	olution	Washing	Solution	Leached S	Solids				
	Solution Mass, g:	42.308	Solution Mass, g:	91.767	Solids Mass, g:	1.363				
							Total		Calc. Conc. In	Measured Conc. In
Component	Conc., µg/g	Mass, µg	Conc., µg/g	Mass, µg	Conc., µg/g	Mass, µg	Mass, µg	Removed, %	Washed Solids, µg/g	Washed Solids, µg/g
Ag										
Al	[4]	[186]		[2] [214]	800	1090	1490	27%	597	1048
As										
В					520	709	709	(b)	[284]	[343]
Ва	[0.4]	[15.5]			[88]	[120]	[135]	11%	[54]	[62]
Be										
Bi	[11]	[449]			267000	363921	[364370]	0.1%	145865	146000
Ca	[7]	[314]	Į.	[954]	2870	3912	[5180]	24%	[2074]	3580
Cd										
Ce										
Co				- 100						
Cr	27	1128		2 188	8140	11095	12410	11%	4968	5943
Cu										
Dy										
Eu	6	222		2 150	217860	206042	207227	0.10/	110026	140000
V	[96]	[2659]		2 150	21/800 N/A	290943 N/A	29/32/ N/A	0.170 N/A	119020 N/A	140000 N/A
K La	[80]	[3038]			[130]	[177]	[177]	IN/A (b)	IN/A	IN/A [80]
La					[150]	[1//]	[1//]	(0)	[/1]	[80]
LI Ma					1350			 (b)	737	
Mn					1040	1418	1418	(b)	567	[1400]
Mo										
Na	24797	1049093	51	66 474062	61410	83702	1606857	N/A	N/A	76400
Nd										
Ni					N/A	N/A	N/A	N/A	N/A	N/A
Р	4809	203480	3	34687	[1300]	[1772]	[239939]	99%	[96053]	88300
Pb					[1000]	[1363]	[1363]	(b)	[546]	[660]
Pd										
Rh										
Ru										
Sb										
Se										
Si	1888	79895	2	248 22749	66800	91048	193693	53%	[77539]	79867
Sn										
Sr					1880	2562	2562	(b)	1026	1170
Te										
Th										
Ti					[76]	[104]	[104]	(b)	[41]	[70]
Tl										
U										
V										
W										
Y										
Zn					[330]	[450]	[450]	(b)	[180]	[267]
Zr										

Appendix B: Leaching Results in Terms of Percent Component Removed Table B.1. Results of Leaching T-110 Sludge With 1 M NaOH At 60°C^(a)

(a) If blank, the analyte was below detection limit. Potassium and Ni were not determined in the solids because of the fusion method used to dissolve the solids for analysis.

The amount of Na removed could not reasonably be calculated due to the realtively large amount of Na added as NaOH during leaching.

		Leach	ing Soli	ution	Washi	ng Solu	tion	Leached S	Solids					
		Solution Mas	ss, g:	44.928	Solution Mass,	g:	92.944	Solids Mass, g:	1.220					
	Component	Conc., µg/g		Mass, µg	Conc., µg/g		Mass, µg	Conc., µg/g	Mass, µg	Total Mass, μg	Removed, %	Calc. Conc. In Washed Solids, µg/g	Measured Conc. In Washed Solids, µg/g	Recovery %
	Ag		503											
	Al		[8]	[371]				426	520	890	42%	356	1048	34%
	AS D		[0.0]					50	61					
	D Ba		[0.9]	[41]		[0 5]	[43]	50 [98]	[120]	[102]	40%	[41]	[545]	12%
	Be					[0.5]	[45]	[90]	[120]				[02]	
	Bi		[12]	538				297000	362340	362878	0.1%	145267	146000	99%
	Ca		[]			[9]	[832]	2850	3477	[4309]	19%	[1725]	3580	48%
	Cd					L. 1								
	Ce													
	Co													
	Cr		136	6098		12	1070	5200	6344	13512	53%	5409	5943	91%
	Cu													
	Dy													
	Eu		16			613								
В	Fe		16	[698]		[1]		239860	292629	293327	0%	117425	140000	84%
i)	K Lo							N/A	IN/A	IN/A	IN/A	IN/A [50]	IN/A	IN/A 720/
	La							[120]	[140]	[140]	(0)	[39]	[80]	/370
	Mg							1480	1806	1806	 (b)	723	[1400]	52%
	Mn							830	1013	1013	(b)	405	[992]	41%
	Мо													
	Na		66536	2989333		6973	648075	49910	60890	3698298	N/A	N/A	76400	N/A
	Nd													
	Ni							N/A	N/A	N/A	N/A	N/A	N/A	N/A
	Р		4511	[202672]		370	34411	[730]	[891]	[237974]	100%	[95266]	88300	108%
	Pb							[980]	[1196]	[1196]	(b)	[479]	[660]	73%
	Pd													
	Rh													
	KU Sh													
	50 Se													
	Si		2616	[117538]		256	23801	48900	59658	[200997]	70%	[80463]	79867	
	Sn		2010			200								
	Sr							2180	2660	2660	(b)	1065	1170	91%
	Те													
	Th													
	Ti							[69]	[84]	[84]	(b)	[34]	[70]	48%
	Tl													
	U												[5100]	0%
	V													
	W													
	Y Zn		[6]	[275]							520/			
	Z11 7r		[0]	[2/3]				[210]	[236]	[331]	32%	[213]	[207]	80%

Table B.2. Results of Leaching T-110 Sludge With 3 M NaOH At 60°C^(a)

(a) If blank, the analyte was below detection limit. Potassium and Ni were not determined in the solids because of the fusion method used to dissolve the solids for analysis.

The amount of Na removed could not reasonably be calculated due to the realtively large amount of Na added as NaOH during leaching.

	Leaching Sol	lution	Washing Sol	ution	Leached S	Solids					
	Solution Mass, g:	53.042	Solution Mass, g:	91.265	Solids Mass, g:	1.173					
Component	Conc., µg/g	Mass, µg	Conc., µg/g	Mass, µg	Conc., µg/g	Mass, µg	Total Mass, μg	Removed, %	Calc. Conc. In Washed Solids, µg/g	Measured Conc. In Washed Solids, µg/g	Recovery %
Ag Al	[13]	 [703]	 [6]	[528]	[740]	 [868]	[2098]	59%	840	1048	80%
As											
В	34		41	3748	470	551	4299	87%	[1721]	[343]	502%
Ва	[0.5]	[25]	[0.9]	[78]	[120]	[141]	[244]	42%	98	[62]	157%
Be								0.10/			
BI	[4]	[214]			298000	349554	[349/68]	0.1%	[2406]	146000	90%
Ca	[٥]	[430]	[10]	[944]	4140	4830	0230	2270	[2490]	5580	/0%
Ce											
Co											
Cr	144	7630	13	1188	4060	4762	13581	65%	5437	5943	91%
Cu											
Dy											
Eu											
Fe	22	1192	1	122	244860	287221	288535	0.5%	115506	140000	83%
K					N/A	N/A	N/A	N/A	N/A	N/A	N/A
La					[160]	[188]	[188]	(b)	[75]	[80]	94%
Li											
Mg					[1890]	[2217]	[2217]	(b)	[887]	[1400]	63%
Mn					[940]	[1103]	[1103]	(b)	441	[992]	44%
Mo										7(400	
Na	891/3	4729911	9400	85/916	48410	56/85	5644612	N/A	N/A	/6400	N/A
Ni					 N/A	 N/A	 N/A	 N/A	 N/A	 N/A	 N/A
P	4026	213521	341	31096	[640]	[751]	[245368]	100%	[98226]	88300	111%
Ph	[6]	[308]			[980]	[1150]	[1457]	21%	[583]	[660]	88%
Pd											
Rh											
Ru											
Sb											
Se											
Si	2510	133128	261	23822	40700	47741	204691	77%	[81942]	79867	103%
Sn											
Sr					2200	2581	2581	(b)	1033	1170	88%
Te											
Th											
11					[83]	[97]	[97]	(b)	[39]	[/0]	56%
V											
W											
Y											
Zn	[7]	[381]			[150]	[176]	[557]	68%	[223]	[267]	84%
Zr			0								

Table B.3. Results of Leaching T-110 Sludge With 5 M NaOH At 60°C^(a)

(a) If blank, the analyte was below detection limit. Potassium and Ni were not determined in the solids because of the fusion method used to dissolve the solids for analysis.

The amount of Na removed could not reasonably be calculated due to the realtively large amount of Na added as NaOH during leaching.

	Leaching Sol	ution	Washing Soli	ution	Leached S	Solids					
	Solution Mass, g:	39.411	Solution Mass, g:	93.806	Solids Mass, g:	1.359					
Component	Conc., µg/g	Mass, µg	Conc., µg/g	Mass, µg	Conc., µg/g	Mass, µg	Total Mass, μg	Removed, %	Calc. Conc. In Washed Solids, µg/g	Measured Conc. In Washed Solids, µg/g	Recovery %
Ag											
Al	[6]	[245]	[6]	[590]	540	734	1569	53%	626	1048	60%
AS	27		40								
D Ba	57	[400	40 [0.8]	5700	[460] 02	[023]	[3/91]	89% 50%	[2310]	[343]	161%
Be		[49.4]		[75.8]							
Bi	[16]	[645]			263000	357417	358062	(b)	142825	146000	98%
Ca	[8]	[297]	[9]	[870]	2870	3900	5068	23%	[2021]	3580	56%
Cd											
Ce											
Co											
Cr	77	3045	7	629	6770	9200	12874	29%	5135	5943	86%
Cu											
Dy											
Eu											
Fe	[6]	[244]	[1]	[140]	220860	300149	300534	(b)	1198/8	140000	86%
K Lo	[01]	[2389]			[120]	N/A	IN/A	(b)	IN/A [65]	IN/A [20]	IN/A 910/
La					[120]	[105]	[105]	(0)	[03]	[80]	01/0
H Mo					[1420]	[1930]	[1930]	 (b)	[770]	[1400]	55%
Mn					780	1060	1060	(b)	423	[992]	43%
Mo								(0)			
Na	25252	995222	5866	550244	56910	77341	1622807	95%	N/A	76400	N/A
Nd											
Ni									N/A	N/A	N/A
Р	5132	202258	449	42111	1850	2514	246883	99%	98477	88300	112%
Pb					950	1291	1291	(b)	515	[660]	78%
Pd											
Rh											
Ru											
SD											
Se Si			286			04586	107056	520/	78602	70867	08%
Sn	1920		280	20782	09000	94580	197050	5270	78002		9870
Sr					1990	2704	2704	 (b)	1079	1170	92%
Te								(0)			
Th											
Ti					[66]	[90]	[90]	(b)	[36]	[70]	51%
Tl											
U										[5100]	
V											
W											
Y											,
Zn					[340]	[462]	[462]	(b)	[184]	[267]	69%
Zr											

Table B.4. Results of Leaching T-110 Sludge With 1 M NaOH At 80°C^(a)

(a) If blank, the analyte was below detection limit. Potassium and Ni were not determined in the solids because of the fusion method used to dissolve the solids for analysis.

The amount of Na removed could not reasonably be calculated due to the realtively large amount of Na added as NaOH during leaching.

	Leaching Sol	lution	Washing Sol	ution	1	Leached S	olids					
	Solution Mass, g:	41.241	Solution Mass, g:	93.060	Solids M	lass, g:	1.204					
Component	Conc., µg/g	Mass, µg	Conc., µg/g	Mass, µg	Conc., µ	g/g	Mass, µg	Total Mass, μg	Removed, %	Calc. Conc. In Washed Solids, µg/g	Measured Conc. In Washed Solids, µg/g	Recovery %
Ag					-	- 500						
AI	[13]	[544]	[/]	[6//]		500	602	[1823]	0/%	[/25]	1048	69%
R	20	1102	38	3554	-	-				1887		
Ba	[0.6]	[25.9]	[1]	[90]		[100]	[120]	[237]	49%	[94]	[545]	152%
Be		[23.7]			_	-	[120]	[257]			[02]	
Bi	[10]	[409]	[3]	[282]		298000	358792	359483	0.2%	142935	146000	98%
Ca	[7]	[294]	[13]	[1185]		3090	3720	[5199]	28%	[2067]	3580	58%
Cd					-	-						
Ce					-	-						
Co					-	-						
Cr	190	7841	17	1594		3690	4443	13877	68%	5518	5943	93%
Cu					-	-						
Dy					-	-						
Eu					-	-						
Fe	15	616	[1]	[135]		251860	303239	303991	0.2%	120871	140000	86%
K	[81]	[3360]			N/A		N/A	N/A			N/A	N/A
La						[140]	[169]	[169]	(b)	[67]	[80]	84%
Li					-	-						
🕁 Mg						1620	1950	1950	(b)	776	[1400]	55%
ίση Mn						970	1168	1168	(b)	464	[992]	47%
Mo					-	-						
Na	58374	2407385	6275	583949		33510	40346	3031680	99%	1205439	76400	N/A
Nd						[170]	[205]	[205]	(b)	[81]		
Ni					N/A		N/A	N/A			N/A	N/A
Р	4875	201044	415	38648		[810]	[975]	240667	100%	95693	88300	108%
Pb	[4]	[152]				[1000]	[1204]	[1356]	11%	[539]	[660]	82%
Pd					-	-						
Rh					-	-						
Ru					-	-						
SD S-					-	-						
Se S:		112569			-	- 47800		109950	710/	70065	70967	
SI Sn	2734	115508	298	27751		4/800	57551	198830	/170	/9003	/980/	9970
Sil Sr					-	- 2220			 (b)		1170	019/
Te						2250	2005	2085	(0)	1008	1170	9170
Th						_						
Ti					_	[73]	[88]	[88]	 (b)	[35]	[70]	50%
TI					-	-			(0)			
U					-	-					[5100]	
v					_	-						
Ŵ					-	-						
Y					-	-						
Zn	[6]	[256]				[230]	[277]	[533]	48%	[212]	[267]	79%
Zr					-		'			,		

Table B.5. Results of Leaching T-110 Sludge With 3 M NaOH At 80°C^(a)

(a) If blank, the analyte was below detection limit. Potassium and Ni were not determined in the solids because of the fusion method used to dissolve the solids for analysis.

The amount of Na removed could not reasonably be calculated due to the realtively large amount of Na added as NaOH during leaching.

	Leaching So	lution	Washing Sol	ution	Leached S	Solids					
	Solution Mass, g:	45.888	Solution Mass, g:	91.593	Solids Mass, g:	1.053					
Component	t Conc., μg/g	Mass, µg	Conc., µg/g	Mass, µg	Conc., µg/g	Mass, µg	Total Mass, μg	Removed, %	Calc. Conc. In Washed Solids, µg/g	Measured Conc. In Washed Solids, µg/g	Recovery %
Ag											
Al	[14]	[653]	[9]	[822]	290	305	[1/81]	83%	[708]	1048	68%
AS	20										
Ba	[0 3]		[1]	[100]	[/80]	[021]	216	46%	[2700]	[545]	139%
Be							210				
Bi	[6]	[261]			287000	302211	302472	0.1%	120267	146000	82%
Ca	[7]	[308]	[18]	[1690]	3580	3770	[5767]	35%	[2293]	3580	64%
Cd											
Ce											
Co											
Cr	188	8618	22	1973	2940	3096	13687	77%	5442	5943	92%
Cu											
Dy											
Eu											
Fe	27	1218	2	196	256860	2/04/4	2/1888	1%	108106	140000	//%
K.					IN/A	IN/A	N/A	N/A	N/A 46	N/A [20]	IN/A 590/
La					110	110	110	(0)	40	[80]	30/0
H Mg					1740	1832	1832	 (b)	729	[1400]	52%
$\tilde{\omega}$ Mn					980	1032	1032	(b)	410	[992]	41%
Mo											
Na	95785	4395385	13661	1251241	51510	54240	5700867	N/A	N/A	76400	N/A
Nd											
Ni					N/A	N/A	N/A	N/A	N/A	N/A	N/A
Р	4349	199574	479	43839	[1300]	[1369]	[244782]	99%	[97329]	88300	110%
Pb	[5]	[226]			890	937	1163	#VALUE!	462	[660]	70%
Pd											
Rh											
Ru											
SD											
Se Si	2757	126513	308	36441	40700	42857	205811	70%	81833	70867	
Sn					40700	42057					
Sr					2340	2464	2464	(b)	980	1170	84%
Te											
Th											
Ti					65	68	68	(b)	27	[70]	39%
Tl											
U										[5100]	
V											
W											
Y											
Zn	[7]	[333]			150	158	[491]	68%	[195]	[267]	73%
Zr											

Table B.6. Results of Leaching T-110 Sludge With 5 M NaOH At 80°C^(a)

(a) If blank, the analyte was below detection limit. Potassium and Ni were not determined in the solids because of the fusion method used to dissolve the solids for analysis. The amount of Na removed could not reasonably be calculated due to the realtively large amount of Na added as NaOH during leaching.

	Leaching So	lution	Washing Sol	ution	Leached S	Solids					
	Solution Mass, g:	44.622	Solution Mass, g:	91.634	Solids Mass, g:	1.324					
Compon	ent Conc., µg/g	Mass, µg	Conc., µg/g	Mass, µg	Conc., µg/g	Mass, µg	Total Mass, μg	Removed, %	Calc. Conc. In Washed Solids, µg/g	Measured Conc. In Washed Solids, µg/g	Recovery %
Ag											
Al	[6]	[255]	[6]	[587]	630	834	16/6	50%	669	1048	64%
AS								790/			
B	50		43	4137 [142]	[000]	[1105]	[5502]	/ 870 570/	[2113]	[343]	1620/
Ва	[1]		[2]	[143]	82	109	231	3770	[100]	[02]	10270
Bi	[27]	[1205]			250000	331000	332205	0.4%	132511	146000	91%
Ca	[8]	[344]	[11]	[1006]	2900	3840	5189	26%	[2070]	3580	58%
Cd											
Ce											
Co											
Cr	116	5159	10	909	4990	6607	12674	48%	5055	5943	85%
Cu											
Dy											
Eu											
Fe	[6]	[258]	[1]	[134]	204860	271235	271627	0.1%	108347	140000	77%
K	[68]				N/A	N/A	N/A	N/A	N/A	N/A	N/A
La										[80]	
Li											
D Mg					1290	1708	1708	(b)	681	[1400]	49%
					860	1139	1139	(b)	454	[992]	46%
No	22952	1064391	5725	525524	74210	09396	1699302	 N/A	 N/A	76400	 N/A
Nd	23833	1004381	5755	525554	/4510	98380	1088302	IN/A	IN/A	/0400	1N/A
Ni					N/A	N/A	N/A	N/A	 N/A	 N/A	N/A
P	4556	203286	397	36340	2130	2820	242446	99%	96708	88300	110%
Pb					870	1152	1152	(b)	459	[660]	70%
Pd											
Rh											
Ru											
Sb											
Se											
Si	1793	80025	280	25662	65400	86589.6	192277	55%	76696	79867	96%
Sn											
Sr					1820	2410	2410	(b)	961	1170	82%
Te											
Th											
11					[75]	[99]	[99]	(b)	[40]	[70]	57%
11											
U V										[5100]	
v W											
v											
Zn					320	424	424	 (h)	169	[267]	63%
Zr							2 .	(0)			
-											

Table B.7. Results of Leaching T-110 Sludge With 1 M NaOH At 100°C^(a)

(a) If blank, the analyte was below detection limit. Potassium and Ni were not determined in the solids because of the fusion method used to dissolve the solids for analysis. The amount of Na removed could not reasonably be calculated due to the realtively large amount of Na added as NaOH during leaching.

	Leaching Sol	ution	Washing 2	Solution	Leached S	Solids					
	Solution Mass, g:	49.644	Solution Mass, g:	91.192	Solids Mass, g:	1.140					
Component	Conc., µg/g	Mass, µg	Conc., µg/g	Mass, µg	Conc., µg/g	Mass, µg	Total Mass, μg	Removed, %	Calc. Conc. In Washed Solids, µg/g	Measured Conc. In Washed Solids, µg/g	Recovery %
Ag											
Al	[12.4]	[613]	[7.]	2] [661]	380	433	1707	75%	[681]	1048	65%
As		702				750			2110		
B	16	/93 [22]	10	41 3/43	660	/52	5289	80%	2110	[343]	615%
Ва	[0.4]	[22]	[0.	6] [55]	110	125	203	38%	[81]	[62]	130%
Bi	[21.9]	 [1088]			298000	339720	340808	0.3%	135943	146000	93%
Ca	[21.7]	[385]	[1	11 [1018]	3640	4150	5553	25%	[2215]	3580	62%
Cd											
Ce											
Co											
Cr	200	9911		13 1153	2310	2633	13697	81%	5464	5943	92%
Cu											
Dv											
Eu											
Fe	15	750		1 105	246860	281420	282275	0.3%	112595	140000	80%
K	[91]	[4496]			N/A	N/A	N/A	N/A	N/A	N/A	N/A
La					120	137	137	(b)	55	[80]	68%
Li											
🕁 Mg					1740	1984	1984	(b)	791	[1400]	57%
ω Mn					920	1049	1049	(b)	418	[992]	42%
Мо											
Na	59339	2945840	513	467894	49210	56099	3469834	N/A	N/A	76400	N/A
Nd											
Ni					N/A	N/A	N/A	N/A	N/A	N/A	N/A
Р	4121	204591	25	56 23340	[1900]	[2166]	230097	99%	91782	88300	104%
Pb	[3]	[169]			1000	1140	1309	13%	522	[660]	79%
Pd											
Rh											
Ru											
Sb											
Se											
Si	2067	102598	23	31 21055	42700	48678	172332	72%	68740	79867	86%
Sn											
Sr					2220	2531	2531	(b)	1009	1170	86%
Te											
1h					((
11					66	/5	/5	(b)	30	[/0]	43%
U										[5100]	
V W											
v											
ı Zn	[5]	[248]			250	285	533				80%
Zr		[270]						+070			
Z -1											

Table B.8. Results of Leaching T-110 Sludge With 3 M NaOH At 100°C^(a)

(a) If blank, the analyte was below detection limit. Potassium and Ni were not determined in the solids because of the fusion method used to dissolve the solids for analysis. The amount of Na removed could not reasonably be calculated due to the realtively large amount of Na added as NaOH during leaching.

	Leaching Sol	ution	Washing	Solution		Leached S	Solids					
	Solution Mass, g:	50.598	Solution Mass, g:		90.594	Solids Mass, g:	1.162					
Component	Conc., µg/g	Mass, µg	Conc., µg/g	Mas	ss, μg	Conc., µg/g	Mass, µg	Total Mass, μg	Removed, %	Calc. Conc. In Washed Solids, µg/g	Measured Conc. In Washed Solids, µg/g	Recovery %
Ag												
Al	16	808		[4]	[333]	295	343	1484	77%	590	1048	56%
AS D	40		[151		[705]			70%	[1712]		
Ba	40	[2020	L FC	13]	[1339]	[/93]	[924]	[4309]	32%	[1/13]	[543]	120%
Be		[2)] 										
Bi	[6]	[317]				290000	336980	337297	0.1%	134114	146000	92%
Ca	[8]	[405]]	10]	[915]	3650	4241	5561	24%	2211	3580	62%
Cd				-								
Ce												
Co												
Cr	189	9582		13	1168	2715	3155	13904	77%	5529	5943	93%
Cu												
Dy												
Eu												
Fe	24	1201		I	119	248860	289175	290496	0.5%	115505	140000	83%
K	[103]	[5191]				N/A	N/A	N/A	N/A	N/A	N/A	N/A
La						150	1/4	1/4	(b)	69	[80]	8/%
									 (b)	022		50%
in Mn						1780	2008	2008	(b)	022 416	[1400]	120/a
Mo						900	1040	1040	(0)	410	[992]	4270
Na	91741	4641901	74	170	676740	50860	59099	5377740	N/A	N/A	76400	N/A
Nd			,	.,.		240	279	279	(b)	111	/0100	1011
Ni						N/A	N/A	N/A	N/A	N/A	N/A	N/A
Р	4180	211520	2	272	24601	[2030]	[2359]	[238480]	99%	[94823]	88300	107%
Pb	[7]	[336]				1100	1278	1614	21%	642	[660]	97%
Pd												
Rh												
Ru												
Sb												
Se												
Si	2716	137428	2	231	20912	35200	40902	199243	79%	79222	79867	99%
Sn												
Sr						2230	2591	2591	(b)	1030	1170	88%
Te												
In Ti						74			 (h)	24		
11 T1						/4	80	80	(0)	54	[/0]	4970
II												
V											[5100]	
Ŵ												
Ÿ												
Zn	[8]	[380]				160	186	566	67%	225	[267]	84%
Zr												

Table B.9. Results of Leaching T-110 Sludge With 5 M NaOH At 100°C^(a)

(a) If blank, the analyte was below detection limit. Potassium and Ni were not determined in the solids because of the fusion method used to dissolve the solids for analysis. The amount of Na removed could not reasonably be calculated due to the realtively large amount of Na added as NaOH during leaching.

Appendix C

Radionuclide Behavior

Appendix C: Radionuclide Behavior

Table C.1. Radionuclide Behavior During Leaching of T-110 Solids at 60°C^(a)

					Leachin	g With 1 M N	VaOH at 60°			
	Leaching Se	olution	Washing So	olution	Leached	Solids				
	Solution Mass, g:	42.308	Solution Mass, g:	91.767	Solids Mass, g:	1.363				
							Total		Calc. Conc. In	Measured Conc. In
	Conc., µCi/g	Activity, µCi	Conc., µCi/g	Activity, µCi	Conc., µCi/g	Activity, µCi	Activity, µCi	Removed, %	Washed Solids, µCi/g	Washed Solids, µCi/g
Cs-137	7.57E-03	3.20E-01	4.60E-03	4.22E-01	9.69E-02	1.32E-01	8.74E-01	85%	3.50E-01	1.55E-01
Am-241(γ)					7.38E-02	1.01E-01	1.01E-01	(b)	4.03E-02	3.83E-02
Pu-239/240	1.00E-06	4.24E-05			1.08E+00	1.47E+00	1.47E+00	0.003%	5.89E-01	6.73E-01
Am-241+Pu-238	2.23E-07	9.42E-06			7.52E-02	1.03E-01	1.03E-01	0.01%	4.11E-02	4.49E-02
Cm-243/244					3.86E-03	5.26E-03	5.26E-03	(b)	2.11E-03	1.40E-03
Total Alpha	1.23E-06	5.19E-05			1.16E+00	1.58E+00	1.58E+00	0.003%	6.33E-01	7.19E-01
					Leachin	g With 3 M N	VaOH at 60°			
	Leaching Se	olution	Washing So	olution	Leached	Solids				
	Solution Mass, g:	44.928	Solution Mass, g:	92.944	Solids Mass, g:	1.22				
							Total		Calc. Conc. In	Measured Conc. In
	Conc., µCi/g	Activity, µCi	Conc., µCi/g	Activity, µCi	Conc., µCi/g	Activity, µCi	Activity, µCi	Removed, %	Washed Solids, µCi/g	Washed Solids, µCi/g
Cs-137	7.61E-03	3.42E-01	8.18E-04	7.60E-02	1.20E-01	1.46E-01	5.64E-01	74%	2.26E-01	1.55E-01
Am-241(γ)					8.06E-02	9.83E-02	9.83E-02	(b)	3.94E-02	3.83E-02
Pu-239/240	1.98E-05	8.89E-04	6.76E-07	6.28E-05	1.27E+00	1.55E+00	1.55E+00	0.1%	6.20E-01	6.73E-01
Am-241+Pu-238					8.87E-02	1.08E-01	1.08E-01	(b)	4.33E-02	4.49E-02
Cm-243/244					5.80E-03	7.08E-03	7.08E-03	(b)	2.83E-03	1.40E-03
Total Alpha	1.98E-05	8.89E-04	6.76E-07	6.28E-05	1.36E+00	1.66E+00	1.66E+00	0.1%	6.64E-01	7.19E-01
					Leachin	g With 5 M N	VaOH at 60°			
	Leaching Se	olution	Washing So	olution	Leached	Solids				
	Solution Mass, g:	53.042	Solution Mass, g:	91.265	Solids Mass, g:	1.173				
							Total		Calc. Conc. In	Measured Conc. In
	Conc., µCi/g	Activity, µCi	Conc., µCi/g	Activity, µCi	Conc., µCi/g	Activity, µCi	Activity, µCi	Removed, %	Washed Solids, µCi/g	Washed Solids, µCi/g
Cs-137	6.59E-03	3.49E-01	6.02E-04	5.50E-02	1.08E-01	1.27E-01	5.31E-01	76%	2.13E-01	1.55E-01
Am-241(γ)					9.42E-02	1.10E-01	1.10E-01	(b)	4.42E-02	3.83E-02
Pu-239/240	2.93E-04	1.56E-02	1.13E-06	1.03E-04	1.35E+00	1.58E+00	1.60E+00	1%	6.40E-01	6.73E-01
Am-241+Pu-238	2.09E-06	1.11E-04			1.01E-01	1.18E-01	1.19E-01	0.1%	4.74E-02	4.49E-02
Cm-243/244					6.60E-03	7.74E-03	7.74E-03	(b)	3.10E-03	1.40E-03
Total Alpha	2.96E-04	1.57E-02	1.13E-06	1.03E-04	1.46E+00	1.71E+00	1.73E+00	1%	6.92E-01	7.19E-01
(a) Analyte was below	w detection limit if left	blank.								
(b) No detectable ren	noval.									

C.1

	Leaching With 1 M NaOH at 80°									
	Leaching Solution		Washing Solution		Leached Solids					
	Solution Mass, g:	39.411	Solution Mass, g:	93.806	Solids Mass, g:	1.359				
							Total		Calc. Conc. In	Measured Conc. In
	Conc., µCi/g	Activity, µCi	Conc., µCi/g	Activity, µCi	Conc., µCi/g	Activity, µCi	Activity, µCi	Removed, %	Washed Solids, µCi/g	Washed Solids, µCi/g
Cs-137	9.20E-03	3.63E-01	9.31E-04	8.73E-02	1.28E-01	1.74E-01	6.24E-01	72%	2.49E-01	1.55E-01
Am-241(γ)					8.32E-02	1.13E-01	1.13E-01	(b)	4.51E-02	3.83E-02
Pu-239/240	6.64E-07	2.62E-05			1.25E+00	1.70E+00	1.70E+00	0.002%	6.77E-01	6.73E-01
Am-241+Pu-238					9.50E-02	1.29E-01	1.29E-01	(b)	5.15E-02	4.49E-02
Cm-243/244					6.89E-03	9.36E-03	9.36E-03	(b)	3.73E-03	1.40E-03
Total Alpha	6.64E-07	2.62E-05			1.35E+00	1.83E+00	1.83E+00	0.001%	7.31E-01	7.19E-01
					Leachin	g With 3 M N	NaOH at 80°			
	Leaching Se	olution	Washing So	olution	Leached	Solids				
	Solution Mass, g:	41.241	Solution Mass, g:	93.06	Solids Mass, g:	1.204				
							Total		Calc. Conc. In	Measured Conc. In
	Conc., µCi/g	Activity, µCi	Conc., µCi/g	Activity, µCi	Conc., µCi/g	Activity, µCi	Activity, µCi	Removed, %	Washed Solids, µCi/g	Washed Solids, µCi/g
Cs-137	7.91E-03	3.26E-01	6.55E-04	6.09E-02	1.49E-01	1.79E-01	5.66E-01	68%	2.25E-01	1.55E-01
Am-241(γ)					7.67E-02	9.23E-02	9.23E-02	(b)	3.67E-02	3.83E-02
Pu-239/240	6.05E-05	2.49E-03			1.25E+00	1.50E+00	1.51E+00	0.2%	5.99E-01	6.73E-01
Am-241+Pu-238	9.75E-07	4.02E-05			9.50E-02	1.14E-01	1.14E-01	0.04%	4.55E-02	4.49E-02
$O^{\text{Cm-243/244}}$					6.89E-03	8.30E-03	8.30E-03	(b)	3.30E-03	1.40E-03
No Total Alpha	6.16E-05	2.54E-03			1.35E+00	1.62E+00	1.63E+00	0.2%	6.47E-01	7.19E-01
					Leachin	g With 5 M N	NaOH at 80°			
	Leaching Solution Washing Solution Leached		Solids							
	Solution Mass, g:	45.888	Solution Mass, g:	91.593	Solids Mass, g:	1.053				
							Total		Calc. Conc. In	Measured Conc. In
	Conc., µCi/g	Activity, µCi	Conc., µCi/g	Activity, µCi	Conc., µCi/g	Activity, µCi	Activity, µCi	Removed, %	Washed Solids, µCi/g	Washed Solids, µCi/g
Cs-137	7.58E-03	3.48E-01	8.28E-04	7.58E-02	8.57E-02	9.02E-02	5.14E-01	82%	2.04E-01	1.55E-01
Am-241(γ)					9.06E-02	9.54E-02	9.54E-02	(b)	3.79E-02	3.83E-02
Pu-239/240	3.64E-03	1.67E-01	3.95E-05	3.62E-03	1.26E+00	1.33E+00	1.50E+00	11%	5.95E-01	6.73E-01
Am-241+Pu-238	3.38E-05	1.55E-03	3.35E-06	3.07E-04	1.04E-01	1.09E-01	1.11E-01	2%	4.43E-02	4.49E-02
Cm-243/244					4.76E-03	5.01E-03	5.01E-03	(b)	1.99E-03	1.40E-03
Total Alpha	3.66E-03	1.68E-01	4.28E-05	3.92E-03	1.37E+00	1.44E+00	1.61E+00	11%	6.42E-01	7.19E-01

Table C.2. Radionuclide Behavior During Leaching of T-110 Solids at $80^\circ C^{(a)}$

(a) Analyte was below detection limit if left blank.

	Leaching With 1 M NaOH at 100°									
	Leaching Solution		Washing Solution		Leached Solids					
	Solution Mass, g:	44.622	Solution Mass, g:	91.634	Solids Mass, g:	1.324				
							Total		Calc. Conc. In	Measured Conc. In
	Conc., µCi/g	Activity, µCi	Conc., µCi/g	Activity, µCi	Conc., µCi/g	Activity, µCi	Activity, µCi	Removed, %	Washed Solids, µCi/g	Washed Solids, µCi/g
Cs-137	7.20E-03	3.21E-01	9.67E-04	8.86E-02	1.10E-01	1.45E-01	5.55E-01	74%	2.22E-01	1.55E-01
Am-241(γ)					6.43E-02	8.51E-02	8.51E-02	(b)	3.40E-02	3.83E-02
Pu-239/240	5.45E-07	2.43E-05	3.90E-06	3.58E-04	1.12E+00	1.48E+00	1.48E+00	0.03%	5.91E-01	6.73E-01
Am-241+Pu-238					7.87E-02	1.04E-01	1.04E-01	(b)	4.16E-02	4.49E-02
Cm-243/244					4.26E-03	5.64E-03	5.64E-03	(b)	2.25E-03	1.40E-03
Total Alpha	5.45E-07	2.43E-05	3.90E-06	3.58E-04	1.20E+00	1.59E+00	1.59E+00	0.02%	6.34E-01	7.19E-01
					Leaching	g With 3 M N	aOH at 100°			
	Leaching Se	olution	Washing Solution		Leached	Solids				
	Solution Mass, g:	49.644	Solution Mass, g:	91.192	Solids Mass, g:	1.14				
							Total		Calc. Conc. In	Measured Conc. In
	Conc., µCi/g	Activity, µCi	Conc., µCi/g	Activity, µCi	Conc., µCi/g	Activity, µCi	Activity, µCi	Removed, %	Washed Solids, µCi/g	Washed Solids, µCi/g
Cs-137	7.35E-03	3.65E-01	4.83E-04	4.40E-02	1.40E-01	1.59E-01	5.68E-01	72%	2.27E-01	1.55E-01
Am-241(γ)					8.51E-02	9.70E-02	9.70E-02	(b)	3.87E-02	3.83E-02
Pu-239/240	5.34E-04	2.65E-02			1.35E+00	1.54E+00	1.56E+00	2%	6.24E-01	6.73E-01
Am-241+Pu-238	4.97E-06	2.47E-04			9.71E-02	1.11E-01	1.11E-01	0.2%	4.43E-02	4.49E-02
$O^{Cm-243/244}$					6.77E-03	7.72E-03	7.72E-03	(b)	3.08E-03	1.40E-03
Total Alpha	5.43E-04	2.69E-02			1.45E+00	1.65E+00	1.68E+00	2%	6.70E-01	7.19E-01
					Leaching	g With 5 M N	aOH at 100°			
	Leaching Se	olution	Washing Se	olution	Leached Solids					
	Solution Mass, g:	50.598	Solution Mass, g:	90.594	Solids Mass, g:	1.162				
							Total		Calc. Conc. In	Measured Conc. In
	Conc., µCi/g	Activity, µCi	Conc., µCi/g	Activity, µCi	Conc., µCi/g	Activity, µCi	Activity, µCi	Removed, %	Washed Solids, µCi/g	Washed Solids, µCi/g
Cs-137	9.66E-03	4.89E-01	6.55E-04	5.94E-02	5.76E-02	6.69E-02	6.15E-01	89%	2.44E-01	1.55E-01
Am-241(γ)					8.64E-02	1.00E-01	1.00E-01	(b)	3.99E-02	3.83E-02
Pu-239/240	4.61E-03	2.33E-01	1.66E-05	1.50E-03	1.20E+00	1.39E+00	1.63E+00	14%	6.48E-01	6.73E-01
Am-241+Pu-238	6.51E-05	3.30E-03			1.02E-01	1.18E-01	1.22E-01	3%	4.84E-02	4.49E-02
Cm-243/244					6.82E-03	7.92E-03	7.92E-03	(b)	3.15E-03	1.40E-03
Total Alpha	4.69E-03	2.37E-01	1.66E-05	1.50E-03	1.31E+00	1.52E+00	1.76E+00	14%	7.00E-01	7.19E-01

Table C.3. Radionuclide Behavior During Leaching of T-110 Solids at $100^{\circ}C^{(a)}$

(a) Analyte was below detection limit if left blank.

Distribution

No. of Copies

OFFSITE

Harry Babad 2540 Cordova Ct. Richland, Washington 99352

Gilbert Brown Oak Ridge National Laboratory P.O. Box 2008 Oak Ridge, Tennessee 37831-6119

Dale D. Ensor Tennessee Technological University Chemistry Department – Box 5055 Cookeville, Tennessee 38505

Kurt Gerdes U.S. Department of Energy Office of Technology Systems EM-53 Cloverleaf 1186 U.S. Department of Energy PO Box 23865 Germantown, Maryland 20026-3865

Jerry Harness U.S. Department of Energy Oak Ridge Operations Office 200 Administration Road Oak Ridge, Tennessee 37830

David Hobbs Westinghouse Savannah River Co. 773-A Aiken, South Carolina 29808

No. of Copies

OFFSITE

Rodney D. Hunt Oak Ridge National Laboratory P.O. Box 2008 Oak Ridge, Tennessee 37831-6223

Phil McGinnis Oak Ridge National Laboratory P.O. Box 2008 Oak Ridge, Tennessee 37831-6223

John Swanson 1318 Cottonwood Richland, Washington

Major Thompson Westinghouse Savannah River Co. 773-A, C140 Aiken, South Carolina 29808

Jack Watson Oak Ridge National Laboratory P.O. Box 2008 Oak Ridge, Tennessee 37831-6178

David Wesolowski Oak Ridge National Laboratory P.O. Box 2008 Oak Ridge, Tennessee 37831-6110

No. of	No. of
Copies	Copies

ONSITE

ONSITE

1	Fluor Hanford Corporation	
	D.L. Herting	T6-07

2	Numatec Hanford Corporation	
	R.A. Kirkbride	R3-73
	R.M. Orme	R3-73

4	DOE Richland Operations Offic	ce
	J. Cruz	H6-60
	M.J. Glasper	K8-50
	B.M. Mauss	H6-60
	T.P. Pietrok	K8-50

3 Bechtel

R. Peterson	H4-02
P. Townson	H4-02
T. Wright	H4-02

3 CHG

K.A. Gasper	L4-07
S.L. Lambert	R3-73
D.J. Washenfelder	R2-12

36	Pacific Northwest National Laboratory			
	TFA Technical Team Office (8)	K9-69		
	W.F. Bonner	K9-14		
	W.C. Cosby	K7-62		
	J.G.H. Geeting	P7-28		
	G.R. Golcar	K6-24		
	D.E. Kurath	P7-28		
	G.J. Lumetta (20)	P7-22		
	B.M. Rapko	P7-25		
	Technical Report Files (2)			